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Asthma is a heterogeneous disease with increasing prevalence worldwide

characterized by chronic airway inflammation, increased mucus secretion and bronchial

hyperresponsiveness. The phenotypic heterogeneity among asthmatic patients is

accompanied by different endotypes, mainly Type 2 or non-Type 2. To investigate the

pathomechanism of this complex disease many animal models have been developed,

each trying to mimic specific aspects of the human disease. Rodents have classically

been employed in animal models of asthma. The present review provides an overview of

currently used Type 2 vs. non-Type 2 rodent asthma models, both acute and chronic. It

further assesses the methods used to simulate disease development and exacerbations

as well as to quantify allergic airway inflammation, including lung physiologic, cellular and

molecular immunologic responses. Furthermore, the employment of genetically modified

animals, which provide an in-depth understanding of the role of a variety of molecules,

signaling pathways and receptors implicated in the development of this disease as well

as humanized models of allergic inflammation, which have been recently developed to

overcome differences between the rodent and human immune systems, are discussed.

Nevertheless, differences between mice and humans should be carefully considered and

limits of extrapolation should be wisely taken into account when translating experimental

results into clinical use.

Keywords: mouse model, asthma, T2 airway inflammation, non-T2 airway inflammation, endotypes

INTRODUCTION

Asthma is a heterogeneous disease which affects around 300 million individuals of all age groups
and its prevalence is increasing worldwide. Its impact is considered similar to other major chronic
diseases such as diabetes or Alzheimer disease (1, 2). Asthma is defined by a history of respiratory
symptoms such a wheeze, shortness of breath, chest tightness, cough and variable expiratory airflow
limitation (3). A chronic airway inflammation leads to airway remodeling with hyperplasia of goblet
cells and mucus hypersecretion, hypertrophy and hyperplasia of smooth muscle cells and lung
fibrosis. Different asthma phenotypes have been described, which drove the development of the
concept of asthma endotypes, where each endotype is a subtype of a disease condition and defined
by a distinct pathophysiological mechanism, in contrast to the disease phenotype, which comprises
the observable characteristics of the disease (4, 5). Generally, asthma can be separated in two
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main endotypes, a so-called Type 2 endotype, characterized
by T-helper Type 2-high inflammatory response and a non-
Type 2 endotype, whereby also mixed endotypes are not rare
(6, 7). While asthmatic reactions can also be induced without
exogenous triggers (8, 9), only antigen-driven asthmamodels will
be discussed here.

Airway Type 2 immune responses are mainly mediated by
eosinophils, mast cells, basophils, T2 cells, group 2 innate
lymphoid cells (ILC2s) and IgE-producing B cells (10, 11).
The whole inflammatory process starts with the activation of
epithelial cells and release of cytokines such as IL-25, IL-31,
IL-33, and TSLP which contribute to downstream T cells-
and innate lymphoid cells-mediated T2 immune responses.
These are characterized by the release of cytokines such as IL-
4, IL-5, IL-9, and IL-13, consequent production of allergen-
specific IgE, recruitment of eosinophils and other inflammatory
cells, production of mucus and smooth muscle hyperreactivity
(12). Non-Type 2 asthma, instead, is characterized by airway
inflammation in the absence of eosinophils and is often
associated with environmental and/or host hazards, such as
cigarette smoke, pollution, work-related agents, infections, and
obesity. These risk factors, alone or in conjunction, can activate
specific cellular and molecular pathways leading to non-type 2
pulmonary inflammation (13). Growing evidence supports two
major characteristic features of non-Type 2 asthma, namely a
neutrophilic-driven inflammation and an IL-6-driven activation
of the IL-17-dependent pathway (14, 15). To allow for a detailed
investigation of molecular pathways critical for this complex
disease or for a specific endotype in a functioning immune and
respiratory system, many animal models of asthma have been
developed, each of them trying to reproduce specific aspects of
the human disease. Because of their low cost, high breeding
efficiency and the large availability of transgenic models, rodents,
and especially mice have classically been employed in asthma
research, although considerations have been made regarding
their limitations in mimicking human asthma (16, 17). In this
review we will focus on antigen-driven asthma models and
methods used for the elicitation and quantification of allergic
airway inflammation, including lung physiologic, cellular and
molecular immunologic responses. Furthermore, approaches
to study exacerbations, chronicity and non-allergic airway
inflammation as well as the value of humanized models will be
discussed. Nevertheless, differences between mice and humans
should be carefully considered and limits of extrapolation should
be wisely taken into account when translating experimental
results into clinical use.

ELICITING ALLERGIC AIRWAY
INFLAMMATION

Historically, experimental asthma research was performed
sensitizing rodents intraperitoneally with chicken ovalbumin
(OVA) in combination with the pro-T2 adjuvant aluminum
hydroxide (alum), followed by repetitive OVA exposures
via the airways in order to elicit a Th-2 skewed adaptive
immune response leading to eosinophilia, goblet cell hyperplasia

and airway hyperresposiveness (18–20). Alum plays an
important role in boosting the adaptive immune system via the
inflammasome (21). The benefits of OVA lie on the fact that this
substance is efficient, inexpensive and has well-characterized
MHCI and MHCII epitopes and moreover OT1 and OT2 T-cell
receptor transgenic mice are available, which allowmonitoring of
OVA-specific immune responses in the airways (22, 23), making
OVA a very good option for unraveling underlying mechanisms
of the disease. However, OVA is not allergenic upon inhalation,
therefore it has been more and more replaced by naturally
occurring allergens which possess higher clinical relevance.

Allergens frequently used in sensitization protocols include
the house dust mites (HDM) Dermatopagoides pteronyssinus and
farinae, the fungus Alternaria alternata, cockroach and pollen
extracts. The principle of sensitization and challenge remained
the same as it was for OVA, but here the use of the adjuvant
became dispensable. Adjuvant-free models have been established
using several intranasal instillations of these allergens, mimicking
the natural exposure to airborne allergens via the nasal mucosa
and airway tract (24–27). Some of these allergen complexes like
HDM are characterized by an intrinsic protease activity which
favors the initiation of the allergic response, stimulating the
production of interleukin-25 (IL-25), IL-33, and thymic stromal
lymphopoietin (TSLP) from airway epithelial cells, which in turn
activate both dendritic cells, promoting T2 responses (28), and
local ILC2, leading to the increased release of IL-5, IL-9, IL-
13, and amphiregulin (26). Some others, like birch, grass or
ragweed pollen grains, do not only release allergens, but also
proinflammatory and immunomodulatory lipids and adenosine,
which act as critical co-factors in the development of lung allergic
inflammation (24, 29).

Whereas models using allergen sensitization/provocation via
the airways is reminiscent of the standard route of sensitization
in asthma and hay fever, there is also compelling data on
the relevance of cutaneous exposure in the development of
pulmonary allergy along the lines of the so-called “atopic march”
in which eczema precedes food allergies, asthma or hay fever
(30). Mouse models have confirmed that repeated epicutaneous
sensitization to protein (aero)-allergens leads to phenotypes
of atopic dermatitis and to increased risk of allergic rhinitis,
lung inflammation and airway hyperresponsiveness, where skin
barrier dysfunction and TSLP expression from keratinocytes play
essential roles (31–35).

Besides the pulmonary inflammation upon allergen exposure,
exacerbations induced by other factors like viral and bacterial
infections are a characteristic feature in the course of disease (36,
37). Here murine models of asthma have been especially useful
to identify possible effects of infections with the development of
the pathology. Particularly, influenza (38–40), rhinovirus (41, 42)
and respiratory syncytial virus (38, 43) are important pathogens
in the childhood that have been associated with exacerbations
in asthma.

Haptens are also broadly used in rodent models to
investigate exacerbation in airway inflammation. Studies
with toluene diisocyanate (TDI), trimellitic anhydride (TMA),
dinitrofluorobenzene (DNFB), and picryl chloride (PCL),
allowed dissecting the hapten-induced allergy as well as the

Frontiers in Immunology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 575936

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alessandrini et al. Mimicking Asthma in Experimental Models

similarities and differences between the different compounds
(44–47). Rodent models of DNFB, a powerful sensitizer of
non-atopic asthma (47), have recently shown increased numbers
of macrophages in bronchoalveolar lavage fluid (BALF),
tracheal hyper-reactivity and a strong neutrophilic-based
lung inflammation that could reflect characteristic features of
non-atopic asthma in humans (46, 48).

QUANTIFYING ALLERGIC AIRWAY
INFLAMMATION

The physiological characteristics of asthma are mediated
by a complex interaction between multiple effector cells
and mediators.

The increased infiltration of inflammatory cells is determined
by total and differential cell counts as well as measurement
of inflammatory mediator content in the BALF or lung tissue
(24, 49, 50). Upon allergen provocation, especially the role of
eosinophils is shown to be indispensable for the development of
allergic airway inflammation by mediating influx of T cell subsets
[reviewed in (51)] into the lung (52, 53). For their release of pro-
inflammatory mediators these cells are important contributors
to pathophysiological changes, including airway epithelial cell
damage, mucus hypersecretion and goblet cell hyperplasia which
can be observed and quantified in histological staining of lung
tissue (20, 54). In this context, eosinophils can be quantified by
cell surface markers and by direct counting of stained cells in
histological specimen (55).

Regarding the measurement of inflammatory mediators,
tissue-based ex vivo cultures are another way to examine
which cytokines are regulated in the development of airway
inflammation and asthma and which cell type plays a decisive
role in the concerned organs [reviewed in (56)]. As an alternative
to the determination of cytokines in the supernatant of lung
homogenates, stimulation of cells isolated from lung tissue or
draining lymph nodes, by adding e.g., the allergen is used
to evaluate the distinct cytokine patterns and to examine cell
type specific responses more precisely (57, 58), allowing initial
mechanistic conclusions about the observed phenotype.

As a hallmark of T2-driven allergic asthma, allergen-specific
IgE responses are quantified in murine sera e.g., by means
of ELISA (enzyme-linked immunosorbent assay) or functional
cellular assays (59). Another factor to be taken into account in
this context is IgG (and its subclasses), which are known to
modulate inflammation via its receptors (FcγR) (60, 61). For
example, antigen-specific IgG has been shown to improve allergic
airway inflammation when signaling via FcγRIIB on DCs (62)
and triggering different FcgR via certain IgG subclasses engage
different pathways in murine IgE-independent anaphylaxis (63).
Interestingly, similar mechanisms are discussed to take place in
humans as well (64).

Airway hyperresponsiveness (AHR), defined as the
predisposition of the airways to react excessively to
bronchoconstrictor agents or to noxious stimuli, is an
essential component of the asthma phenotype. The degree
of AHR usually correlates with disease severity (65), and can

be employed clinically for therapy management (66). AHR
may not replace measurements of lung function such as FEV1,
however it has been proposed to be included with other
indices of lung function for asthma control (67). Similarly
to spirometry in cooperative humans, lung function testing
has been developed for rodents. Analysis of AHR in animal
models is usually performed using one cholinergic agonist
(methacholine, carbachol, histamine, serotonine), which act
on the muscarinic receptor transduction pathway coupling
to airway smooth muscle contraction (68). Measurement of
AHR is usually performed shortly (24–48 h) after allergen
challenge either in whole body chambers in conscious animals
(body plethysmography) or in tracheostomized animals,
using systems such as the Buxco R© or the Flexivent R©, with
the agonist being either injected or aerosolized (24, 50, 69).
Whilst the measurement of Penh (enhanced pause) using body
plethysmography has lost acceptance in the scientific community
(70), measurement of respiratory system resistance (RL) and
dynamic compliance (DC) together with other physiologic
parameters under mechanical ventilation in tracheostomized
animals is often employed in asthma research (50, 71, 72).
An increase in RL reflects both narrowing of the conducting
airways and alterations in the lung periphery (distal airways
and parenchyma). On the contrary, decreases in DC reflect
only events occurring in the lung periphery. Therefore, if the
response to an intervention is limited largely to RL, then a
relatively proximal location is implicated for the effect, whereas
a distinctive effect on DC is indicative of a more distal site of
action. (73).

The limitation of this technique is based on the fact that it is
only applicable in terminal experiments. This has been overcome
by the use of oro-tracheal intubation technique, allowing for
repetitive measurements in the same animals, which can be of
advantage in longitudinal studies (74, 75).

NON-ALLERGIC ASTHMA MODELS

Since the non-allergic asthmatic phenotype occurs also in
patients with severe, steroid resistant asthma and management of
asthma evolves into precision medicine with therapies directed
toward specific phenotypes/endotypes (76–78), proper models of
these conditions are needed to facilitate research on adequate
therapeutic options (79). In this regard, it was shown that a
Th17-driven non-eosinophilic lung inflammation is insensitive
to several treatment options including steroids, by using adoptive
transfer of in vitro polarized antigen specific Th17 cells with
subsequent pulmonary allergen application (80, 81). Manni et
al. could create a mixed phenotype by adoptive transfer of
T2 and Th17 cells enabling them to dissect contributions of
the different cytokine pathways to distinct features of airway
disease like mucus metaplasia or tissue inflammation (82).
Microbial components like bacterial lipopolysaccharides (LPS)
used as adjuvants in airway application of allergen have been
proven to elicit a non-eosinophilic airway inflammation by
triggering pathogen recognition receptors (PRR). Kim et al.
could demonstrate that in such models the dose of LPS during
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sensitization plays a decisive role in shaping the resulting lung
inflammation either toward eosinophilic (low dose LPS) or
neutrophilic (high dose LPS) inflammation (83). Comparing
this airway sensitization model to intraperitoneal allergen
application (with alum) Wilson et al. could illustrate how
different sensitization regimes lead to different molecular and
phenotypical pattern in the resulting airway disease identifying
a prominent role for Th17 in neutrophilic airway inflammation
and AHR (84). Hadebe et al. demonstrated the importance of
microbial triggers in airway immune responses via initiation
of a non-allergic steroid-refractory airway inflammation by
combining two different agents (LPS and beta-glucan) (85).
A more sophisticated approach uses biolistic transfection of a
plasmid containing the genetic information of the allergen via
gene-gun, with targeted expression in dendritic cells ensured by
a specific promotor, leading to a Th1/Tc1 driven inflammation
depending on IFNγ that is sensitive to steroid treatment (86).
Application of Poly I/C, a dsRNA analog mimicking a viral
infection, in combination with an allergen results in a Th1-driven
airway inflammation as well, offering the possibility to study the
pathomechanism underlying virus-induced airway inflammation
(87). Taking advantage of the possibility to shape the resulting
airway inflammation by means of different sensitization regimes
(using the same allergen: house dust mite), Tan et al. were able
to directly compare transcriptomic lung profiles of eosinophilic,
neutrophilic and mixed phenotypes enabling identification of
molecular pattern that are linked to distinct inflammatory
phenotypes (88).

Aspirin-exacerbated respiratory disease (AERD) is a
common, severe variant of asthma, which affects 7–10% of all
asthmatics and is associated with overproduction of cysteinyl
leukotrienes (cysLTs) and respiratory reactions to drugs that
block cyclooxygenase 1 (89). The pathophysiology has not been
fully solved yet, but in order to model this disease deficiency or
overexpression genetic animal models have been used presenting
severe eosinophilic respiratory mucosal inflammation (90, 91).

CHRONICITY AND REMODELING

Most of the above-mentioned models focus on the development
of symptoms after a short period of antigen exposure. While
this has provided a broad range of information on causal
and mechanistic effects on asthma, it usually cannot mimic
characteristics like chronic inflammation of the airway wall,
mucus production and remodeling (92–95).

To compensate that limitation, several methods applying
allergen for a longer period of time have been established. This
causes a protracted experimental window up to several months
and in some cases, due to the continuous exposure to the
allergen, leads to tolerance in the mice (96–101). The transgenic
technology allowed the generation of mice with characteristics of
chronic asthma and airway remodeling (102, 103). Furthermore,
transgenic models allowed the identification of an important
migration factor of DCs to the lung (104) and the role of IL-33
receptor suppressor of tumorigenicity 2 (ST2) in development
of chronic asthma in mice by regulating ILC2s, mast cells,

IL9 and IL-13 in the lungs (105). In addition, recent gene
modification in mice allowed to identify for example the role of
the potassium channels Kca3.1 in airway remodeling (106), and
the regulatory role of semaphorin 3E (Sema3E) in inflammatory
and remodeling responses in chronic asthma (107).

Recently, CRISPR/Cas 9, a gene disruption technology,
allowed to knock-out/down several genes in associated with
exacerbation, inflammation and remodeling in asthmatic
diseases, identifying roles for these molecules in some
pathophysiological features of asthma. For example, using
the CRISPR/Cas 9 technology the transient receptor potential
(TRP) 1, an ion channel was successfully knocked-out by Reese et
al. They could demonstrate its role in the protection from airway
inflammation in rats as well as in mice, suggesting TRP1A as a
therapeutic target in asthma (108). In another study depletion of
long non-coding RNAs (lncRNAs), particularly AK085865, led
to reduction of the inflammatory response in a murine model of
asthma, by modulating differentiation of innate lymphoid cells
progenitor (ILCP) into ILC2s (109). CRISPR/Cas 9, because of its
high target specificity, is a tool that could be of high importance
in the understanding of the pathomechanisms of asthma and
identification of novel therapeutic targets.

HUMANIZED MOUSE MODELS

Despite the widespread use of mouse models for the evaluation
of asthmatic diseases, there are restrictions when comparing
components of the murine biology (e.g., the immune system)
with those of the human biology (110). Humanized mouse
models, that are immunodeficient mice engrafted with functional
human (immune) cells, help to overcome some of these
discrepancies. They have become an important pre-clinical tool
for biomedical research, but to date only a small number of
humanized mouse models are available in the research field
of asthma.

Currently immunodeficient mouse strains for this purpose are
often based on IL2rgnull mice, which lack a functional common
gamma chain (γc) of the IL-2 receptor. This chain is not only part
of the receptor complex for IL-2, but assembles with other chains
to form receptors for IL-4, IL-7, IL-9, IL-15, and IL-21 as well,
which are expressed on several cells of the immune system and
signaling via these receptors is essential for homeostasis of these
immune cells [reviewed in (111)]. Thus, the lack of γc results in
absence of functional T, B, and NK cells.

The three most commonly used strains in humanized models
are: the NSG mouse, the NOG mouse and the BRG or
BALB/c-Rag2null IL2rgnull mouse. BRG and NSG mice have no
gamma chain while NOG mice have a truncated cytoplasmic
domain of the gamma chain, preventing signal transmission
(112, 113). All three models allow for efficient engraftment
with human immune cells, due to a severe impairment in
development of T and B as well as NK cells. These new
models have enabled a multitude of new findings in the
field of asthma research such as the interaction of allergen
immunotherapy, clinical tolerance and cellular response, as well
as new therapeutic options through the induction of peripheral
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TABLE 1 | Advantages and disadvantages of T2-driven asthma mouse models.

Mouse model Advantages Disadvantages

OVA models High efficiency, reproducibility, low cost

Well-characterized MHCI and MHCII epitopes

OT1 and OT2 T-cell receptor transgenic mice can be used to study

OVA-specific immune responses in the airways

Adjuvants are needed for sensitization

Provides good mechanistic insights, but no clinical relevance

Aeroallergen models Do not need adjuvants

Mimic natural exposure to airborne allergens via nasal mucosa and

airway tract

Need several consecutive applications of allergens

Amount of allergen exposure might not reflect natural exposure

of patients

Epicutaneous

sensitization models

Allow studies on atopic march

Mimics physiologic condition of repeated skin exposures to allergens

Needs intradermal applications of allergen or damaged skin

barrier

Chronic models of

asthma

Allows the study of a chronic phenotype as frequently observed in asthma

patients

Allows to investigate lung tissue remodeling

Longer duration of experiments

with frequent allergen applications

Risk of tolerance induction

Transgenic models Allows evaluating the role of particular cells, receptors or mediators in

asthma pathophysiology

Helps evaluating disease development/progression

The genetic modification can affect other phenotypes in the

model

Challenges in translating murine biology in human biology

Humanized models Help to mitigate the inherent differences between mouse and humans that

limit translation of the findings

Paucity of humanized mouse models for asthma research

Anatomical discrepancies between mice and humans (e.g., lung

anatomy, cell composition in the airways)

tolerance by sGARP (glycoprotein A repetitions predominant)
(114, 115). New mechanistic relationships were also clarified,
such as the influence of the IL-33/IL-13 axis on the asthmatic
airway inflammation or the anti-inflammatory effect of IL-35 in
asthmatic diseases (116). Based on the immunodeficient IL2rgnull

mouse, further mouse models emerged, including the Hu-SRC-
SCID mouse and the BLT mouse as well as the Hu-PBL-SCID
mouse providing further insight into our understanding of the
development of AHR as a characteristic feature of allergic asthma
(117) and discovery of new therapeutics, such as the use of TIM-1
antagonists as a possible treatment strategy for asthma (118).

LIMITS OF EXTRAPOLATION

Taken together, recent developments in asthma research led to a
shift from solely applying allergic T2-driven eosinophilic airway
inflammationmodels to a broader variety of airway inflammation
models following the demand for precision medicine based
on phenotype/endotypes in asthma management. However, it
is important to be aware that, while the main hallmarks
of asthmatic airway inflammation can be mimicked in such
models, there are certain differences between mice and men
which are reviewed in detail elsewhere (119, 120), that might
limit translational impact of results obtained in mouse models.
Some of these differences include immunological features (121,
122), which might be overcome by using humanized models,
whereas others like anatomical discrepancies [e.g., lung anatomy,
cell composition in the airways (123, 124)] will still differ in
humanized mice. Moreover, the course of disease and treatment
can often not be mimicked: asthma often begins in childhood

when the lung is not fully developed yet, whereas experiments
are mostly done in mice which do not spontaneously develop
asthma, using adult animals with fully developed lung structure.
Since the immunological response is shaped not only by the
route, but also the amount and frequency of allergen exposure
(23, 125, 126), a model that efficiently results in allergic airway
inflammation might not necessarily mimic allergen exposure
as it is experienced by the patients. Direct extrapolation of
efficacy for therapeutic interventions obtained in mouse models
is hampered by the fact that mouse models are conducted under
highly controlled conditions (e.g., under specific pathogen-free
conditions) which substantially affects the diversity of intrinsic
and acquired immune responsiveness and may cause substantial
immunological differences between these models and human
(127, 128). Moreover, experiments are usually performed in
genetically similar animals, which do not reflect the heterogeneity
of asthmatic patients. To sum this up there is not the “one
asthma model” mimicking human disease, but there is a huge
variety of different approaches that allow to closely reproduce
certain aspects of this complex syndrome with certain advantages
and disadvantages (Table 1), enabling researchers to examine
a scientific question from several different angels in order to
contribute mosaic pieces for better understanding asthma.
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