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Abstract

In high-density aquaculture, fish health can suffer because of excessive feeding, which

causes fatty liver disease. Siberian ginseng (Acanthopanax senticosus) has been used as a

feed additive to promote animal growth, immunity, and lipid metabolism. In this study, we

explored the effects of A. senticosus on the physiology of hybrid yellow catfish (Tachysurus

fulvidraco ♀ × Pseudobagrus vachellii ♂). A control group and five groups fed diets contain-

ing A. senticosus (0.5, 1, 2, 4, and 8 g A. senticosus/kg feed) were established and main-

tained for 8 weeks. Dietary supplementation with A. senticosus at 4 g/kg promoted growth of

the hybrid yellow catfish. Serum total cholesterol (TC) and triacylglycerol (TG) levels at 2 g/

kg A. senticosus (TC: 1.31 mmol/L; TG: 1.08 mmol/L) were significantly lower than in the

control group (TC: 1.51 mmol/L; TG: 1.41 mmol/L), and 4 g/kg A. senticosus (17.20 μmol/g

tissue) reduced the liver TG level compared with the control group (21.36 μmol/g tissue)

(P <0.05). Comparative transcriptomic analysis of liver tissue between the control group and

the group showing optimum growth (4 g/kg A. senticosus) revealed 820 differentially

expressed genes and 44 significantly enriched pathways, especially lipid metabolism path-

ways such as unsaturated fatty acid and fatty acid metabolism. The transcript levels of five

lipid metabolism-related genes were determined by quantitative real-time PCR. The results

showed that 2–4 g/kg A. senticosus supplementation reduced the FADS2, ELOVL2,

CYP24a, and PLPP3 transcript levels and 4 g/kg A. senticosus increased the DIO2 tran-

script level (P <0.05), leading to altered synthesis of TG and thyroxine and reduced fat depo-

sition in the liver. Our results show that dietary A. senticosus affects the regulation of fat

metabolism and promotes the growth of hybrid yellow catfish. A. senticosus is a healthy

feed additive, and the appropriate dietary supplementation rate is 2–4 g/kg.
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Introduction

With the development of intensive aquaculture, many factors such as environmental pollution

[1], excessive energy intake [2], and a lack of nutrients [3] can lead to fatty liver disease in

farmed fish. Fatty liver disease has been shown to damage the structure of liver cells and affect

liver metabolism, leading to slow growth and weakened immunity of farmed fish [4–6]. This

can cause severe economic losses to the aquaculture industry. Therefore, research on the pre-

vention or treatment of fatty liver in fish is necessary.

Recent studies have suggested that Chinese herbal medicines, which have both nutritional

and pharmacological properties, have considerable potential as additives in aquafeeds [7, 8].

Several studies have shown that Chinese herbal medicines can reduce lipid levels in animals

and protect against fatty liver disease [9, 10]. Siberian ginseng (Acanthopanax senticosus) is a

traditional Chinese medicinal plant. Its roots and rhizomes or stems are harvested in the

spring and fall, and are dried for use as a medicine [11]. It is rich in nutrients such as trace ele-

ments and amino acids, which are required by animals, as well as a variety of active ingredients

such as saponins, polysaccharides, and flavonoids [12, 13]. A. senticosus is considered to be a

high-quality medicinal material that can positively affect animal growth [14], enhance immu-

nity [15], improve antioxidant capacity [16], treat inflammation [17, 18], and regulate lipid

metabolism [11, 19]. The physiological role of A. senticosus in lipid metabolism has been

proven by a large number of experimental studies. For example, cortisol extracts from the

stems of A. senticosus were shown to reduce lipid synthesis in the liver and reduce the insulin

concentration to ameliorate liver steatosis [19]. A metabolomics analysis of mice with Parkin-

son’s disease showed that an extract of A. senticosus affected the regulation of long-chain satu-

rated fatty acid mitochondrial β oxidation, fatty acid metabolism, and other metabolic

pathways [20]. Our previous research [11] showed that genetically improved farmed tilapia

(GIFT, Oreochromis niloticus) fed with diets containing A. senticosus showed reduced liver fat

deposition and lower fat contents, compared with those fed a control diet. Yellow catfish has

delicious meat and high nutritional value, and is an important freshwater cultured species in

China. Its production was 536,964 tons in 2019, a 5.37% increase over its production in 2018

[21]. The large-scale farming of yellow catfish means the fish is susceptible to high lipid deposi-

tion in the liver during breeding, which can affect its immunity and the product quality. This

problem poses risks to the yellow catfish breeding industry [22, 23]. However, few studies have

explored the effect of A. senticosus on regulating lipid metabolism in yellow catfish.

To answer the above question, we conducted experiments to explore the mechanism by

which dietary A. senticosus supplementation affects lipid metabolism in the liver of hybrid yel-

low catfish. Transcriptome analyses have been widely used in studies on the immunity, nutri-

tion, and metabolism of aquatic organisms [24, 25]. For example, recent studies have used

transcriptome analyses to reveal a series of molecular changes that regulate lipid metabolism

in tilapia (O. niloticus) [26], salmon louse (Caligus rogercresseyi) [27], Atlantic salmon (Salmo
salar) [28], zebrafish (Brachydanio rerio) [29], and the larvae of Atlantic cod (Gadus morhua)

[30]. In this study, to determine how the Chinese medicine A. senticosus affects lipid metabo-

lism in hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂), we used the

Illumina HiSeq 4000 sequencing platform to detect differences in the liver transcriptomes

between the control group and the group showing optimal growth. We detected many differ-

entially expressed genes related to lipid metabolism, and selected five for confirmation of their

transcript levels by qRT-PCR. Hepatic steatosis is strongly associated with abnormal lipid

metabolism, which is reflected mainly in the imbalance between hepatic lipid inputs and out-

puts, and blood is an important transport system in the regulation of lipid metabolism [31,

32]. Triglyceride (TG) and total cholesterol (TC) are important components of blood lipids,
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and they are mainly synthesized in the liver. Therefore, changes in TG and TC content can be

used to assess the fat metabolism of fish. Triiodothyronine (T3) and thyroxine (T4) are thyroid

hormones (THs) that are involved in maintaining the normal metabolism of blood lipids. The

main physiological functions of lipoprotein lipase (LPL) are to convert TG into very low-den-

sity lipoprotein and to promote the transfer of TC and phospholipids between lipoproteins

[33]. Hepatic lipase (HL) is synthesized primarily in liver and is involved in chylomicron-rem-

nant and high-density lipoprotein metabolism [34]. Increased LPL and HL activities can affect

serum TC and TG levels. Therefore, by measuring TH content and catabolic enzyme activity,

changes in the lipid metabolism of yellow catfish can be assessed.

In this study, we screened the differentially expressed genes and enriched pathways related

to lipid metabolism in the liver of hybrid yellow catfish by transcriptome sequencing, and mea-

sured the changes in serum and liver lipids, TH content, and the activities of catabolic enzymes

at different A. senticosus supplementation levels. The aim was to explore the mechanism by

which A. senticosus regulates fat metabolism in the hybrid yellow catfish at the physiological

and molecular levels, and to provide a scientific basis for the use of A. senticosus as an aquatic

feed additive.

Materials and methods

Ethics statement

The study protocols were approved by the Ethics Committee at the Freshwater Fisheries

Research Centre of the Chinese Academy of Fishery Sciences (FFRC, Wuxi, China). All experi-

mental procedures were performed according to the Guide for the Care and Use of Laboratory

Animals in China.

Experimental diets

In our previous research [11], we found that 1–2 g/kg dietary levels of A. senticosus promoted

growth, enhanced immunity, and reduced lipid accumulation in GIFT. Therefore, in this

experiment, a control group (no dietary A. senticosus) and five treatment groups (0.5, 1, 2, 4

and 8 g A. senticosus/kg feed) were established (Table 1). We used commercially available A.

senticosus powder processed by ultra-fine pulverization technology, which was provided by the

Beijing Yujing Biotechnology Co. Ltd. (Beijing, China). All ingredients were mixed and then

5% oils and 10% water were added to obtain a dough. The dough was extruded as strands

using a laboratory granulator, and the strands were broken into 1.5-mm pellets. The pellets

were air dried at 4˚C for he and then stored at −20˚C until use.

Experimental facility and fish rearing

The juveniles were chosen from the Yixing base of the FFRC. Juveniles were acclimated in an

aerated flow-through system and fed with commercial feed for 1 week. The experiment was

carried out in a circulating water system. A total of 450 healthy hybrid yellow catfish juveniles

with mean weight of 13.41±0.04 g were selected and randomly divided into six groups, each

with three replicate tanks. The tanks were filled with 600 L dechlorinated freshwater, and the

flow rate was 200 kg/min. The stocking density was 25 fish per tank. The fish were fed to

apparent satiation twice a day at 08:00 and 17:00 for 56 days. During the entire experimental

period, the water temperature was maintained at 26–28˚C and the pH was 7.4. Dissolved oxy-

gen was�5 mg/L, and ammonia-N and nitrite concentrations were kept below 0.01 mg/L.

One-third of the water was exchanged every 3 days.
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Sample collection

After the 56-day feeding experiment, the fish were starved for 24 h to reduce the effects of feed-

ing on physiological and biochemical indicators. The fish were treated with 100 mg/L MS-222

(Argent Chemical Laboratories, Redmond, WA, USA) for rapid deep anesthesia, and the total

weight of all fish in each tank was recorded. Four fish were randomly caught from each tank,

and blood samples were taken from the tail vein and immediately centrifuged to obtain serum

as described by Ma [35]. The serum was stored in labeled tubes at −80˚C for further biochemi-

cal analyses. Four fish per tank were weighed and dissected, and then their liver and viscera tis-

sues were weighed. The liver and intestinal tissues were collected from 12 fish in each group,

frozen in liquid nitrogen, and stored at −80˚C. The intestine samples were used to determine

the activities of digestive enzymes. The liver samples were separated into two portions, one of

which was used to determine physiological indexes, and the other for RNA extraction. Accord-

ing to growth and biochemical indicator data, further analyses were conducted to compare

the livers of the group showing optimal growth (T_Liver) with those of the control group

(C_Liver). Three fish from each group were randomly selected from each tank, and the liver

tissues were quickly dissected, frozen in liquid nitrogen, and stored at −80˚C until transcrip-

tome sequencing.

Fish growth performance

Fish growth performance was determined by calculating the weight gain rate (WGR), specific

growth rate (SGR), viscerosomatic index (VSI), hepatosomatic index (HSI), and protein effi-

ciency ratio (PER). The feed conversion ratio (FCR) was calculated to express feed utilization.

During the experiment, the daily feed consumption and the number of fish deaths were

recorded. These parameters were calculated according to Li [11].

Table 1. Composition and nutrient levels of experimental diets (as-fed basis) %.

Items Add the amount of A.senticosus (g/kg)

0 0.5 1 2 4 8

Fish meal 10.00 10.00 10.00 10.00 10.00 10.00

Wheat middling 10.60 10.60 10.60 10.60 10.60 10.60

Corn starch 16.80 16.80 16.80 16.80 16.80 16.80

Soybean oil 5.00 5.00 5.00 5.00 5.00 5.00

Soybean meal 16.00 16.00 16.00 16.00 16.00 16.00

Cottonseed meal 16.00 16.00 16.00 16.00 16.00 16.00

Rapeseed meal 16.00 16.00 16.00 16.00 16.00 16.00

Vitamin premix 0.50 0.50 0.50 0.50 0.50 0.50

Mineral premix 0.50 0.50 0.50 0.50 0.50 0.50

Choline chloride 0.50 0.50 0.50 0.50 0.50 0.50

Sodium vitamin C phosphate 0.20 0.20 0.20 0.20 0.20 0.20

Ca(H2PO4)2 1.50 1.50 1.50 1.50 1.50 1.50

Microcrystalline cellulose 6.40 6.35 6.30 6.20 6.00 5.60

A.senticosus 0.00 0.05 0.10 0.20 0.40 0.80

Total 100.00 100.00 100.00 100.00 100.00 100.00

Proximate composition (%, DM)

Ash 8.27 8.38 8.29 8.39 8.42 8.53

Dry matter 92.61 92.60 92.94 92.88 92.83 93.02

Crude protein 28.20 28.44 28.53 28.61 28.57 28.77

Crude lipid 6.66 6.41 6.61 6.72 6.49 6.33

https://doi.org/10.1371/journal.pone.0246417.t001
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Blood biochemical analysis

We measured serum total protein (TP), triglyceride (TG), and total cholesterol (TC) contents

using a fully automatic biochemical analyzer (bs-400, MINDRAY, Shenzhen, China). Reagents

and test kits were purchased from MINDRAY. The contents of triiodothyronine (T3) and thy-

roxine (T4) were determined by radioimmunoassay (RIA) as described by Nayak and Singh

[36].

Hepatic lipid index assays

Liver samples (about 1.0 g) were homogenized in ice-cold phosphate-buffered saline (PBS, 50

mmol/ L, pH 7.3) and then centrifuged for 10 min at 3500 g at 4˚C [37]. Liver TG, TC, glyco-

gen contents and LPL, HL activities were measured using ELISA kits. All kits were provided by

the Shanghai Lengton Bioscience Co., Ltd. (Shanghai, China).

Enzyme activity analyses

Intestinal samples were homogenized in ice-cold PBS (50 mmol/ L, pH 7.3) and then centri-

fuged for 10 min at 3500 g at 4˚C [37]. The supernatant was used for analyses of amylase, tryp-

sin, and lipase activity as described by Qiang [37].

Analysis of transcriptome libraries

RNA extraction and Illumina library preparation. Total RNA was extracted from livers

of fish from the two groups using Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to

the manufacturer’s instructions. The extracted RNA was detected using a Bioanalyzer 2100

and RNA 6000 Nano LabChip Kit (Agilent, CA, USA). Each group of RNA samples with good

integrity and purity was mixed, then approximately 10 μg total RNA was taken from each

mixed group to prepare an Illumina library. Six libraries were constructed: T_Liver_1,

T_Liver_2, T_Liver_3, C_Liver_1, C_Liver_2, and C_Liver_3. The RNA was reverse-tran-

scribed according to the operating procedures of the mRNA-Seq sample preparation kit (Illu-

mina, San Diego, CA, USA) to create the final complementary DNA (cDNA) library. Each

library was sequenced on the Illumina HiSeq 4000 platform. The average insert size was

300 ± 50 bp.

Data filtering, read mapping, and detection of differentially expressed genes. Invalid

reads (including joint, duplicate, and low-sampling reads) were removed from the sequence

data using the processing steps described by Qiang [38]. The remaining clean reads were used

for subsequent analyses. Reads from the T_Liver and C_Liver libraries were aligned to the

Tachysurus fulvidraco reference genome (https://www.ncbi.nlm.nih.gov/genome/?term=

yellow+catfish) using the HISAT package [39]. This software package maps reads to a refer-

ence genome to build a database, and compares previously unmapped reads with a database of

putative junctions to confirm them.

In the clean RNA-seq data, gene transcript levels were estimated on the basis of fragments

per kilobase of transcript per million mapped (FPKM) reads values [40]. Differentially

expressed (DE) genes between the T_Liver and C_Liver groups were identified using the R

package [41] with the following criteria: adjusted |log2foldchange|� 1.0 and P-value < 0.05.

The DE genes were subjected to KEGG pathway enrichment analysis, and those with P< 0.05

were considered to be significantly enriched.

Verification of selected DE genes by quantitative real-time PCR. The KEGG enrich-

ment analysis indicated that dietary A. senticosus affected signaling pathways related to lipid

metabolism. Therefore, we selected five known genes in this pathway for validation by
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quantitative real-time PCR. The five genes were FADS2 (encoding fatty acid desaturase 2),

ELOVL2, (encoding ELOVL fatty acid elongase 2), CYP24a (encoding 1,25-dihydroxyvitamin

D(3) 24-hydroxylase), PLPP3 (encoding phospholipid phosphatase 3), and DIO2 (encoding

iodothyronine deiodinase 2). All primers used to amplify the DE genes (Table 2) were synthe-

sized by the Suzhou GeneWiz Biotechnology Co. Ltd (Suzhou, China). Total RNA was

extracted from liver samples using Trizol reagent ((Invitrogen) and was reverse-transcribed

into cDNA using Prime Script™ RT Master Mix (Takara, Dalian, China). The qRT-PCR analy-

ses were performed in accordance with the instruction manual of the SYBR1 Premix Ex Taq

(Takara) kit using an CFX96™ Real-time PCR System (Bio-Rad, Hercules, CA, USA). The

internal reference gene was β-actin. Each PCR mixture (25 μL) consisted of 8 μL RNase-free

water, 12.5 μL SYBR Premix Ex Taq II (2×), 0.5 μL ROX Dye (50×), 2 μL forward and reverse

primers (10 μM), and 2 μL cDNA working solution. The amplification conditions were as fol-

lows: 95˚C for 30 s, followed by 40 cycles of 95˚C˚C for 5 s and 60˚C for 30 s [42]. Each reac-

tion was repeated three times. The relative gene transcript levels in the different treatments

were calculated using the 2-ΔΔCt method [43].

Data analysis

The results are reported as mean ± standard error. Shapiro-Wilk’s test and Levene’s test were

used to test for normal data distribution and homogeneity of variance. Significant differences

among treatments were determined by one-way ANOVA with post-hocDuncan’ s multiple

range test. The level of significance was P< 0.05. Statistical analyses were conducted using

SPSS ver. 22.0 (IBM Corp., Armonk, NY, USA).

Results

Growth performance, FCR, and survival

The WGR was highest in the group fed with a diet containing 4 g/kg A. senticosus and lowest

in the control group (0 g A. senticosus) (Table 3). The WGR differed significantly between

those two groups (P< 0.05). The trend in SGR among the different treatments was similar to

that of WGR, and both showed the highest values in the group fed with a diet containing 4 g/

kg A. senticosus (Fig 1). Compared with the control group, the group fed with a diet containing

4 g/kg A. senticosus showed a significantly lower HSI level (P< 0.05). However, the VSI, FCR

and PER did not differ significantly among the treatment groups or between the treatment

Table 2. Sequences of primers used for qRT-PCR.

Name Primer sequence (5’-3’)

FADS2 F: 5’- ATTGGTTCAGCGGCCATCTT-3’

R: 5’- AGACTGGTTGGGGGCAAAAA-3’

ELOVL2 F: 5’- GAGTGCATCCCCTACCCAAC-3’

R: 5’- GCAGCATGTCAGCCCTATCT-3’

CYP24a F: 5’- ACGCACGAGCTAAAGTGAGA-3’

R: 5’- CCGTTCCTACCAGCCGATTT-3’

PLPP3 F: 5’- CCAGAATCAGCCTGTGGAGTA-3’

R: 5’- AGTGTGTGCAGTCGTAAGGG-3’

DIO2 F: 5’- GAACTGTTCCCGTTCGAGGT-3’

R: 5’- TACGATGCACACCCTTTCGT-3’

β-actin F: 5’- GGATTCGCTGGAGATGATG-3’

R: 5’- TCGTTGTAGAAGGTGTGATG-3’

https://doi.org/10.1371/journal.pone.0246417.t002
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groups and the control group (P> 0.05). Dietary supplementation with 0–8 g/kg A. senticosus
did not significantly affect the survival of hybrid yellow catfish.

Serum biochemical parameters

The TC level was significantly (P< 0.05) lower in the group fed with a diet containing 2 g/kg

A. senticosus than in the control group (Table 4). The serum TG levels decreased significantly

(P< 0.05) with increasing amounts of A. senticosus in the diet, and were significantly lower in

the 2 and 4 g/kg A. senticosus treatment groups than in the other groups. There was no signifi-

cant difference in TP content between the control group and the treatment groups (P> 0.05).

Table 3. Effect of A.senticosus supplementation on growth performance of hybrid yellow catfish (means ± SEM).

A.senticosus (g/kg) 0 0.5 1 2 4 8

IBW (g) 13.44±0.02 13.38±0.03 13.43±0.02 13.43±0.01 13.38±0.00 13.39±0.02

FBW (g) 38.66±0.27a 39.84±0.92ab 41.46±0.71bc 41.56±0.52bc 42.68±0.89c 39.44±0.71ab

WGR (%) 187.65±1.90a 197.63±6.67ab 208.57±4.84bc 209.49±3.50bc 218.97±6.64c 194.64±4.92ab

SGR (%/d) 1.89±0.01a 1.95±0.04ab 2.01±0.03bc 2.02±0.02bc 2.07±0.04c 1.93±0.03ab

HSI (%) 1.58±0.06c 1.49±0.06bc 1.4±0.08abc 1.34±0.07ab 1.24±0.08a 1.33±0.07ab

VSI (%) 14.17±0.42 14.3±0.43 13.72±0.55 14.38±0.52 14.43±0.42 13.46±0.43

FCR 2.13±0.03 2.08±0.06 2.02±0.07 2.01±0.06 2±0.06 2.1±0.04

PER 1.67±0.05 1.69±0.05 1.74±0.06 1.73±0.06 1.75±0.05 1.69±0.05

SR (%) 95.67±1.33 97.33±1.33 95.67±1.33 97.33±2.67 98.67±1.33 96±2.31

Note. Data with different superscript lowercase letters in the same row indicate a significant difference (P< 0.05).

https://doi.org/10.1371/journal.pone.0246417.t003

Fig 1. Relationship between specific growth rate and dietary supplementation with A. senticosus. The relationship was determined using a

two-slope broken-line model according to the method of Qiang et al. [38].

https://doi.org/10.1371/journal.pone.0246417.g001
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Compared with the control group, the groups fed with diets containing 2 and 4 g/kg A. sentico-
sus showed significantly (P< 0.05) lower serum T3 contents and T3/T4 values, and signifi-

cantly increased serum T4 contents (P< 0.05) (Fig 2).

Hepatic biochemical parameters

The liver TG level differed significantly (P< 0.05) between the control group and the group

fed with a diet containing 4 g/kg A. senticosus, but the TC level did not differ significantly

between these two groups (P> 0.05) (Fig 3). The glycogen level did not differ significantly

Table 4. Effect of A.senticosus supplementation on serum biochemical parameters of hybrid yellow catfish (means ± SEM).

A.senticosus (g/kg) 0 0.5 1 2 4 8

TP (g/L) 10.08±0.18 10.4±0.20 10.47±0.21 10.55±0.22 10.71±0.17 10.51±0.25

T3 (mg/mL) 1.65±0.07b 1.5±0.10ab 1.46±0.09ab 1.29±0.08a 1.25±0.09a 1.47±0.11ab

T4 (mg/mL) 59.12±3.32a 67.94±4.24ab 73.42±5.57ab 80.81±4.98b 75.29±4.52b 70.41±5.11ab

T3/T4 (%) 2.91± 0.22b 2.36±0.27ab 2.17±0.26a 1.69±0.16a 1.77±0.21a 2.27±0.28ab

TC (mmol/L) 1.51±0.05b 1.47±0.05b 1.44±0.05ab 1.31±0.04a 1.38±0.05ab 1.46±0.05ab

TG (mmol/L) 1.41±0.07b 1.25±0.07ab 1.25±0.07ab 1.08±0.06a 1.18±0.04a 1.23±0.06ab

Note. Data with different superscript lowercase letters in the same row indicate a significant difference (P< 0.05).

https://doi.org/10.1371/journal.pone.0246417.t004

Fig 2. Serum levels of thyroid hormones in hybrid yellow catfish fed diets with A. senticosus supplementation. (A) Serum thyroxine (T4) and (B)

serum triiodothyronine (T3) levels, and (C) T3:T4 ratios with diets with different A. senticosus supplementation levels. Different superscript lowercase

letters indicate a significant difference (P<0.05).

https://doi.org/10.1371/journal.pone.0246417.g002

Fig 3. Liver lipid and glycogen levels in hybrid yellow catfish fed diets with A. senticosus supplementation. (A) Triglyceride (TG), (B) total

cholesterol (TC), and (C) glycogen levels with diets with different A. senticosus supplementation levels. Different superscript lowercase letters indicate a

significant difference (P<0.05).

https://doi.org/10.1371/journal.pone.0246417.g003
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among the treatment groups or between the treatment groups and the control group

(P> 0.05). The activities of LPL and HL were significantly lower (P<0.05) in the group fed a

diet containing 4 g/kg A. senticosus compared with the control group (Table 5).

Intestinal digestive enzyme activities

The amylase, trypsin, and lipase activities in the yellow catfish intestine significantly increased

with increasing amounts of A. senticosus in the diet (Table 6). The amylase, trypsin, and lipase

activities were significantly higher in the group fed with a diet containing 8 g/kg A. senticosus
than in the other five groups (P< 0.05).

Sequence data summary and transcriptome assembly statistics

The Illumina HiSeq 4000 platform was used to sequence the transcriptomes of liver tissues in

the T_Liver_1, T_Liver_2, T_Liver_3, C_Liver_1, C_Liver_2, and C_Liver_3 groups. After

deleting low-quality sequences, the number of valid reads in each library ranged from

46001180 to 51777748. Across the six groups, the Q20 value was 99.98%, and the GC content

was 46% (Table 7). These results confirmed that the sequencing data were of sufficient quality

for subsequent splicing and assembly.

Table 5. Effect of A. senticosus supplementation on catabolic enzymes in the liver of hybrid yellow catfish (means ± SEM).

A.senticosus (g/kg) 0 0.5 1 2 4 8

LPL (ng/mg prot) 7.39±0.56a 7.77±0.60a 8.8±0.34ab 8.98±0.48ab 9.55±0.53b 8.05±0.50ab

HL (ng/mg prot) 31.45±1.02a 32.64±0.81a 33.85±1.16ab 34.23±0.87ab 35.83±0.92b 33.25±0.83ab

https://doi.org/10.1371/journal.pone.0246417.t005

Table 6. Effect of A.senticosus supplementation on intestinal digestive enzymes of hybrid yellow catfish (means ± SEM).

A.senticosus (g/kg) 0 0.5 1 2 4 8

Amylase (ng/mg prot) 96.54±7.38a 103.32±6.17ab 114.93±8.27ab 117.41±8.23ab 126.06±9.47b 153.63±9.48c

Trypsin (ng/mg prot) 113.48±9.52a 134.38±6.07ab 142.2±8.81ab 152.39±11.00b 164.26±12.78b 197.73±9.51c

Lipase ng/mg prot) 48.61±4.49a 54.58±2.76ab 58.51±4.81ab 61.85±4.42ab 67.33±4.40b 83.48±4.84c

Note. Data with different superscript lowercase letters in the same row indicate a significant difference (P< 0.05).

https://doi.org/10.1371/journal.pone.0246417.t006

Table 7. Overview of reads for mRNA-seq of hybrid yellow catfish (Tachysurus fulvidraco♀× Pseudobagrus vachellii♂) and quality filtering.

Sample Raw Reads Base Valid Read Base Valid Ratio (reads) Q20% Q30% GC content %

C_Liver_1 48948446 7.34G 46001180 6.90G 93.98 99.98 98.53 46

C_Liver_2 55870092 8.38G 51777748 7.77G 92.68 99.98 98.66 46

C_Liver_3 52351492 7.85G 45710806 6.86G 87.32 99.98 98.72 46

T_Liver_1 55845642 8.38G 46916382 7.04G 84.01 99.98 98.61 46

T_Liver_2 54223560 8.13G 49577940 7.44G 91.43 99.98 98.59 46

T_Liver_3 51742012 7.76G 47436396 7.12G 91.68 99.98 98.50 46

Note. T_liver: 4 A.senticosus / kg; C_liver: 0 A.senticosus / kg.

https://doi.org/10.1371/journal.pone.0246417.t007
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Screening of differentially expressed genes in response to dietary A.

senticosus

We estimated the abundance of genes mapped to the Tachysurus fulvidraco reference genome,

and identified DE genes based on the following criteria: |log2(foldchange)|� 1 and P-value�

0.05. The comparison of T_liver and C_liver transcriptomes identified 345 up-regulated genes

and 319 down-regulated genes (Fig 4).

KEGG analysis

The specific signaling pathways enriched with DE genes were identified using tools at the

KEGG database. Compared with the C_liver group, T_liver group had multiple pathways

enriched with DE genes. The top seven enriched pathways were steroid biosynthesis, biosyn-

thesis of unsaturated fatty acids, alpha-linolenic acid metabolism, thyroid hormone signaling,

fatty acid metabolism, propanoate metabolism, and glycerolipid metabolism (Fig 5). There-

fore, pathways related to fat metabolism were affected in the yellow catfish fed with diets con-

taining A. senticosus.

Fig 4. Expression profiles of genes associated with response to A. senticosus supplementation. The numbers of up- and

down-regulated differentially expressed (DE) genes between the group fed the diet with 4 g/kg A. senticosus supplementation

(T_liver group) and the control group with 0 g/kg supplementation (C_liver group) are shown.

https://doi.org/10.1371/journal.pone.0246417.g004
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Validation of DE genes

Five DE genes related to lipid metabolism were selected from the enriched pathways for valida-

tion by qRT-PCR analyses. Their relative transcript levels were determined in fish fed with

diets containing A. senticosus at different levels (Fig 6). In the control group and the 4 g/kg

treatment group, the transcript levels of genes detected by qRT-PCR were similar to those esti-

mated from the sequencing analysis. FASD2, ELOVL2, PLPP3, and DIO2 showed decreased

transcript levels in fish fed with diets containing A. senticosus. Compared with the control

Fig 5. KEGG analysis of differentially expressed genes (P<0.05) associated with response to A. senticosus supplementation. A.

senticosus supplementation was 4 g/kg in the T_liver group and 0 g/kg in the C_liver group.

https://doi.org/10.1371/journal.pone.0246417.g005
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group, the groups fed with diets containing 2 and 4 g/kg A. senticosus showed significantly

decreased transcript levels of FASD2 in the liver (P< 0.05). Those in groups fed with diets con-

taining 1, 2, and 4 g/kg A. senticosus showed the lowest transcript levels of ELOVL2 and

PLPP3, significantly lower than in the control group (P< 0.05). Compared with the control

Fig 6. Expression levels of five differentially expressed genes associated with response to A. senticosus supplementation. The

expression levels of (A) FADS2; (B) ELOVL2; (C) CYP24a; (D) PLPP3; and (E)DIO2 in liver of yellow catfish fed diets with different

A. senticosus supplementation levels are shown. Different superscript lowercase letters indicate a significant difference (P<0.05).

https://doi.org/10.1371/journal.pone.0246417.g006
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group, the group fed with a diet containing 4 g/kg A. senticosus showed significantly increased

(P< 0.05) CYP24a transcript levels in the liver. Compared with the control, the groups fed

with diets containing 2 and 4 g/kg A. senticosus showed significantly decreased (P< 0.05) tran-

script levels of DIO2 in the liver.

Discussion

Chinese herbal medicines contain a variety of natural nutrients and biologically active sub-

stances, which can promote the metabolism of animals. Various compounds in Chinese herbal

medicines can promote the synthesis of proteins and enzymes, accelerate the absorption and

utilization of nutrients, and benefit animal growth [44, 45]. Previous studies have shown that

A. senticosus can promote animal growth. For example, Ruan [46] found that A. senticosus sig-

nificantly promoted the growth of the swamp eel,Monopterus albus. An extract of A. senticosus
was found to significantly improve the growth performance of weaned piglets [47]. Our results

show that adding an appropriate amount of A. senticosus to the diet can significantly promote

the growth of hybrid yellow catfish, and 4 g/kg A. senticosus is the optimum level of supple-

mentation. Some studies have suggested that herbal medicines may improve the production

performance of livestock via beneficial effects on the activities of intestinal enzymes [48]. A.

senticosus contains a variety of nutrients and active ingredients, and has been shown to pro-

mote the development of animal intestines, promote secretion from digestive glands, and

improve feed utilization [49]. In this study, we found that the addition of A. senticosus to the

diet can significantly improve the digestive function of the intestines of hybrid yellow catfish,

leading to better absorption and utilization of nutrients and increased growth. The 8 g/kg A.

senticosus treatment had the strongest effect intestinal digestive enzyme activity in this study.

And the PER did not show a significant difference, but it tended to increase with the A. sentico-
sus diet, the highest at 4g/kg. We considered that the digestive enzyme activities and the PER

show a positive connection with the appropriate amount of A. senticosus diet. However, when

excessive A. senticosus supplementation, physiological factors such as lipid accumulation may

cause this relationship to be insignificant.

As an important metabolic transport system, blood participates in the regulation of lipid

metabolism in fish, and blood lipid levels can reflect fat metabolism [50]. In this study, the

serum TC and TG contents were significantly lower in the groups fed with diets containing

2–4 g/kg A. senticosus than in the other groups and the control. The liver is an important

organ for lipid synthesis and storage [51]. Park [19] found that cortisol extracts from the stems

of A. senticosus reduced lipid synthesis in the liver and reduced the insulin concentration, lead-

ing to amelioration of liver steatosis. Sui [52] reported that the addition of A. senticosus to

aquatic animal feed prevented tissue injury by reducing fat deposition in the body tissue. In

this experiment, compared with the fish in the control group, those in the group fed with a diet

containing 4 g/kg A. senticosus showed significantly lower liver TG levels, significantly reduced

serum TG and TC contents, and reduced lipid levels in the body. The HSI level was signifi-

cantly higher in the control group than in the treatment groups, which reflected fat deposition

in the liver and damage to liver cells [53, 54]. These findings are similar to those obtained in

our study on GIFT [11]. LPL, a key enzyme in lipoprotein metabolism, can hydrolyze triglycer-

ides circulating in the form of chylomicrons and very low-density lipoproteins [55]. HL is

primarily expressed in liver and is involved in chylomicron-remnant and high-density lipopro-

tein metabolism [56]. In this study, the LPL and HL activities in the group fed with 4 g/kg A.

senticosus were significantly lower than in the control group, and at this supplementation level,

the liver TG and serum TG and TC contents were significantly reduced. Our results suggest
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that an appropriate amount of A. senticosus increased the activity of TG and TC catabolic

enzymes in the liver of hybrid yellow catfish, leading to reduced lipid levels.

In organisms, thyroid hormone (TH) can stimulate lipogenesis in the liver and adipose tis-

sue, and this has major effects on lipid metabolism [57]. In this study, we found that the serum

T4 content was significantly increased in the groups fed with diets containing 2 and 4 g/kg A.

senticosus. An increase in TH can increase fat decomposition and fatty acid oxidation by gluca-

gon, and reduce fat accumulation and the concentration of lipids in the blood. This is consis-

tent with the significantly lower serum and liver TG contents in the groups fed with diets

containing 2 and 4 g/kg A. senticosus than in the other groups and the control. However, no

significant difference in liver glycogen was detected with 0–8 g/kg A. senticosus supplementa-

tion, possibly because of regulation of the physiological balance of yellow catfish.

To explore the mechanism by which A. senticosus affects lipid metabolism in the liver of

hybrid yellow catfish, we conducted comparative transcriptome analyses. Then, we validated

the results by determining the transcript levels of five DE lipid metabolism genes by qRT-PCR.

We selected genes related to fat metabolism and fatty liver disease for these analyses, including

FADS2 encoding Δ-6 desaturase and ELOVL2 encoding long chain fatty acid elongase, which

are important rate-limiting enzymes in the synthesis of polyunsaturated fatty acids [58, 59].

Ma [60] found that interference with FADS2 expression caused a decrease in intracellular TG

content. In another study, overexpression of ELOVL2 led to increased TG synthesis and accu-

mulation of lipid droplets [61]. In our study, we found that dietary supplementation with A.

senticosus led to reduced transcript levels of FADS2 and ELOVL2 in the liver, which may

explain the decreased TG and TC contents. The high transcript levels of FADS2 and ELOVL2
in the C_liver may have led to the formation of fat droplets, consistent with the significantly

increased HSI, TG, and TC contents in the control group.

Previous studies have shown that, in aquatic animals, the expression of cytochrome P450

family 24 (CYP24) can regulate the catabolism of the active form of vitamin D (1, 25-(OH)2D3)

[62], and that 1, 25-(OH)2D3 can inhibit the differentiation of preadipocytes and affect the

transcript levels of genes related to fat metabolism [63]. Zhou and Mai [64] found that a lack of

vitamin D3 led to increased fat content in abalone (Haliotis discus hannai). In addition, obese

patients with nonalcoholic fatty liver disease were found to have low vitamin D levels [65].

These findings and observations suggest that CYP24a regulates lipid metabolism by affecting

the function of the active form of vitamin D in the liver. In this study, we found that A. sentico-
sus could stimulate the active form of vitamin D in yellow catfish by increasing the transcript

level of CYP24a. This led to reduced fat content in the liver. PLPP3 encodes LPP3, a cell-sur-

face enzyme and an intrinsic negative regulator that regulates the signals of biologically active

lipids including lysophosphatidic acid [66]. Inhibition of PLPP3 expression can lead to

decreased lipid production in the body, thereby reducing the harmful effects of rapid fat depo-

sition [67]. In this experiment, the transcript levels of PLPP3 in the liver of yellow catfish were

significantly reduced in the groups fed with diets containing 2 and 4 g/kg A. senticosus, and the

fish in these groups also showed decreased HSI and lower TG and TC contents, compared

with those in other groups and the control group. This result suggests that A. senticosus regu-

lates the expression of PLPP3 with an overall effect to reduce fatty deposits. Bae [68] detected

significant expression of PLPP3 in mice fed with high-fat diets. The geneDIO2 encodes deiodi-

nase type II (D2), which catalyzes the conversion of T4 to T3 [69]. In our study, we detected

down-regulation of DIO2 in the groups fed with diets containing 2 and 4 g/kg A. senticosus.
This suggested that the pathway of T4 conversion to T3 was inhibited, consistent with the

increased serum T4 content and decreased serum T3 content. In another study, up-regulation

of DIO2 was detected in the subcutaneous and visceral fat cells of obese patients [70]. Previous

studies have shown that increased DIO2 expression is related to decreased mitochondrial gene

PLOS ONE Acanthopanax senticosus relieves fat deposits

PLOS ONE | https://doi.org/10.1371/journal.pone.0246417 February 11, 2021 14 / 20

https://doi.org/10.1371/journal.pone.0246417


expression and lipid oxidation, and that mitochondrial dysfunction leads to decreased fatty

acid oxidation [71] and increased lipid accumulation [72]. Our results indicate that A. sentico-
sus can regulate the expression of DIO2 to reduce fat accumulation in the liver tissue of yellow

catfish.

Conclusion

Our results show that appropriate dietary supplementation with A. senticosus can effectively

promote the growth of hybrid yellow catfish, regulate its serum lipid levels, relieve excessive fat

deposition, and protect the liver. The results of transcriptome analyses indicate that dietary A.

senticosus affects the transcript levels of FADS2, ELOVL2, CYP24a, PLPP3, DIO2, thereby reg-

ulating lipid metabolism and reducing damage caused by fat deposition in the liver (Fig 7).

These positive effects may be related to polysaccharides, flavonoids, and saponins in A. sentico-
sus, but further research is required to clarify the specific roles of the active components of A.

senticosus in fish. On the basis of our results, we suggest that the addition of 2–4 g/kg A. senti-
cosus to the diet is beneficial for the health of farmed hybrid yellow catfish.
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