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Ki-energy (Life-energy) Stimulates Osteoblastic Cells and Inhibits
the Formation of Osteoclast-like Cells in Bone Cell Culture Models
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Some practitioners of the Nishino Breathing Method (NBM) were found to have a higher bone
density than the average values of age- and gender-matched non-practitioners. Using bone cell
culture models, we investigated a possible mechanism behind this observation. For the study of
bone mineralization, we performed the following two experiments using cultured osteoblastic
MC3T3-E1 cells: (i) Kozo Nishino, a Japanese Ki expert, sent Ki-energy to the cells once for
5 or 10min after they were seeded in culture dishes in the presence of 10% fetal bovine serum
(FBS). They were incubated for 72 h and the cells were counted. The number in the dish with
10-min Ki-exposure was significantly greater than that in the control (P50.01 with n¼ 8).
We performed a reverse transcription-polymerase chain reaction (RT–PCR) study using these
cells, but the mRNA expressions did not change significantly. (ii) After cells were incubated for
72 h without Ki-exposure (in the presence of FBS), they were further cultured for 48 h (in the
absence of FBS) to promote differentiation. At the beginning of the second culture stage,
Ki was applied once for 10min. After 48 h, RT–PCR was performed. The mRNA expressions
which are related to bone mineralization, such as Runx2, a1(I) collagen, alkaline phosphatase
and osteocalcin, increased significantly (P50.05 and n¼ 4 for all). For the bone resorption
study, we used mouse marrow cultures, which can form osteoclast-like cells in the presence
of (1–34) parathyroid hormone (PTH), and stimulate resorption. We exposed these cells to
Ki-energy twice for the duration of 5 or 10min on day 0 and day 4. On day 7, the cells were
counted. The number of osteoclast-like cells in dishes with Ki exposure was significantly smaller
than those in control dishes (P50.05 with n¼ 5). The difference between 5-min exposure and
10-min exposure was not statistically significant. All of our data suggest that the Ki-effect on
osteoporosis should be further explored.
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Introduction

Osteoporosis is a major public health problem in many

countries because the aged population has been growing

in recent years. Aging is known to induce a decrease in

bone mass which can lead to osteoporosis (1–3).
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Women are particularly vulnerable to osteoporosis

because post-menopausal estrogen deficiency is linked

to bone loss (4–6). Besides a pharmacological approach,

such as using estrogen (6,7), bisphosphonate (7,8),

calcitonin (7,9), calcium products (7,10) and anabolic

steroids (11), CAM (complementary and alternative

medicine) approaches to this problem have been actively

conducted. For example, nutritional products (12–16),

Chinese traditional (Kampo) medicine (17) and Japanese

herbal medicine (18) have been reported to have

beneficial effects on osteoporosis.
In this article, we present an entirely new approach to

this problem, namely, the application of Ki-energy,

which can be enhanced through the practice of the

Nishino Breathing Method (NBM) (19–21). This method

has been taught by Kozo Nishino at two schools

(Tokyo and Osaka) for the past 20 years. More than

10 000 people have practiced it and various health

benefits were observed (22–24). Scientific investigations

on Ki were also conducted to demonstrate that

it enhanced the immune activity of the practitioners

(25), it inhibited cell division of cultured cancer cells (26)

and it protected isolated mitochondria from oxidative

injury (27).
One of the health benefits of NBM seems to be an

increased bone density. Junko Kataoka (Professor; Japan

Women’s College for Physical Education), who had

practiced NBM for 11 years, found that the ultrasonic-

wave conduction velocity (which increases with the bone

density) at her ankle bone was 1586m/sec. At her age

(59 years old), the average value is 1498� 24m/sec.

Her measured value corresponds to the average value for

19-year-old girls (1556� 35m/sec) (28). Since then,

several practitioners of NBM (both men and women)

measured their bone density with various methods, and

found that their values were 5�50% greater than the

average values for the same age and the same gender (29)

(See supplemental data published on the website of

eCAM).
Since it is well-known that the bone density in women

decreases after menopause (because of the decrease of

estrogen hormones), there is a question as to why some

of female practitioners, who are 50–70 years old, have a

bone density greater than that of young women. Thus,

we were very much interested in these observations,

and decided to study Ki-effects on bone by using in vitro

bone cell culture models. Our strategy was to examine

whether Ki-energy could stimulate osteoblastic cells

(which can increase bone formation) and/or inhibit the

formation of osteoclast-like cells (which can reduce bone

mass; (30)). Although our data are still descriptive, and

we do not yet know the mechanism of Ki-effect on bone,

we decided to present our data with the hope that our

experience would stimulate interest in Ki study in the

scientific community.

Methods

Chemicals

a-Minimal essential medium, (a-MEM) and penicillin
(5000U/ml) and streptomycin (5000mg/ml) were obtained
from Gibco Laboratories. Fetal bovine serum (FBS) was
obtained from Bioproducts, Inc. Other chemicals were of
reagent grade and were obtained from Wako Pure
Chemical Industries (Osaka, Japan). Water was glass
distilled.

Site for Experiments

All experiments were performed at the Laboratory of
Endocrinology and Molecular Metabolism, Graduate
School of Nutritional Sciences, University of Shizuoka.
The procedures were approved by the institutional
committee of the University of Shizuoka.

Application of Ki to Cell Cultures

This is done with the same method used for our previous
cancer cell study (26). An acrylic stand with a hole was
prepared (Fig. 1A). In a vertical flow clean bench, an
uncovered culture dish was placed on the stand and a
Japanese Ki expert (K. Nishino) emitted Ki-energy to the
dish for 5 or 10min from his fingers (Fig. 1B). The dish

Figure 1. (A) A stand which holds a culture dish for Ki-exposure

experiments. (a) bone cell culture and the medium; (b) 35mm

polystyrene culture dish; (c) an acrylic stand. The signs of Ki indicates

that Ki-energy is applied from the fingers of a Ki-expert. (B) Photo

shows how Ki-energy was applied from the fingers of Nishino inside a

clean bench. (C) Schematic illustration of how osteoblastic cells were

cultured. 1, Seeding of cells; 2, Proliferation in the presence of FBS until

cells reach subconfluency; 3, Differentiation in the absence of FBS to

reach the stage that cells can promote mineralization.
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was returned to the incubator after the Ki-exposure for
further culturing.

Osteoblastic Cell Culture

Osteoblastic MC3T3-E1 cells were cultured at 37�C in
a CO2 incubator (5%) in plastic dishes (polystyrene;
35mm diameter) containing a-MEM supplemented with
10% FBS (15). They were subcultured every 3 days and
the cells with subconfluency were detached using
0.2% trypsin plus 0.02% EDTA in Ca2þ/Mg2þ–free
phosphate-buffered saline (PBS). For the experiment
(i), approximately 1� 105 cells per dish were cultured
for 72 h to obtain subconfluent monolayers in a 35-mm
plastic dish containing 2ml a -MEM with 10% FBS
(Fig. 1C, 1 to 2). For experiment (ii), after the cells
reached subconfluency, they were further cultured 48 h
in the absence of FBS to promote mineralization
(Fig. 1C, 2 to 3).

Marrow Culture Experiments

Bone marrow cells were isolated from male mice. Briefly:
both bone ends of the femur were cut off, and the
marrow cavity was flushed with 1ml of a-MEM. The
marrow cells, which were obtained from six animals, were
washed with a-MEM and cultured (at 2.5� 107 cells/ml)
in 35mm dish in an incubator with a water-saturated
atmosphere containing 5% CO2 and 95% air at 37�C.
Each dish contained 2ml of a-MEM, 10% heat-
inactivated FBS and (1–34) parathyroid hormone (PTH;
10�7M), except for the non-PTH control. The cells were
cultured for 3 days, then 0.2ml of the old medium was
replaced with the fresh medium, and the cultures were
maintained for an additional 4 days (14,31,32). PTH
(10�7M) was added to the culture medium at the
beginning of the culture and at the time of medium
change, except for the non-PTH dishes.

Enzyme Histochemistry to Detect the Formation of

Osteoclast-like Cells

After being cultured for 7 days, marrow culture cells
which adhered to the dishes were stained for tartrate-
resistant acid phosphatase (TRACP), a marker enzyme
of osteoclasts (33,34). In brief: cells were washed with
Hank’s balanced salt solution and fixed with 10%
neutralized formalin-phosphate (pH 7.2) for 10min.
After the culture dishes were dried, TRACP staining
was applied according to the method of Burstone (33).
The fixed cells were incubated for 12min at room
temperature (25�C) in an acetate buffer (pH 5.0)
containing 10mM sodium tartrate and naphthol
AS-MX phosphate (Sigma) as a substrate, and red
violet LB salt (Sigma) as a stain for the reaction product.

TRACP-positive multinucleated cells (MNCs) containing
three or more nuclei were counted as osteoclast-like cells.

Cell Counting

After trypsinization of the cells in each culture dish using
a Ca2þ/Mg2þ –free PBS containing 0.2% trypsin and
0.02% EDTA for 2min at 37�C, cells were collected and
wash-centrifuged in a PBS solution at 100� g for 5min.
The cells were resuspended in a 0.5ml PBS solution and
an aliquot was stained with eosin. The cells were counted
under a microscope using a Hemacytometer plate.
For each dish, we took an average of two counts.

Determination of Specific mRNA by RT–PCR

Total RNAs were prepared as described previously (35).
Osteoblastic MC3T3-E1 cells were washed three times
with ice-cold PBS. Then, cells were homogenized in a
buffer solution containing 4M guanidinium thiocyanate,
24mM sodium citrate (pH 7.0), 0.5% sarcosyl and
isoamyl alcohol and the mixture was centrifuged at
10 000 g for 20min at 40�C to separate the aqueous phase
from the organic phase. RNA in the aqueous phase was
precipitated with isopropanol at �20�C. RNA precipi-
tates were collected by centrifugation, and the pellets
were redissolved in diethylpyrocarbonate-treated water.
Reverse transcription-polymerase chain reaction

(RT–PCR) was performed with a TitamTM One Tube
RT–PCR kit (Roche Molecular Biochemicals) as
recommended by the supplier.
Primers for amplification of mouse Runx2 cDNA were;

50-GTATGAGAGTAGGTGTCCCG-30 (sense strand,
positions 992–1011 of cDNA sequence) and 50-ACATC
CCCATCCATCCACTC-30 (antisense strand, positions
1156–1175) (36). The pair of oligonucleotide primers
was designed to amplify a 183-bp sequence from the
mRNA of mouse Runx2.
The pair of oligonucleotide primers was designed to

amplify a 254-bp sequence from the mRNA of a1(I)
collagen. Primers for amplification of mouse alkaline
phosphatase cDNA were: 50-GATCGGGACTGGTACT
CGGATAA-30 (sense strand, positions 729–751 of cDNA
sequence) and 50-CACATCAGTTCTGTTCTTCGGG
TAC-30 (antisense strand, positions 860–884) (37).
The pair of oligonucleotide primers was designed to
amplify a 155-bp sequence from the mRNA of alkaline
phosphatase.
Primers for amplication of mouse osteocalcin cDNA

were: 50-GGGGAAGGGACAACACATGA-30 (sense
strand, positions 188–207 of cDNA sequence) and 50-TCC
TGGACATGGGGATTGAC-30 (antisense strand, posi-
tions 580–599) (38). The pair of oligonucleotide primers
was designed to amplify a 412-bp sequence from the
mRNA of osteocalcin.
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Primers for amplification of mouse TGF-b1 cDNA were:
50-CTCTCCACCTGCAAGACCAT-30 (sense strand,
positions 633–652 of cDNA sequence) and 50-CTGCW
TACAACTWAGTGA-30 (antisense strand, positions
1312–1331) (39). The pair of oligonucleotide primers were
designed to amplify a 679 bp sequence from the mRNA of
mouse TGF-b1. Primers for amplification of mouse IGF-1
cDNA were: 50-GC AAGCTTCAGCCACCTTAC-30

(sense strand, positions 955–974 of cDNA sequence) and
50-GGGTCGTTTACACA WAGGT-30 (antisense strand,
positions 1466–1485) (40). The pair of oligonucleotide
primers were designed to amplify a 511 bp sequence from
the mRNA of IGF-I.
For semiquantitative PCR, glyceroaldehyde-

3-phosphate dehydrogenase (G3PDH) was used as an
internal standard to evaluate total RNA input. Primers
for amplification of G3PDH cDNA were, 50-GATTT
GGCCGTATCGGACGC-30 (sense strand) and 50-CTCC
TTGGAGGCCATGTAGG-30 (antisense strand). The
pair of oligonucleotide primers was designed to amplify
a 977-bp sequence from the mRNA of rat G3PDH.
RT–PCR was performed using reaction mixture (20ml)

containing 2 or 4 mg of total RNAs, supplied RT–PCR
buffer, TitamTM enzyme mix (AMV and ExpandTM High
Fidelity), 0.2mM dNTP, 5mM dithiothreitol, 5 U RNase
inhibitor, and 0.3 mM primers. Samples were incubated at
50�C for 30min, and then amplified for 30 cycles under
the following conditions: denaturation for 30 s 94�C,
annealing for 30 s at 56�C, and extension for 60 s at 68�C.
The amplified products were separated by electrophoresis
on a 1.5% agarose gel and visualized by ethidium
bromide staining. Image density was quantified with
a FluoroImager SI (Amersham Pharmacia Biotech).

Statistical Analysis

Data were expressed as the mean�SE. The significance
of the difference was determined by analysis of variance
with the Fisher’s PLSD test for comparison of multiple
groups. Calculations were done using StatViewTM soft-
ware. Differences with P50.05 were considered to be
statistically significant.

Results

Stimulation of Osteoblastic Cells by Ki-energy

Increase in cell numbers

After MC3T3-E1 cells were seeded, Ki was applied once
for 5 or 10min. Subsequently, they were incubated for
72 h in the presence of 10% FBS, and the cells were
counted. As shown in Fig. 2, the number of Ki-exposed
cells (�104 cells/dish) increased from 39.2� 1.34 (SE)
for the control to 42.0� 2.13 for 5-min exposure and

46.5� 1.83 for 10-min exposure. The difference between
the control and the 5-min experiment was not statistically
significant, but that between the control and the 10-min
experiment was statistically significant (P50.01, n¼ 8).

Changes in the Gene Expressions Shown in Ki-exposed

Cells in the Presence and Absence of FBS

Although the number of MC3T3-E1 cells increased
with the exposure to Ki-energy, gene expressions
in cells reaching subconfluent conditions did not sig-
nificantly change with Ki as shown in Fig. 3. (In Figs. 3
and 4, the open columns indicate experiments without
Ki-exposure and the filled columns with Ki-exposure.)
Therefore, we tried another experiment. We first cultured
the cells for 72 h without Ki-exposure in the presence of
10% FBS to bring the cells to subconfluency. After
exchanging the medium with the one which did not
contain FBS, Ki-energy was applied once for 5 or 10min,
and subsequently, they were cultured for 48 h in the
absence of FBS. We confirmed that the elimination of
FBS did not cause cell death. Then, RT–PCR test was
performed using these cells. We observed that
Ki-exposure significantly increased gene expressions
for Runx2, a1(I) collagen, alkaline phosphatase and
osteocalcin (P50.05; n¼ 4). The expressions for IGF-I
and TGF-b1 did not change significantly.

Inhibition of the Formation of Osteoclast-like Cells

by Ki-energy

In the presence of PTHs (10�7M), we tested the effect
of Ki-energy on mouse marrow cell cultures. Cells were
exposed to Ki-energy twice for the duration of 5 or
10min on day 0 and day 4 of the cell culture. On day 7,
the mouse marrow cells were stained for TRACP,

Figure 2. After osteoblastic cells (MC3T3-E1) were seeded, they were

exposed to 5 or 10min Ki-energy once, and subsequently, incubated

for 72 h in the presence of FBS. Then, the cell number was counted.

The effect of 5-min Ki-exposure was not significant. The effect of

10min was statistically significant (P50.01; indicated by �symbol).
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a marker enzyme of osteoclasts (33,34). TRACP-positive

MNCs (stained in a red color) were clearly decreased

by the Ki-treatment (Fig. 5). The number of osteoclast-

like cells were 214.3� 29.4 (n¼ 5) (no Ki control),

129.6� 21.2 (with 5-min Ki) and 146.8� 18.3 (with

10-minKi). The effects of Ki in both 5 and 10-min

exposure were statistically significant (P50.05, n¼ 5;

Fig. 6). There was no statistically significant difference
between 5 and 10-min exposures.

Discussion

The idea that Ki-energy may be beneficial in osteoporosis
came from the observation that the bone density of some

Figure 3. Changes in the mRNA expressions in MC3T3-E1 cells were measured using RT–PCR. The cells were seeded, exposed to 10min Ki-energy

once, incubated for 72 h in the presence of FBS, and RT–PCR was performed. The open columns are without Ki-exposure and the filled columns are

with Ki-exposure. These effects of Ki during this proliferation stage were not statistically significant. See text for details.

Figure 4. MC3T3-E1 cells were seeded, cultured for 72 h (in the presence of FBS) to reach subconfluency (no Ki-exposure). The medium

was exchanged (no FBS), and cells were exposed to 10-min Ki-energy once, and cells were cultured in the absence of FBS for another 48 h.

Then, RT–PCR was performed. The open columns are without Ki-exposure and the filled columns are with Ki-exposure. The increases in

mRNA expressions for RUnx2, a1(I) collagen, alkaline phosphatase and osteocalcin were all statistically significant as indicated by � symbols

(P50.05; n¼ 4 for each).
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practitioners of NBM is much higher than in age- and

gender-matched non-practitioners (24,28,29) (see also

supplemental material on the website). In order to examine

the cellular and molecular mechanisms behind this

observation, we undertook this study. Using bone culture

models, we analyzed whether Ki-energy emitted from the

fingers of a Japanese Ki-expert (Fig. 1B) could modify the

activities of osteoblastic cells and osteoclast-like cells.

We first observed that a 10-min exposure to Ki-energy

increased the cell number of osteoblastic cells in 72 h

of incubation reaching the subconfluent condition

(in the presence of FBS) (Fig. 2). Ki-energy stimulated

a proliferation of osteoblastic cells, which suggests that Ki

could promote bone formation. As shown in this figure,

5min of Ki-exposure did not produce a significant effect.

This may be because the effect is dose-related, and the

change caused by 5-min Ki-exposure was not enough to

manifest a significant effect.

As shown in Fig. 3, the gene expressions obtained from
RT–PCR result did not change much with this type of
experiment (exp. (i)). Therefore, we tried a different type
of experiment (exp. (ii)), namely, cells were first cultured
for 72 h without Ki-exposure (in the presence of FBS).
After the medium exchange (no FBS), Ki was applied
and subsequently, the cells were cultured for 48 h (in the
absence of FBS). In the second experiment, the mRNA
expressions for the proteins related to transcription
factors were significantly increased (Fig. 4). This includes
the factors for the cell differentiation (Runx2), bone
matrix formation (a-1(I) collagen), the enzyme related to
calcification (alkaline phosphatase), the protein which
absorbs calcium on bone surface (osteocalcin). Under
this condition, the gene expressions of cytokines such as
IGF-I (related to cell proliferation) and TGF-b1 (related
to bone growth factor) did not change. This suggests that
the effects of Ki-energy on osteoblastic cells are not
related to bone growth factors, but to the enhancement
of their mineralization capacity.
The presence of FBS in the culture medium affects

cellular functions. Therefore, for the analysis of signal
transduction mechanism as shown earlier in this article,
we always eliminate FBS from the culture medium.
From a cell viability test and a DNA content assay,
we confirmed that the removal of FBS did not cause cell
death during the culture.
The gene expressions did not change during the

proliferation stage of osteolbastic cells (Fig. 3).
This suggests that the cells which are undergoing
proliferation may respond to Ki-energy with a limited
degree of sensitivity. For example, only cell growth was
activated with Ki (Figs 2 and 3). On the other hand,
for the cells which had completed the growing stage,
Ki-energy could effectively stimulate cell functions,
mainly, bone mineralization (Fig. 4).
When Ki-energy was applied to bone marrow culture,

the formation of PTH-induced osteoclast-like cells was
inhibited as shown by cell staining results (Fig. 5).
Cell counting for the osteoclast-like cells demonstrated
that Ki-exposure (twice; each time for 5 or 10min)
inhibited the formation of these cells significantly
(P50.05) (Fig. 6). Bone mass is determined as a dynamic
equilibrium between bone formation by osteoblastic cells
and bone resorption by osteoclastic cells. Therefore, our
observations that Ki-energy increases the function of the
former, while it decreases the function of the latter are
very significant. Although we cannot directly extend
the observations in culture models to in situ bone
metabolism, our data suggest that Ki-energy may be
beneficial in maintaining our bone mass.
Various pharmacological and nutritional means to

prevent or to treat osteoporosis have been reported (6).
If we were to study the effects of these methods using cell
culture models, we add these compounds to the cell
culture medium and incubate for few days. When we

Figure 5. Histological examination of osteoclast-like cell formation.

The exposure of the cells twice to Ki-energy (each time, either

5 or 10min) decreased the formation of osteoclast-like cells.

Figure 6. The cell numbers in mouse marrow cultures were counted

after the cells were stained as shown in Fig. 5. Without the addition of

parathyroid hormone (PTH), the cell number for osteoclast-like cells

was very small (as shown in the first column from the left). With the

addition of PTH (10�7M), the number increased greatly (P50.01 as

shown by ��symbol in the second column from the left). This increase of

cell number was significantly inhibited by 5 or 10min of Ki-exposure

(P50.05 as indicated by �symbol for the 3rd and 4th columns; n¼ 5 for

each). The difference between 5 and 10min were not statistically

significant. Ki was applied twice during the culture. See text for details.
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exchange the medium, normally, we would add the
compound again. Not only the original compound,
but also its metabolites would be incubated with the
cells for days. Therefore, we are actually studying a kind
of chronic effects of these compounds on bone formation
or resorption. Compared with these methods, the mode
of action of Ki-energy is entirely different. At some point
during the cell culture, Ki-energy was applied once for
5 to 10min. In some experiments, Ki-energy was applied
twice, but that is the extent of cell exposure. We are
studying the effects of an acute type reaction.
Why can Ki-energy still manifest tangible changes on

bone culture models? A possibility may be that ‘cascade’
reactions are triggered by Ki-energy. For example,
suppose Ki-energy could trigger a minute increase in
the activity of an enzyme a. Then, this enzyme produces
the product b. If b happened to be another enzyme, then,
it produces the product c. If this kind of chain reaction
continues, then, the original change could be multiplied
a million times in a short duration of time. In cells, an
intricate network of signal transduction pathways, which
consist of many enzymes, hormones, receptors, cytokines,
DNAs and RNAs, are formed. If Ki-energy could trigger
a change in the enzymatic activity located upstream
of the pathways, then, it can be multiplied rapidly to
create substantial changes. In the MC3T3-E1 cell culture,
gene expressions related to many mineralization functions
were found to be activated by Ki-energy. This would
support the idea that the effect of Ki-energy, even though
it is minute, could be multiplied enormously through
the signal transduction network. In understanding
Ki phenomena, the fact that a minute initial change
could cause a tangible effect seems to be important. This
is discussed in terms of the so-called ‘Butterfly Effect’ of
a nonlinear chaotic system (41). Further study is needed
to identify what enzyme or protein is the ‘first receptor’
of Ki-energy, and by what mechanism? These would
be interesting but challenging questions.
We are still in an infant stage in understanding

effects or roles of ‘Ki’ in bone metabolism. Many more
experiments must be performed before we could draw
conclusions. For example, detailed time course study of
Ki-exposure (1, 2, 5, 10min or even longer) should be
performed. We should also examine how much Nishino’s
students could influence bone cell culture with their
Ki-energy. If only one person can demonstrate Ki-power,
then, it would be difficult to regard the Ki-phenomenon
as science. Concerning this point, we are optimistic
because we have evidence that both S.T. Ohnishi and
T. Ohnishi were able to inhibit growth of cultured caner
cells, even though their Ki-effects were not as strong
as Nishino’s (42). We presented the possibility that
Ki-energy may contain infrared radiation (26,27,42).
Therefore, effect of the depth of culture medium should
be examined because if Ki-energy contains infrared
radiation, it may be absorbed by water. The effects of

materials which may pass or block infrared radiation
should also be examined. We performed some tests
of this kind in our previous study (26,27). We have a
preliminary result to suggest that Ki-energy may have
a peak wavelength in the near-infrared range. Based upon
these results, we are proposing a possible mechanism
for the generation and transmission of Ki-energy through
air (submitted for publication).
In summary, in osteoblastic cell culture experiments

with MC3T3-E1 cells, Ki-energy emitted from the fingers
of a Japanese Ki expert increased the cell number during
the proliferation stage. Ki-energy also stimulated the gene
expressions related to bone mineralization during the
differentiation stage of the same cells. In mouse bone
marrow culture, Ki-energy decreased the formation of
osteoclast-like cells. Although we do not know the
mechanism by which Ki-energy stimulated these changes,
all of our observations suggest that Ki-energy may have
a potential to prevent osteoporosis. We hope our results
will stimulate further investigation in this field.
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