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Abstract 

Background:  Multi-walled carbon nanotube (MWCNT) is one of the most momentous carbonaceous nanoparticles 
which is widely used for various applications such as electronics, vehicles, and therapeutics. However, their possible 
toxicity and adverse effects convert them into a major health threat for humans and animals.

Results:  In this study, we employed weighted gene co-expression network analysis (WGCNA) to identify the co-
expressed gene groups and dysregulated pathways due to the MWCNT exposure. For this purpose, three weighted 
gene co-expression networks for the microarray gene expression profiles of the mouse after 1, 6, and 12-month post-
exposure to MWCNT were constructed. The module-trait analysis specified the significant modules related to different 
doses (1, 10, 40, and 80 µg) of MWCNT. Afterward, common genes between co-regulated and differentially expressed 
genes were determined. The further pathway analysis highlighted the enrichment of genes including Actb, Ube2b, 
Psme3, Ezh2, Alas2, S100a10, Ypel5, Rhoa, Rac1, Ube2l6, Prdx2, Ctsb, Bnip3l, Gp6, Myh9, Ube2k, Mbnl1, Kbtbd8, Riok3, Itgb1, 
Rap1a, and Atp5h in immune-, inflammation-, and protein metabolism-related pathways.

Conclusions:  This study discloses the genotoxicity and cytotoxicity effects of various doses of MWCNT which also 
affect the metabolism system. The identified genes can serve as potential biomarkers and therapeutic candidates. 
However, further studies should be performed to validate them in human cells.
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Background
Multi-walled carbon nanotubes (MWCNTs) are fiber-
shaped carbon nanomaterials that have been employed 
in various commercial products like home appliances, 
electronics, vehicles, and also biomedical applications 
[1]. Besides several advantages of using MWCNTs in 

industrial applications, the most challenging issues are 
their contaminations, toxicity, and hazardous effects. 
Therefore, it is unavoidable to survey the toxicity char-
acteristics of carbon nanotubes. The toxicity assessment 
of materials on the gene expression in the animal models 
can be generalized to the human target organ [2, 3].

Predominantly, workers who work in an industrial 
factory and are in contact with nanomaterials like 
MWCNTs, as well as consumers, are the main vulner-
able groups to nanomaterial [4]. MWVNTs are light and 
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simply aerosolized. Therefore, the workplace is a consid-
erable source of human exposure to carbon nanotubes 
through inhalation or dermal contact. Moreover, the res-
piratory tract and damaged skin are the possible ways of 
exposure due to the small size and low density of MWC-
NTs. They may deposit in the mice’s lungs by inhalation 
or pharyngeal aspiration which causes histologic altera-
tions including fibrosis and inflammation [5, 6].

Carbon nanotubes can induce asbestos-like patho-
genicity with carcinogenic risk [7]. The main mecha-
nism for the MWCNTs toxicity is the induction of 
oxidative stress through the production of free radi-
cals such as reactive oxygen species (ROS) or reactive 
nitrogen species (RNS) [8–10]. Oxidative stress causes 
the generation or boosting of inflammation which is a 
remarkable risk factor for pulmonary carcinogenicity [9, 
11]. Genotoxicity can also be generated by direct inter-
action of carbon nanotubes with genetic contents or by 
indirect harm from the induction of ROS [10]. MWC-
NTs induce the increase of profibrotic inflammatory 
mediators as well as pleural mesothelioma, lung carci-
noma, and DNA damage responses [12–15]. The thin 
and entangled MWCNTs induce pulmonary inflamma-
tion due to lymphocytic aggregates, granulomas, and 
macrophage infiltration [16].

Weighted gene co-expression network analysis 
(WGCNA) is a practical and data reduction approach 
to find the co-regulated genes and correlation patterns 
across various specimens. The potential biomarkers and 
possible therapeutic targets may be detected through 
constructing co-expression networks and then identifi-
cation of hub genes based on their biological functions 
and connection with other genes [17, 18]. WGCNA has 
several advantages including the transformation of gene 
expression data into a small number of co-expression 
groups (modules), finding the hub nodes in each module, 
and the associations between modules with the external 
traits. The co-regulated modules assist the annotation 
of results and relevant signaling networks that might be 
liable for phenotypic traits of interest [19]. The disadvan-
tages of WGCNA are likely simplicity and producing false 
positives for cascades [20]. However, the co-expressed 
genes are often functionally related, governed by a similar 
transcriptional regulatory program, or involved in similar 
pathways. Therefore, they are of biological interest. This 
method has been employed to determine the co-regu-
lated genes to find the possible pathogenesis mechanisms 
and potential biomarkers for various cancers, patho-
gens-caused diseases, and nanomaterials-caused toxicity 
[21–25]. In this study, we aimed to find the genotoxic co-
expressed genes due to MWCNTs. For this purpose, we 
constructed the weighted gene co-expression networks 
for the gene expression profiling of different mouse 

groups exposed to various doses of MWCNT in differ-
ent periods [26]. Further analyses led to the identification 
of co-regulated genes which implicate various pathways 
related to cytotoxicity and carcinogenicity.

Results
Construction of weighted gene co‑expression network
To build the co-expressed gene networks, the soft 
threshold powers β were determined as 4, 3, and 2 for 
MWCNT_1, MWCNT_6, and MWCNT_12, respec-
tively. After calculating adjacency, TOM, dissTOM, 
hierarchical clustering, cutting branches and eventu-
ally merging close clusters, 39 modules for MWCNT_1, 
48 modules for MWCNT_6, and 28 modules for 
MWCNT_12 were identified. Fig.  1a-c demonstrates 
the cluster dendrogram and modules before and after 
merging in which an inimitable color is ascribed to each 
module. In the dendrogram, the short vertical lines cor-
respond to a gene. Moreover, branches of the dendro-
gram group show the densely interconnected and also 
highly co-expressed genes. The gene modules are related 
to the branches of the resulting dendrogram after merg-
ing the closed branches.

Identification of specific modules in the MWCNT‑exposed 
samples
To detect the specific non-preserved modules of three 
MWCNT-exposed groups, the Zsummary score and 
medianRank for each module were computed. The 
specific modules were those that have Zsummary < 2 
and medianRank ≥ 8, in which turquoise, violet, steel-
blue, paleturquoise, darkgrey, orange, skyblue3, ivory, 
white, lightyellow, darkred, lightcyan, lightsteelblue1, 
mediumpurple3, royalblue, darkorange, darkorange2, 
orangered4, yellowgreen, greenyellow, grey60, darko-
livegreen, darkturquoise were specific in MWCNT_1m; 
lightcyan, lightgreen, darkslateblue, paleturquoise, this-
tle2, sienna3, violet, tan, brown, darkgrey, skyblue, dar-
korange2, brown4, orangered4, salmon, darkseagreen4, 
palevioletred3, lightsteelblue1, saddlebrown, honey-
dew1, skyblue3, darkolivegreen, darkred, thistle1, white 
in MWCNT_6m; and darkmagenta, steelblue, lightcyan, 
darkred, orange, darkturquoise, greenyellow, saddle-
brown, royalblue, paleturquoise, darkgreen, lightyellow, 
darkolivegreen, white, pink, darkgrey, darkorange, cyan, 
grey60, purple, turquoise, gold, brown in MWCNT_12m 
(Supplementary data 1). Next, the correlations between 
the gene expression in each module and different doses 
of 1, 10, 40, 80 µg MWCNT were measured. Afterward, 
the module-trait analysis to find dose-related modules 
was performed. Fig S1, S2 and S3 represents the module-
trait relationships in which p-value < 0.1 determines the 
modules that remarkably are correlated with individual 
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traits [27]. The module-trait heatmap indicates the cor-
relations of the module eigengenes with traits. The 
higher correlation shows the increasing eigengene with 
the increasing trait. In a signed network, it shows that 
genes of a module follow a similar pattern to increasing 
expression with increasing trait values. The modules that 
were significantly correlated to each dose of MWCNT 
are mentioned in Table 1. This table actually shows that 
which co-expressed genes as modules are mostly related 
to the exposure of MWCNT in various doses.

Protein–protein interactions (PPIs) and pathway 
enrichment analysis
The PPIs between the genes in each non-preserved 
module was determined through STRING database. In 
Table  1, the specific non-preserved and dose-related 
modules which also had connected PPI are specified 
as bold and mentioned in Supplementary data 2. These 
modules contain the genes that were co-expressed after 
the MWCNT exposure. In the next step, the differen-
tially expressed genes (DEGs) were determined for each 
dose of MWCNT in different periods using Limma pack-
age considering adj.p.val < 0.05 and |logFC|> 3 (Supple-
mentary data 3). Afterward, the common genes between 

DEGs and connected proteins in non-preserved modules 
were identified (Table  2). The further pathways analysis 
reveals that the common major genes between co-regu-
lated genes and DEGs dysregulate the pathways related 
to the metabolism of proteins, immune system, and 
inflammation (Table 3). From this analysis, we found that 
although the increase of dose and the period of exposure 
to MWCNT may lead to dysregulation of more immune 
and sometimes cancer-related pathways, they affect simi-
lar pathways regardless of the MWCNT amount and 
time of exposure. However, it was found that pathways 
were disrupted by the function of different differentially 
expressed and co-expressed genes.

Discussion
One of the major challenging in the recent decade is the 
adverse effects of nanomaterials like MWCNT on the 
environment and human health. The increasing applica-
tion of MWCNT in the industry makes the concern about 
the detrimental consequences of exposure. MWCNT has 
similar pathogenicity effects to asbestos fibers such as 
carcinogenic and profibrotic risk due to their resembling 
structures [28]. However, there is rare information about 
the dysregulated proteins and pathways due to MWCNT.

Fig. 1  Dendrogram of genes clustered based on (1-TOM) with assigned module colors for a) MWCNT_1, b) MWCNT_6, and c) MWCNT_12. The 
color of rows indicates the module membership before and after merging modules
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In this study, we explored toxicity pathways which are 
defined as the cellular response pathways that lead to a 
detrimental health effect when adequately perturbed. 
Systems toxicology provides a useful approach to deter-
mine the association between toxicity and the changed 
expression of a set of genes. One of the procedures to 
investigate the systems toxicology is finding co-expressed 
genes which contribute to a biological process. Moreover, 
a toxicity pathway can be determined through the identi-
fication of a set of co-expressed genes that are activated 
in response to the MWCNT exposure [29]. To determine 
these functional pathways, the weighted gene co-expres-
sion network and differentially expressed gene analyses 
were utilized.

The pathway enrichment analysis disclosed that dif-
ferent doses of MWCNT cause the activation of inflam-
mation-, immune-, and carcinogenic-related pathways 
including Antigen processing: Ubiquitination & Pro-
teasome degradation, Class I MHC mediated antigen 
processing & presentation, chemokine and cytokine 
signaling pathway, TGF-beta Signaling Pathway, MAPK 
family signaling cascades, apoptosis, immune system, 
oxidative stress, Transcriptional Regulation by TP53, 
VEGFA-VEGFR2 Signaling Pathway as well as metabolic 
pathways. In the following, we discuss the involvement 
of various proteins in the mentioned activated pathways 
due to MWCNT exposure.

There are several studies that reported the cytotoxic-
ity effect of carbon nanotubes with disruption of the 
immune system [30–33]. The immune system is exten-
sively affected by the MWCNT, which is concluded by 
the activation of Adaptive Immune System (UBE2B, 
KBTBD8), Innate Immune System (RHOA, CTSB, RAC1, 
ACTB, UBE2L6), and Cytokine Signaling in Immune 
system (RAP1A and ITGB1). Antigen processing: Ubiq-
uitination & Proteasome degradation and Class I MHC 
mediated antigen processing & presentation are the 
pathways that were mainly activated by deregulation of 
ACTB, PSME3, UBE2B, UBE2K, and KBTBD8. It has 
been found that the designed nanomaterial may promote 
antigen processing and presentation utilizing a dual-traf-
ficking route: cross-presentation and exogenous pathway 
[34]. Moreover, the proteasome system has a substantial 
efficacy in immune regulation through different mecha-
nisms containing MHC class I antigen processing and 
regulation of inflammation/cytokine production [35].

It also has been disclosed that MWCNT and 
SWCNT induce the secretion of inflammatory factors, 
chemokines, and growth factors such as transform-
ing growth factor (TGF)-b1 and tumor necrosis fac-
tor (TNF)-a in mouse macrophages [33, 36–38]. In this 
study, various inflammation pathways were also enriched 
with the involvement of several hub genes related to 

different doses of MWCNT including Inflammation 
mediated by chemokine and cytokine signaling path-
way (RHOA, RAC1, ACTB, MYH9), TGF-beta Signaling 
Pathway (RHOA, RAC1, ITGB1), MAPK family signal-
ing cascades (PSME3 and RAP1A), Oncogenic MAPK 
signaling (RAP1A), Transcriptional Regulation by TP53 
(PRDX2 and BNIP3L), and Neutrophil degranulation 
(YPEL5). MWCNT induces inflammation and fibro-
sis through the liberalization of inflammatory cytokines 
from macrophages [39]. The MAPK pathway is a signifi-
cant signal transduction pathway that governs a series of 
events that persuade gene expression relevant to inflam-
mation, apoptosis, and fibrosis. This pathway may also 
be induced by carbon nanotube exposure [40]. MWCNT 
can also activate the TGF-β signaling pathway and induce 
the TGF- 1 production in macrophages, fibroblasts, and 
epithelial cells [41].

The carcinogenesis and genotoxic effects of CNTs 
such as oxidation of DNA base, breaking DNA strand, 
and also clastogenic and aneugenic effects have also 
been reported [42]. Herein, the dysregulation of path-
ways including DNA repair (PSME3 and ACTB), DNA 
Damage Bypass (UBE2B), and p53-Dependent G1 DNA 
Damage Response (PSME3) by the effect MWCNT were 
also observed. DNA damage induced by MWCNTs can 
be developed through downregulation of related genes 
which helps to the development of carcinogenicity [43]. 
Another enriched cancer-related pathway is VEGFA-
VEGFR2 Signaling Pathway which was enriched by 
RAP1A, SH3BGRL3, and ITGB1. It is the main pathway 
that activates angiogenesis by inducing the survival, pro-
liferation, and migration of  endothelial cells. The recent 
studies also showed the modulation of CNT on the pro-
liferation of various types of cells in animals [44].

Previous studies demonstrated that apoptosis could 
be induced in mitochondria by MWCNTs, possibly 
through two major mechanisms, including oxidative 
stress and mitochondrial membrane potential. Oxi-
dative stress is implicated through the liberation of 
pro-inflammatory mediators [45]. The oxidative stress 
toxicity may also induce apoptosis by SWCNTs, lead-
ing to activating signals of p53-mediated DNA dam-
age checkpoint and then apoptosis. Apoptosis is one of 
the enriched pathways by different doses of MWCNT 
through various pathway mechanisms including TNF-
type receptor Fas induces apoptosis on ligand binding 
(S100A10), intrinsic apoptotic (BNIP3L), Regulation of 
Apoptosis (PSME3), PTEN dependent cell cycle arrest 
and apoptosis (ITGB1), and Apoptosis (CTSB and 
ACTB) [46, 47]. Oxidative stress may also be induced 
by the disturbed amino acids and the involved path-
ways. It has been found that nano-TiO2 can disrupt 
the metabolism of amino acids, inhibit the RNA and 
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DNA synthesis, and damage energy production [48]. 
Similarly, the dysregulation of metabolism of proteins 
(ALAS2, UBE2B, ACTB), as well as various pathways 
related to degradation and modification of amino 
acids such as glycine, serine and threonine metabolic 
(ALAS2), Lysine degradation (EZH2), Metabolism of 
amino acids and derivatives (PSME3), and also adeno-
sine ribonucleotides de novo biosynthesis (ATP5H) 
were observed. Moreover, the synthesis and ubiquitina-
tion of proteins are largely affected by changes in the 
expression levels of UBE2B, UBE2K, KBTBD8, PSME3, 
and ACTB [49, 50]. CNTs in the body can increase the 
level of free radicals leading to oxidative stress and oxi-
dation of DNA, proteins, and lipids [51]. ROSs increase 
the oxidation of amino acids, inactivation of enzymes, 
and apoptosis [7, 51].

The nephrotoxicity of nanoparticles has also been 
reported. Some NPs may cause mitochondria and cell 
membrane perturbation as well as disturbance of the 
energy metabolism in rat kidneys [52]. Likewise, the 
dysregulation of pathways including glomerulonephritis 
and Genes controlling nephrogenesis (ITGB1), Nephrin/
Neph1 signaling in the kidney podocyte (RAC1), and 
Nephrotic syndrome (MYH9) were also determined in 
this study due to the cytotoxicity effect of MWCNT.

Adipogenesis is  the process by which adipocytes 
develop and accumulate as adipose tissue at different 
sites in the body. There are several studies that reported 
graphene and graphene oxide inhibited and enhanced 
adipogenesis, respectively [53]. Indeed, graphene oxide 
has a strong affinity towards insulin, which ultimately 
induces adipogenesis. We also found the dysregulation of 
adipogenesis pathway by deregulation of Mbnl1.

Moreover, the modulatory effect of carbon nanoma-
terials on stem cell differentiation has been reported 
[54]. The activation of Hematopoietic Stem Cell Dif-
ferentiation pathway was also observed by deregulation 
of RIOK3. Hemostasis was also activated by the change 
in the expression levels of GP6, S100A10, RAP1A, and 
ITGB1 due to the MWCNT exposure. It is in agreement 
with the previous reports regarding the effect of nanoma-
terials in developing hemostasis [55, 56].

Generally, we did not find a comprehensive associa-
tion between various doses of MWCNTs and the resulted 
dysregulated pathways. However, disparate genes par-
ticipate in the dysregulation and activation of pathways. 
Our study has some limitations. The co-expressed gene 
groups were recognized by analysis of the mouse micro-
array dataset. Further in vitro studies must be carried out 
to validate the identified genes associated with MWCNT. 
Moreover, the analysis of more samples improves the 
reliability of WGCNA analysis and possibly finding 
the dose-related genes. The outcomes of WGCNA may 

technically be biased because of tissue contamination. 
However, this work partially clarifies the gene groups 
affected by MWCNT that should be considered for study 
the affected biological pathways.

Conclusion
The outcomes of this study reveal that regardless of the 
exposure dose, MWCNTs can induce genotoxic and 
carcinogenic effects. Although  our  study  has  some  lim-
itations it introduces several novel dysregulated genes 
that have important roles in the dysregulation of carci-
nogenic- and cytotoxic- related pathways. These genes 
should be further validated in the human cells in a large 
sample size.

Methods
Dataset and preprocessing
A gene expression microarray dataset with accession 
number GSE126959 [57] was downloaded from NCBI 
Gene Expression Omnibus (GEO) database. It contains 
the microarray gene expression profiles in mouse blood 
after 1-month (29 samples), 6-month (32 samples), and 
12-month (35 samples) aspiration exposure to differ-
ent doses (1, 10, 40, and 80  µg) of MWCNT. The gene 
expression profile of dispersion media (DM) control 
was also measured after one month (7 samples), six 
months (8 samples), and twelve months (9 samples). The 
MWCNT doses in mice were chosen to approximately 
be equivalent to the human occupational exposures 
[57]. For example, 10  µg MWCNT exposure in mice is 
almost equal to the deposition for a person doing work 
for about one month in a workplace with MWCNT aero-
sol of 400 µg/m3 or 9 months to 7.5 years with 4–40 µg/
m3. Therefore, the employed MWCNT doses for mice 
approximately simulate the human occupational expo-
sures to MWCNT. A total of 24 525 genes were firstly 
considered for analysis. The dataset was quantile normal-
ized and log2 transformed. The flowchart containing the 
suggested procedure is depicted in Fig. 2.

Construction of weighted co‑expression network 
and identification of modules
In order to construct the weighted co-expression net-
works, the WGCNA package in the R environment was 
employed [18]. Firstly, the “goodSamplesGenes” func-
tion was used to remove genes with exceeding missing 
values. After preprocessing with goodSamplesGenes 
function and removing unqualified  genes, 24 378, 24 
466, and 24 497 genes were considered in MWCNT_1m, 
MWCNT_6m, and MWCNT_12m groups for fur-
ther analyses. Next, the outlier samples were explored 
using “hclust” function. Next, the “pickSoftThreshold” 
function was applied to find scale-free topology fitting 
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indices  (R2)  versus various soft thresholding powers  β. 
The threshold of R2 ≥ 0.8 was considered to choose the β 
value. Afterward, the pairwise correlation between genes 
was computed and then transformed into an adjacency 

matrix. Topological Overlap Matrix (TOM) and dis-
similarity of TOM (1-TOM) were then determined. After 
that, the “hclust” function was employed to generate a 
hierarchical clustering tree (dendrogram) of genes based 

Table 2  The common genes between DEGs and connected proteins in the non-preserved modules

Time 1 month 6 month 12 month
Dose

1 µg –- tan (Krtap19-5, Rhoa, Rac1), brown4 (Ube2l6, 
Actb, Prdx2, Ctsb, Bnip3l)

–-

10 µg white (Cox8a), darkturquoise (Actb, Capzb, Glrx5, Ube2b), 
royalblue (Psme3)

lightcyan (Gp6, Ccni, Myh9, S100a10) royalblue (Ypel5)

40 µg darkolivegreen (Ezh2), black (Fam213a, Alas2) orangered4 (Ube2k) darkgreen (Itgb1)
, cyan (Rap1a), pink 
(Sh3bgrl3, Atp5h)

80 µg darkred (S100a10, Ypel5) salmon (Ube2b, Mbnl1), lightgreen (Kbtbd8, 
Riok3, Ghitm), paleturquoise (
Glrx5)

greenyellow (Mbnl1)

Table 3  The enriched pathways by different doses of MWCNT in various periods of time

1-month exposure
10 µg Proteasome Degradation, UCH proteinases, Post-translational protein modification, Deubiquitination, Antigen processing: 

Ubiquitination & Proteasome degradation, DNA Repair, Class I MHC mediated antigen processing & presentation, Metabolism of 
proteins, Axon guidance

40 µg Heme Biosynthesis, glycine, serine and threonine metabolic, Metabolism of porphyrins, Lysine degradation, Histone Modifica-
tions, PKMTs methylate histone lysines, LncRNA involvement in canonical Wnt signaling and colorectal cancer, Oxidative Stress 
Induced Senescence, Epigenetic regulation of gene expression, MicroRNAs in cancer

80 µg The TNF-type receptor Fas induces apoptosis on ligand binding., Dissolution of Fibrin Clot, Prostaglandin Synthesis and Regula-
tion, Ciliary landscape, Genes encoding secreted soluble factors

6-month exposure
1 µg Bacterial invasion of epithelial cells, RHO GTPases activate KTN1, EPH-Ephrin signaling, Ras Signaling Pathway, Inflammation 

mediated by chemokine and cytokine signaling pathway, Focal adhesion, Proteoglycans in cancer, Rap1 signaling pathway, 
Innate Immune System, mTOR signaling pathway, Pathways Regulating Hippo Signaling, Developmental Biology, TGF-beta 
Signaling Pathway, Apoptosis, Wnt signaling pathway, Nanomaterial-induced Inflammasome Activation, NOD-like receptor sign-
aling pathway, Chemokine signaling pathway, cAMP signaling pathway, Adaptive Immune System, Signaling by VEGF, intrinsic 
apoptotic, Transcriptional Regulation by TP53, Nephrin/Neph1 signaling in the kidney podocyte

10 µg The TNF-type receptor Fas induces apoptosis on ligand binding., RHO GTPases activate PAKs, Hemostasis, Prostaglandin Synthe-
sis and Regulation, Nephrotic syndrome, Viral myocarditis, ECM-receptor interaction, Cell surface interactions at the vascular wall, 
Inflammation mediated by chemokine and cytokine signaling pathway, Fcgamma receptor (FCGR) dependent phagocytosis

40 µg Synthesis of active ubiquitin: roles of E1 and E2 enzymes, Protein ubiquitination, RIG-I/MDA5 mediated induction of IFN-alpha/
beta pathways, Antigen processing: Ubiquitination & Proteasome degradation, Class I MHC mediated antigen processing & 
presentation

80 µg Antigen processing: Ubiquitination & Proteasome degradation, Class I MHC mediated antigen processing & presentation, 
Synthesis of active ubiquitin: roles of E1 and E2 enzymes, DNA Damage Bypass, Hematopoietic Stem Cell Differentiation, Protein 
ubiquitination, Adaptive Immune System, Adipogenesis, Ubiquitin mediated proteolysis

12-month exposure
1 µg Cell cycle, Regulation of Apoptosis, p53-Dependent G1 DNA Damage Response, Antigen processing and presentation, MAPK6/

MAPK4 signaling, Apoptosis, VEGFR2 mediated cell proliferation, MAPK family signaling cascades, Signaling by Wnt, Metabolism 
of amino acids and derivatives, Signaling by Interleukins

10 µg Ciliary landscape, Neutrophil degranulation

40 µg VEGFA-VEGFR2 Signaling Pathway, Leukocyte transendothelial migration, Focal adhesion, Rap1 signaling pathway, PTEN 
dependent cell cycle arrest and apoptosis, adenosine ribonucleotides de novo biosynthesis, Signaling by Interleukins, MAP2K 
and MAPK activation, IFN-gamma pathway, Hemostasis, Class I PI3K signaling events, Cytokine Signaling in Immune system, 
Oncogenic MAPK signaling, Electron Transport Chain, Developmental Biology, Oxidative phosphorylation, TGF-beta Signaling 
Pathway, ECM-receptor interaction, glomerulonephritis, Genes controlling nephrogenesis

80 µg Adipogenesis
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on dissTOM. The “cutreeDynamic” function was then 
used to cut the branches. Next, module eigengene (ME) 
that is the first principal component of a given module, 
was determined. The “mergeCloseModules” function 
was then utilized to merge close modules considering the 
height threshold of 0.25 [58].

Identification of non‑preserved modules
Through module preservation analysis, the modules 
that were non-preserved in the DM control were deter-
mined. To this end, the “modulePreservation” function 
in WGCNA package and permutation-based statistics to 
determine Zsummary and medianRank scores were used. 
The Zsummary measures both aspects of density and con-
nectivity preservation [59, 60]. Generally, a module with 
lower Zsummary and higher medianRank has a low ten-
dency to be preserved. Here, a module with Zsummary < 2 
and medianRank ≥ 8 was interpreted as non-preserved, 
a module with 2 < Zsummary ≤ 8 and medianRank < 8 
was considered as semi-preserved, and a module with 
Zsummary > 10 and medianRank < 8 was defined as highly 
preserved [61]. For the modulePreservation function, 
some parameters (nPermutations = 200, maxModule-
Size = 100) were set, whereas others were left as default.

Construction of module–trait association
The correlation between the traits (various doses 
of MWCNT) and module eigengenes (MEs) was 
determined as the module–trait association. To 
this end, “cor “ and “corPvalueStudent” func-
tions in WGCNA package were employed. The 
p-value < 0.1 was considered to find meaningful 
associations.

Protein–protein interactions (PPIs) and enrichment 
analysis
The biological associations between proteins were iden-
tified utilizing the STRING database [62]. To this pur-
pose, the proteins were submitted in STRING and the 
interactions.

with a combined score > 0.4 were considered as the 
cut-off criterion. In order to find the biological path-
ways enriched by hub genes in each module, ToppGene 
webtool was utilized [63]. To this end, ToppFun tools 
was used. It discovers the functional enrichment of 
input genes according to Transcriptome. Top pathway 
terms with a p-value < 0.05 were considered for further 
interpretations.

Fig. 2  The flowchart containing the suggested procedure utilized in this study
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