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The intersection between the human oral microbiome and oral health is an

emerging area of study which has gained momentum over the last decade.

This momentum has motivated a search for associations between the oral

microbiome and oral cancer, in hopes of identifying possible biomarkers

that facilitate earlier diagnosis and improved prognosis for patients with that

disease. The present study examined the relationship between themicrobiome

in the human oral cavity and oral squamous cell carcinoma (OSCC). We

searched the literature for case-control studies which focused on the

relationship between the human oral microbiome and OSCC. We aggregated

three types of data from these studies: bacteriome data at the genus level,

predicted functional pathway data, and gene abundance data. From these data,

we noted several microbial genera which may be associated with oral cancer

status, including Fusobacterium. We also identified functional pathways which

merit further investigation, including RNA degradation (ko03018) and primary

immunodeficiency (ko05340). In addition, our analysis of gene abundance data

identified the gene K06147 (ATP-binding cassette, subfamily B, bacterial) as

being over abundant in OSCC samples. Our results are generalizations which

identified some currents that we believe could guide further research. Our

work faced several limitations related to the heterogeneity of the available data.

Wide variation in methods for sample collection, methods for controlling for

known behavioral risk factors, computing platform choice, and methods for

case-control design all posed confounding factors in this work. We examined

the current methods of data collection, data processing, and data reporting

in order to o�er suggestions toward the establishment of best practices

within this field. We propose that these limitations should be addressed

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.968304
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.968304&domain=pdf&date_stamp=2022-10-20
mailto:erliang-zeng@uiowa.edu
https://doi.org/10.3389/fmicb.2022.968304
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.968304/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Peter et al. 10.3389/fmicb.2022.968304

through the implementation of standardized data analytic practices that

will conform to the rigor and reproducibility standards required of publicly

funded research.

KEYWORDS

oral cancer, oral microbiome, oral squamous cell carcinoma, oral health,

Fusobacterium, ABC transport, data collecting, meta-analysis

Introduction

Oral squamous cell carcinoma (OSCC) is among the most

common types of head and neck cancer, and it is the cancer

with the highest incidence rate among South-Central Asian

populations (Irfan et al., 2020; Ferlay et al., 2021). Data from

recent years indicate that the incidence of this disease is

increasing in some populations, and the 5-year survival rate

remains around 50% worldwide (García-Martín et al., 2019).

Previous investigations of OSCC have established connections

between the disease and well-known behavioral risk factors,

including tobacco use and alcohol consumption (Coletta et al.,

2020). However, OSCC continues to present in patients who

have not been exposed to these behavioral risks. Contemporary

research on OSCC investigates interactions with and influences

of the human oral microbiome, with the goal of providing

insight into the etiology of OSCC.

As the amount literature on OSCC and the human

microbiome (especially the bacteriome) has increased, so has

the number of approaches for studying these interactions and

influences at the taxonomic, functional, and genetic levels (Doud

et al., 2009; Zhang et al., 2014; Aguiar-Pulido et al., 2016;

Sedghi et al., 2021). Moreover, results shown to be “significant”

have notable variation in the existing literature. For instance,

two case-control studies of OSCC have reported significant

relationships between alpha diversity and OSCC samples, but

with associations in opposite directions (Guerrero-Preston et al.,

2016; Zhao et al., 2017). This dissonance has also appeared in

comparisons of the relative abundance of specific genera (and/or

species) between OSCC and control samples. As an example, the

genus Streptococcus has been found significantly differentially

Abbreviations: ASV, amplicon sequencing variant; GreenGenes, An

online database comprised of 16S rRNA genes organized formats for

use in pipelines; HOMD, human oral microbiome database online

resource); KEGG, Kyoto encyclopedia of genes and genomes (an online

resource); LEfSe, Linear discriminant analysis e�ect size (from Segata

et al., 2011); OSCC, oral squamous cell carcinoma; PTT (biosynthesis),

phenylalanine, tyrosine, and tryptophan; PyM, pyrimidine metabolism;

SILVA, a comprehensive online resource for quality checked and aligned

ribosomal RNA sequence data.

abundant among both OSCC samples (Zhou et al., 2020) and

control samples (Schmidt et al., 2014; Zhao et al., 2017; Zhang

et al., 2020).

In addition to the dissonance between findings in this

field, choices of sample collection methods and study designs

have shown wide variation. Some studies have examined only

samples from a specific location in the oral cavity, such as

the tongue (Mukherjee et al., 2017) or the buccal mucosa

(Su et al., 2021), while others have been so inclusive as to

examine samples representing the oral cavity, pharynx, and/or

larynx (Schmidt et al., 2014; Börnigen et al., 2017; Hayes

et al., 2018). The influences of this variation in site have

been further compounded by heterogeneity in the methods

used for sample collection, which have included oral rinse

samples (Börnigen et al., 2017), fresh-frozen tissue samples

(Mukherjee et al., 2017), and oral swabs (Mok et al., 2017).

Further compounding these challenges is a lack of coherence

in the inclusion/exclusion criteria used for patient recruitment

with regard to behavioral risk factors (e.g., tobacco and alcohol

consumption). Although such behavioral factors have been well-

established as risks for oral cancer (Abati et al., 2020), some

authors have been imprecise in reporting how behavioral risk

factors impact patient recruitment or confound patterns in the

OSCC-microbiome relationship. Generalizations regarding both

biological associations and best analytic practices are needed to

improve the development, rigor, and reproducibility of results in

this rapidly evolving field.

The need for such generalizations has been echoed in a

recent systematic review by Su Mun et al. (2021). This review

provided a qualitative summary of the literature regarding

OSCC-microbiome associations and noted the heterogeneity of

both the methods and results found in this body of literature.

In the present study, we investigated the relationship between

the human oral bacteriome and OSCC using taxonomic,

functional, and gene abundance data aggregated from multiple

published studies. Our objective was twofold; first, we aimed

to make quantitative generalizations about previously posited

connections between the human oral bacteriome and OSCC.

Through a literature search and meta-analysis of case-control

studies with OSCC patients, we identified bacterial genera,

functional pathways, and genes which may be associated with

OSCC status. Our second aim was to assess this emerging
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field of research from a data-analytic perspective. We made

specific suggestions toward the establishment of norms in data

collection, analysis, and reporting, as this would increase the

robustness of the results and facilitate the comparison and

aggregation of data across studies.

Methods

Systematic literature search

We began our systematic literature search by searching

the PubMed database. Our literature search keywords “(oral

cancer OR mouth cancer) AND (bacteria OR bacterium OR

microbiome)” returned nearly 140 abstracts published before

July 31, 2020. To distill these into a well-defined set of studies

for further review, we established a set of criteria. Each paper

that we included in our systematic review andmeta-analysis met

these criteria:

1. Available in English and report on experiment-based results

(i.e., not a case report or a literature review).

2. Pertained to cancer of the oral cavity. Studies that included

samples from the throat area (e.g., oropharynx) were

considered in the review only (not in the meta-analysis)1.

3. Reported on human patient research (i.e., no cell line models

or animal models) were permitted.

4. Reported on a study which had a case-control design and an

objective of differentiating between the oral microbiome of

the OSCC case samples and that of cancer-free samples. We

chose to exclude studies of cancer progression (e.g., studies

with a focus on comparing OSCC across various stages of

disease).

After reviewing abstracts returned by PubMed, we searched

Web of Science and SCOPUS databases using the same

keywords. Following aggregation and filtering all results through

our criteria, eleven remaining studies were included in our

literature review (Figure 1, Pan et al., 2014; Guerrero-Preston

et al., 2016; Börnigen et al., 2017; Mok et al., 2017; Mukherjee

et al., 2017; Zhao et al., 2017; Perera et al., 2018; Takahashi et al.,

2019; Zhang et al., 2020; Zhou et al., 2020; Su et al., 2021). We

subgrouped these eleven studies according to the type of control

used in their study designs, differentiating between intra-subject

control designs and inter-subject control designs. Intra-subject

control design studies used healthy samples from the OSCC

patients as the control group, whereas studies with an inter-

subject control design used samples from an independent set

of OSCC-free participants as the control group. From the 11

studies in our review, six reported on experiments with inter-

subject designs and the remaining five reported on experiments

1 The study by Zhou et al. (2020) had a single oropharynx sample, which

we excluded from our meta-analysis data.

with paired designs. We kept data from these subgroups

separated throughout all analyses, as samples from differing

control designs represent biologically different populations.

Description of clinical data available

The data from our eleven reviewed studies as show in Table 1

represented samples from 970 patients across seven different

countries. All of these studies were published between 2013 and

2020 (Table 1). The average age of OSCC patients in these studies

was ∼61 years2. Assessing the impact of behavioral risk factors

like smoking and drinking was not the focus of these studies;

several authors indicated that patients who smoked or drank

were included in their respective studies, and other authors left

these inclusion criteria in ambiguity (Table 1).

Regarding the data type, 16S data representing the

microbiome were pervasive. Given the available data, we also

focused our meta-analysis on 16S data of bacterial specimens.

Although other components of the microbiome, including the

mycome and the virome, have also been studied in the etiology

of oral cancer (Al-Hebshi et al., 2019; Di Cosola et al., 2021),

these elements were beyond the scope of the present study.

Although all eleven studies reported quantitative results,

the methods and format used in reporting varied. Most

studies reported aggregated measurements (e.g., average relative

abundance of a given genera across all samples from OSCC

patients). Of the eleven studies reviewed, only those by Zhao

et al. (2017), Perera et al. (2018), Takahashi et al. (2019),

Zhang et al. (2020), and Zhou et al. (2020) provided sequencing

data in a public data repository sufficient for inclusion in our

meta-analysis. Our meta-analysis examined the taxonomic and

functional profiles from the individual samples represented in

these five publicly available data sets.

Taxonomic meta-analysis

Among the five studies that provided full data, Perera

et al. (2018) and Takahashi et al. (2019) described an inter-

subject control design while the others all described an intra-

subject design. Recognizing that heterogeneity of samples may

arise from factors apart from disease status (e.g., behavioral

risk factors, study design, and sample collection method), our

taxonomic analyses involved four distinct strategies (Figure 2).

We examined these specific comparisons, each at the genus level:

1. Analysis of case vs. control samples within each of the five

studies;

2 The investigators of these projects reported age di�erently, with some

reporting means and others reporting medians.
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FIGURE 1

PRISMA diagram for the systematic literature search. Only five studies met all of our inclusion criteria for meta-analysis and supplied publicly

available data sets.

TABLE 1 Description of patients/participants.

References Control type Study population Number of

patients

Age (cases

only)

Age (controls

only)

Age measure

(mean vs. median)

Pan et al. (2014) Other China 128 68.10 70.20

Guerrero-Preston et al. (2016) Other USA 42 64.00 NA Median

Zhao et al. (2017) Self China 40 62.00 NA Median

Mok et al. (2017) Other Malaysia 18 60.00 40.00 Mean

Mukherjee et al. (2017) Self USA 39 60.50 NA Mean

Börnigen et al. (2017) Other USA 363 58.00 NA Median

Perera et al. (2018) Other Sri Lanka 52 61.00 50.58

Takahashi et al. (2019) Other Japan 140 63.70 65.10 Mean

Zhang et al. (2020) Self China 50 60.70 NA Mean

Zhou et al. (2020) Self China 24 61.10 NA Mean

Su et al. (2021) Self Taiwan 74 53.96 NA Mean

2. Analysis of merged case vs. merged control samples within

data from all intra-subject controlled studies;

3. Analysis of case vs. case samples between all intra-subject

controlled studies;

4. Analysis of control vs. control samples between all intra-

subject controlled studies.

In Figure 2, letters A–E indicate the study and the numbers

1–2 indicate OSCC-free samples vs. OSCC diseased samples,

respectively.

We used QIIME2 (Bolyen et al., 2019) to preprocess the data

aggregated from the studies A, B, C, D, and E (Zhao et al., 2017;

Perera et al., 2018; Takahashi et al., 2019; Zhang et al., 2020; Zhou

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2022.968304
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Peter et al. 10.3389/fmicb.2022.968304

et al., 2020), respectively. This preprocessing included removing

genera with zero counts3. We also removed any genera not

classified as Bacteria, and any genera with ambiguous names

(e.g., “uncultured”). To normalize the data, we transformed the

counts of genera into proportions by dividing the number of

counts of a given genus in a sample by the total number of

counts of all genera observed in that sample. This gave values

for the abundance of each genus per each sample. To obtain

information for each genus, we summed the per-genus counts

across all samples. We refer to the resulting values as measures

of normalized relative abundance.

In each of these four sub-analyses, we used the Shannon

diversity (Shannon, 1948) index to quantify alpha diversity

from the counts of each genus. These indices were compared

using a Wilcoxon rank-sum test. Comparisons of normalized

relative abundance at the genus level were done using the

log-transformed ratios of median relative abundance of each

genus using Wilcoxon rank-sum tests (analyses 1 and 2) and

Kruskal-Wallis tests (analysis 3 and 4). All p-values are adjusted

for multiple testing using FDR, and significance was set at a

false discovery rate of 0.05. These data analytic methods were

implemented using the “taxa” and “metacoder” packages in R

(Foster et al., 2017, 2018) as modeled in the package vignettes.

In addition to these non-parametric statistical methods,

we used the linear discriminant analysis effect size (LEfSe)

method to identify the distinguishing taxa within the OSCC

and control groups. The authors of this method have shown

LEfSe has relatively low false positive rate and considers both

the statistical significance and the effect size in determining

microbiome-associated biomarkers (Segata et al., 2011). For the

purposes of our work, LEfSe served as a conservative check of

the taxonomic results identified by the other analytical methods.

Functional meta-analysis

Representative sequences of amplicon sequence variants

(ASV) and the corresponding biom table of ASVs across samples

were input into PICRUSt2 (Douglas et al., 2020). This allowed

for the prediction of bacterial functional potential in terms of

KEGG orthologs. KEGG ortholog annotation was downloaded

in json format and annotated with a PICRUSt-predicted KEGG

orthologs table (Kanehisa et al., 2021). With these results, a new

table was created with counts for each item in third hierarchical

level of the KEGG database file.

With the KEGG ortholog abundance values, we performed

LEfSe analysis to identify ortholog functions that may act as

potential biomarkers. As part of this analysis, we preprocessed

our dataset to suit LEfSe’s input data format. This analysis

3 Some data named genera which were not detected in any samples

among the aggregated data set.

FIGURE 2

Diagram of meta-analytic comparisons. We labeled each of the

five studies in our meta-analysis with letters A–E, where A-C

indicated the three studies with intra-subject control designs.

We labeled each set of samples with the numbers 1-2,

indicating the control/OSCC status of those samples. In our

analysis 1, we examined the OSCC case vs. control samples

within each study, comparing A1 vs. A2, B1 vs. B2, C1 vs. C2, D1

vs. D2, and E1 vs. E2. Analysis 2 compared the merged A2 + B2

+ C2 case samples with the A1 + B1 + C1 control samples.

Analysis 3 compared the case samples A2 vs. B2 vs. C2. Analysis

4 compared the control samples A1 vs. B1 vs. C1. The circle

diagram summarizes these comparisons.

pipeline was used in each of the four specific comparisons as

shown in Figure 2.

Results

Analysis 1 (case vs. control)

The first component of our taxonomic meta-analysis

re-examined the results of the five original studies using our

data processing workflow and our analytic methods. The

differences between our work and the previously published

results provided evidence of the impact of preprocessing

techniques on the results. This evidence is presented

in Supplementary Figures 1–12.

Analysis 2 (merged case vs. merged
control)

Taxonomic results

In our comparison of the case versus control samples from

the studies with an intra-control design, we found no evidence

of a difference in alpha diversity as measured by the Shannon

diversity index (Supplementary Figure 14). LEfSe results

illustrated that the genera Fusobacterium, Peptostreptococcus,

and Parvimonas appeared enriched in case samples, while

Haemophilus and Granulicatella appeared enriched in the
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control samples (Figure 3). The Wilcoxon rank sum test results

gave evidence of 20 genera showing a difference in relative

abundance between case and control samples at a false discovery

rate of 0.05 (Supplementary Figure 13). Eleven of which had a

non-zero, finite estimate of effect size. All 11 of these Wilcoxon

results were also represented in the LEfSe results.

Functional results

We found multiple potential functionalities involved

in pathways relating to pyrimidine metabolism and RNA

degradation were significantly upregulated among OSCC

samples (effect size > 3) (Supplementary Figure 15).

Additionally, functions associated with the biosynthesis of

vancomycin group antibiotics was upregulated in OSCC

samples (effect size > 2.5). The LEfSe analysis also showed

that the functional pathways for (1) phenylalanine, tyrosine,

and tryptophan (PTT) biosynthesis and (2) inositol phosphate

metabolism were significantly downregulated in case samples

(Supplementary Figure 15).

Analysis 3 (case vs. case)

Taxonomic results

To determine the effects of confounding factors on the

observed microbial differences between OSCC and cancer-free

sites, we compared the microbial composition and functions

betweenOSCC samples from each of the intra-subject controlled

studies. Data from Zhou et al. had a much lower alpha diversity

than that of the other two studies (Supplementary Figure 18).

The Wilcoxon test identified over 80 genera as

being significantly differentially abundant between the

case samples from the Zhang, Zhao, and Zhou studies

(Supplementary Data Set 1). Being a more conservative

test, LEfSe identified only 32 genera to be significantly

differentially abundant in this case vs. case comparison

(Supplementary Figure 19). Our LEfSe analysis of the genera

found that Prevotella and Actinomyces were enriched among

samples from Zhao, which illustrated the heterogeneity of the

case samples.

Functional results

A total of four pathways at KEGG level 3 were

identified as being upregulated in the Zhou analysis

(Supplementary Figure 20) with an effect size >3, including

the inositol phosphate metabolism (ko00562). This

simultaneously confounded the analysis 2 finding that

inositol phosphate metabolism was upregulated among

control samples and reinforced the observation that the

Zhou data set had different characteristic from the other two

data sets.

FIGURE 3

LEfSe results for the taxonomic analysis in Analysis 2 (case vs.

control). When using the LDA score as a metric for comparison,

Fusobacterium had the score of highest magnitude among the

genera which were significantly di�erentially more abundant in

case samples (shown in red).
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Analysis 4 (control vs. control)

Taxonomic results

In this taxonomic analysis, alpha diversity did not

show evidence of variation between the control samples

from the studies with an intra-subject control design

(Supplementary Figure 21). Among these comparisons

between the control samples, the Kruskal-Wallis test found

evidence of 114 genera having significant differences in

normalized relative abundance at a false discovery rate of 0.05

(Supplementary Data Set 2). The LEfSe results indicated that

the strongest evidence of a difference appeared in the genera

Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium,

Prevotella, and Streptococcus (Supplementary Figure 22).

These control vs. control results indicated that some of

the most common ASVs in the oral cavity had high degrees

of variation between the control samples in different studies.

At the genus level, Gemella, Granulicatella, Streptococcus, and

Veillonella have been identified as common in the human

oral cavity (Aas et al., 2005). All of these except Granulicatella

had a relatively high magnitude of discrimination among

the aggregated control samples (Supplementary Figure 22).

Moreover, several of the other genera with significant

differentiation in relative abundance, including Treponema,

Prevotella, Selenomonas, and Capnocytophaga, were among the

genera with the highest counts in the taxonomic level data of

the Human Oral Microbiome Database (HOMD) (Escapa et al.,

2018).

The fact that the heterogeneity in control samples concerns

the most common bacterial strains in the oral cavity may be

attributable to differences in sampling methods and/or sample

locations. Zhang and colleagues studied surface scrapes of

buccal mucosa sites; Zhao and colleagues studied swabs of in

different oral sites; and Zhou and colleagues studied tissue

samples representing several oral sites. The control vs. control

analysis provided results indicating that these control samples

represent different definitions of a “normal” oral microbiome.

For example, the “normal” microbiome of the buccal mucosa

may be different from the “normal” microbiome of the mouth

floor, and the “normal” oral tissue sample likely has a different

microbial makeup compared to a “normal” oral swab. Such

evidence suggests that the dysbiotic oral microbiome effects

associated with OSCC may be site-specific, affecting specific

areas of the mouth in different ways. This evidence also has

implications for the standardization of sampling methods and

the specification of sample inclusion criteria. We return to these

points in the Discussion.

Functional results

A total of 11 pathways were upregulated in either the

Zhang or Zhou studies (Supplementary Figure 23). We noticed

that several of the pathways which appeared significant in

FIGURE 4

Summary of taxonomic LEfSe results (Analyses 2, 3, and 4). This

Venn diagram describes the extent of the confounding

represented in our case vs. control taxonomic analysis (Analysis

2). Of the 58 genera found to be significantly di�erentially

abundant in either the OSCC or control samples, 21 were also

found to be significantly di�erentially abundant in the case vs.

case or control vs. control comparisons. This was an indication

of non-OSCC related di�erences between the samples from

studies A, B, and C.

analysis 2 appeared here also, which is an indication of

confounding. Pyrimidine metabolism (ko00240) and PTT

biosynthesis (ko00400) both appeared upregulated in the

Zhang data.

Synthesis of results

We summarized the taxonomic and functional results

from analyses 2, 3, and 4 using Venn diagrams (Figures 4,

5). A total of 37 genera were identified as significantly

differentially abundant in the case vs. control comparisons

alone, including Fusobacterium (increased in OSCC samples),

Haemophilus (decreased in control samples), and Granulicatella

(decreased in case samples; Supplementary Data Set 3). A

total of 10 functional pathways were identified as significantly

differentially abundant in the case vs. control comparisons

alone. Primary immunodeficiency (ko05340), plant pathogen

interaction (ko04626), and RNA degradation (ko03018) were

all upregulated among OSCC samples, whereas glutathione

metabolism (ko00480), ubiquinone biosynthesis (ko00130),

biosynthesis of unsaturated fatty acids (ko01040), Cushing

syndrome (ko04934), regulation of actin cytoskeleton

(ko04810), cell adhesion molecules (ko04514), and mineral

absorption (ko04978) were all downregulated among OSCC

samples (Supplementary Data Set 4).
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FIGURE 5

Summary of functional LEfSe results (Analyses 2, 3, and 4). This

Venn diagram describes the extent of confounding represented

in our case vs. control functional analysis (Analysis 2). Of the 16

functional pathways found to be significantly more abundant in

either the OSCC or control samples, 6 were also showed

significant di�erences in abundance in either the case vs. case

or control vs. control comparisons. This was another indication

of non-OSCC related di�erences between the samples from

studies A, B, and C.

Having considered integrating taxonomic results of case vs.

control, case vs. case, and control vs. control comparisons, we

were interested to investigate whether any results at the gene

level were significant in only the case vs. control comparison.

TheVenn diagram in Figure 6 illustrated that among 1,313 genes

examined, only one was found to be significant in only the case

vs. control comparison. This was the gene with KEGG term

K06147, an ATP-binding cassette (ABC—subfamily B, bacterial).

Analysis of results and discussion

OSCC associated pathogenic bacteria

Enrichment of ASVs from the Fusobacterium genus in

OSCC samples in our analysis was in line with the other

findings, both within and outside the oral cavity. Fusobacterium

nucleatum has been found to be an active bacterium in

promoting oral cancer by several mechanisms (McIlvanna et al.,

2021; Zhang S. et al., 2021; Liu et al., 2022). F. nucleatum has

also been traditionally associated with chronic inflammation,

the promotion of EMT among epithelial cells, the alteration

of immune response in the oral cavity, and significant roles

in several oral diseases including oral cancer and endodontic

infections (Shao et al., 2021). Additionally, F. nucleatum and

other gram-negative species have been found to show strong

positive correlation with oral mucositis, a painful side effect

FIGURE 6

Genes found significant across all analyses. This Venn diagram

describes the extent of confounding represented in our case vs.

control analysis at the gene level (Analysis 2). Of the 21 genes

found to be significantly di�erentially abundant in either the

OSCC or control samples, 20 were also found to be significantly

di�erentially abundant in either the case vs. case or control vs.

control comparisons. This was another indication of non-OSCC

related di�erences between the samples from studies A, B, and

C.

common among patients undergoing chemotherapy (Hong

et al., 2019). Outside the oral cavity, F. nucleatum has been

found to be associated with pancreatic cancer, hepatic cancer,

and breast cancer (Irfan et al., 2020) as well as human colorectal

carcinoma (Castellarin et al., 2012; Nakatsu et al., 2015; Osman

et al., 2021; Löwenmark et al., 2022). Evidence from our results

suggested that bacteria from the Fusobacterium genus may be

considered an oral carcinogenic bacteria. This generalization

aligned with the observations reported in the recent reviews by

Su Mun et al. (2021) and Alon-Maimon et al. (2022).

The findings from our work also connected to the literature

of periodontal disease. Periodontitis has been posited as a risk

factor for oral cancer (Komlós et al., 2021). In connection

with the preceding paragraph, species from Fusobacterium

have been identified as having associations with periodontitis

(Mohanty et al., 2019). In particular, Han and colleagues recently

reported that F. nucleatum secretes an amyloid-like adhesin

which enhances its pathogenicity and promotes periodontal

bone loss (Meng et al., 2021). Our meta-analysis work re-iterates

the plausibility that bacteria associated with periodontal disease

also contribute to the etiology of OSCC.

OSCC and connections to specific genes

The gene K06147, which was the sole gene significantly

differentiated between OSCC and control samples in this work,
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is an ABC transporter. ABC transporters have been noted for

two roles: the import essential nutrients and the export of toxic

molecules (Davidson et al., 2008). They have been found to

be distributed in all three kingdoms of living organisms and

contribute to drug resistance (Lage, 2003). The results of our

meta-analysis indicated that bacteria ABC transporters could be

associated with human oral cancer. However, the mechanism

of crosstalk between bacteria and host was not yet clear and

needs further investigation. This gene has also been found to

be enriched in lung cancer broncho-alveolar lavage fluid (BALF)

samples (Zhang M. et al., 2021). In contrast, a study comparing

the gut microbiota of colorectal cancer patients and health

controls found that K06147 was significantly enriched in the

control samples (Ai et al., 2019).

OSCC associated functional pathways

Among all the functional pathways identified in our analyses

2, 3, and 4, it is most interesting to examine those functions

which showed significance in analysis 2 only, as such functions

would not be confounded as identified our later results in

analyses 3 and 4.

The pathways that were upregulated among case samples

in analysis 2 that are not confounded by later results included

connections to primary immunodeficiency (ko05340) and RNA

degradation (ko03018), both of which have been researched in

the cancer literature. Primary immunodeficiency has been found

significantly enriched among gingivo-buccal oral cancer samples

(Das et al., 2021). Moreover, Goodall and Wickramasinghe

(2021) summarized mounting evidence on the alteration of

RNAs as it contributes to cancer in a recent review.

Although Pyrimidine metabolism (PyM) was found to

be upregulated among OSCC samples in the case vs.

control analysis (Supplementary Figure 15), these results were

confounded by the result that PyM was also significantly

differentially regulated between the control samples only

(Supplementary Figure 23). Recognizing the limitations of

confounding, we note that PyM has been studied in the

oncology literature. One recent review summarized recent

conceptual advances on Pym and its dysfunction in relation

to cancer progression (Wang et al., 2021). Our study found

similar confounding results for PTT biosynthesis, which was

shown to be downregulated among OSCC samples in the

case vs. control analysis (Supplementary Figure 15) but also

significantly differentially regulated among control samples only

(Supplementary Figure 23). This confounding among results

notwithstanding, we noted that PTT biosynthesis has previously

been identified as increased among control samples in a study of

OSCC (Al-Hebshi et al., 2017). Levels of phenylalanine and/or

tryptophan have also been found to be decreased among case

samples from patients across several studies of gastroesophageal

cancer (Wiggins et al., 2015).

Toward establishing norms for data
collection and analysis

While the data from our quantitative meta-analyses do

suggest microbial relationships and functions which merit

further study, the strongest evidence in these data indicates

the need to standardize experimental designs and reporting of

results in this growing field. The limitations to the meta-analytic

work are numerous in the presence of such heterogeneity of data.

In particular, aggregating data across multiple studies combines

and compounds the biases that are known to be prevalent

among contemporary analyses of oral microbiome data (Zaura

et al., 2021). These sources of bias include variations in sample

collection method, failure to control for known demographic

confounders, differences in amplicon sequencing techniques,

and inconsistent statistical methodology. Such limitations have

been echoed within the wider context of head and neck

squamous cell carcinoma (Metsäniitty et al., 2021).We recognize

these limitations among the 11 studies examined in our present

work, as well as the biases they may cause.

Sample collection method

At least three methods of collecting samples from patients

were represented across our data sets: oral swabs, oral

rinse/saliva, and tissue collection (Table 2). It has been

documented that each different method for sample collection

will yield a unique bacteriome (Gopinath et al., 2021; Zaura et al.,

2021), and that saliva samples contain higher total DNA yield

compared to oral swab samples (Wong et al., 2022). Whether it

is possible to dissect out the critical differences between health

and disease using samples of mixed type was debatable.

As a foil to this limitation, wewere encouraged to see a recent

example of a robust sample collectionmethod described in Desai

et al. (2022); these authors specified that their OSCC data was

derived from only fresh-frozen primary tumors of tongue origin.

We recommend that such specific criteria become the norm for

studies in this field.

Demographic confounding

The case vs. case and control vs. control alpha diversity

results (Supplementary Figures 18, 21) illustrated that the data

from the Zhou study differed notably from the data in the Zhang

and Zhao studies. This observation was also apparent in the case

vs. case functional results (Supplementary Figure 20). It seemed

plausible that the data from Zhang and Zhao were unusually

similar, which may be explained by geography. Both the Zhang

and Zhao data sets represented patients recruited at the Ninth

People’s Hospital in Shanghai, whereas the Zhou study was

performed with participants in Qingdao, China. This difference

in geography may imply that the participants from the Zhou

data could have eaten a different diet and/or been exposed to
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TABLE 2 Description of samples.

First author Sample collection method Statistics reported Sequencing tool Region sequenced

Pan Swabs Other Wizard; ABI Prism 3100 Unknown

Guerrero-Preston Tumor samples and salivary rinse Relative abundance Roche/454 GS Junior; 357F/926R

primer set

V3–V5

Zhao Swabs of various oral sites Other MiSeq V4–V5

Mok Swabs Diversity index EURx V6–V9

Mukherjee Tissue samples Relative abundance ITS1 V4

Bornigen Oral rinse samples Other MiSeq V4

Perera Tissue samples Diversity index and relative abundance Gentra Puregene Tissue kit; 27FYm and

519R;MiSeq

V1–V3

Takahashi Saliva Relative abundance MiSeq V3–V4

Zhang Bilateral buccal mucosal tissue scraping Relative abundance MiSeq;MOTHUR V3–V4

Zhou Tissue samples at various oral sites Relative abundance Illumina PE250 platform V3–V4

Su Swabs Other Qiamp; MiSeq; PICRUSt V4

different environments (e.g., climate) compared to participants

from the other two studies. Moreover, each of the studies in

our meta-analysis had different methods for taking into account

participants’ behavioral risk factors, such as tobacco and alcohol

use. In the three studies represented in our aggregated data

set, two authors supplied sample-specific information about

patients’ behavioral risk factors. For this reason, the extent to

which possible confounding demographic factors added to or

interacted with the existing differences in sample collection

method remained unknown.

To mitigate demographic confounding, we suggest that

others follow the example of Srivastava et al. (2022), wherein

the authors narrowed their focus of their OSCC/microbiome

investigation to patients who regularly used smokeless

tobacco only.

Amplicon sequencing

As a result of the close connection between the field of

microbiome research and the field of bioinformatics, changes

in bioinformatics methods have a strong impact on the

results of analysis in oral microbiome research. At least five

different computing platforms for sequencing 16S rRNAdata are

represented among the studies in our present study (Table 2).

Adding to this confounding is the variation in the regions

targeted by these platforms. Although 16S rRNA sequencing

is almost ubiquitous among the studies in our review, all

regions V1–V9 are represented in the present data (Table 2).

Such variation is likely to impact the results and conclusions

drawn from downstream analyses (Kumar et al., 2011; Zaura

et al., 2021). We hypothesize that differences in computing

platforms and bioinformatic methods may be responsible for

the discrepancies which we find between our analysis of data

from individual studies and the analyses published by the

original authors.

The shortcomings of amplicon sequencing are obvious in

the sense that such sequencing only surveys the taxonomic

composition of a bacteriome. Moreover, analysis pipelines

for microbiome metagenomics data typically involve the use

of a reference database for sequence alignment, taxonomic

classification, and/or functional composition prediction. Among

the five studies represented in our meta-analysis, we noted at

least three reference data bases (KEGG, SILVA, GreenGenes)

used in their respective analysis pipelines. Some authors

have argued that the bias introduced by differences in

analysis pipeline structure is the most significant challenge in

metagenomic analyses (Escobar-Zepeda et al., 2018). Although

computational methods such as PICRUSt and Tax4Fun

(Aßhauer et al., 2015) can be used to infer functional

potentials, it is not comparable to knowledge gained from

more comprehensive omics data including whole genome meta-

genomics and meta-transcriptomics.

Statistical methodology

Statistical methods and measures for quantifying diversity

varied widely across the studies in our review. Relative

abundance values and diversity indices such as the Inverse

Simpson’s index and Shannon’s index were common, but by no

means standard. From a data analytic perspective, such variation

makes aggregating results difficult. We also noticed methods

of normalization and rarefaction that have been criticized as

ignorant of the compositional nature of microbiome data (Gloor

et al., 2017).

Moreover, most studies did not provide high-quality,

publicly accessible copies of their full data. Some authors chose
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to report only the most significant results, without providing a

full table of results in the main text.

Conclusions

In summary, our meta-analysis provided

evidence of specific microbial genera, genes, and

functional pathways having an association with

OSCC status in oral cavity tissues. These potential

biomarkers included an increased abundance of

Fusobacterium, abundance of gene K06147 (ATP-

binging cassette, subfamily B, bacterial), and

upregulation/downregulation of many pathways such as

ko03018 (RNA degradation).

The standardization of data collection, processing, and

analysis techniques is an area of great need in the field of

human oral microbiome study given the substantial decreases

in sequencing costs and rapid increases in published studies.

While it is both exciting and informative to study the

human oral bacteriome and oral disease in meta- and mega-

analyses, potentially powerful insights from future studies will

be clouded by the confounding issues we have discussed due

to the absence of standards in methodology, reporting, and

data availability.
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