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Abstract: Cerebral blood flow (CBF) measurements are of high clinical value and can be acquired
non-invasively with no radiation exposure using pseudo-continuous arterial spin labeling (ASL).
The aim of this study was to evaluate accordance in resting state CBF between ASL (CBFASL) and
15O-water positron emission tomography (PET) (CBFPET) acquired simultaneously on an integrated
3T PET/MR system. The data comprised ASL and dynamic 15O-water PET data with arterial
blood sampling of eighteen subjects (eight patients with focal epilepsy and ten healthy controls,
age 21 to 61 years). 15O-water PET parametric CBF images were generated using a basis function
implementation of the single tissue compartment model. Cortical and subcortical regions were auto-
matically segmented using Freesurfer. Average CBFASL and CBFPET in grey matter were 60 ± 20 and
75 ± 22 mL/100 g/min respectively, with a relatively high correlation (r = 0.78, p < 0.001). Bland-
Altman analysis revealed poor agreement (bias = −15 mL/100 g/min, lower and upper limits
of agreements = −16 and 45 mL/100 g/min, respectively) with a negative relationship. Account-
ing for the negative relationship, the width of the limits of agreement could be narrowed from
61 mL/100 g/min to 35 mL/100 g/min using regression-based limits of agreements. Although a
high correlation between CBFASL and CBFPET was found, the agreement in absolute CBF values was
not sufficient for ASL to be used interchangeably with 15O-water PET.

Keywords: 15O-water PET; ASL; CBF; PET/MR; validation

1. Introduction

Cerebral blood flow (CBF) measurements are of high clinical value for various brain
disorders such as cerebrovascular disorders, brain tumors, and neurodegenerative dis-
eases [1–3]. Current reference standard for CBF measurements is positron emission to-
mography (PET) with 15O-water [3]. Although 15O-water PET has proven its usefulness
in physiological experiments and clinical assessments [4], it is often considered costly
and implementations are limited due to the requirement for an on-site cyclotron and an
arterial line for blood sampling. Arterial spin labeling (ASL) is a non-invasive magnetic
resonance imaging (MRI)-based CBF measurement technique using the patient’s own water
molecules in blood as a freely diffusible tracer. ASL is not a novel technique; the basic
principle was already introduced in the early 1990s [5–7]. A consensus statement was
published in 2015 [8] recommending pseudo-continuous ASL as a labeling strategy with
3D segmented read-out applying background suppression [8].

There are a number of methodological considerations when comparing 15O-water
PET and ASL acquired CBF. First, comparison studies should be preferably based on si-
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multaneously acquired 15O-water PET and ASL CBF measurements using an integrated
PET/MR system since the physiological cerebral perfusion state is time dependent [1,9–11].
Second, the lack of CT data for attenuation correction of PET images on an integrated
PET/MR system needs another approach. Although MRI-based attenuation correction
methods are still under investigation, zero-echo time (ZTE)-based attenuation correction
has recently been demonstrated to be an adequate method for brain PET/MR applica-
tions [12–14]. Third, 15O-water PET is considered the gold standard for measuring CBF
when using a kinetic modeling approach with an arterial input function (AIF) based on
arterial sampling [1,15,16]. Although several studies compared CBF measurements with
15O-water PET and ASL, none of them fulfilled all three requirements. From those studies
conducted on a PET/MR system, the MRI-based attenuation correction methods employed
have generally demonstrated inadequate performance compared to ZTE-based attenuation
correction. Further, arguing its invasiveness and discomfort, arterial blood sampling was
often omitted [9,17]. Moreover, there were obvious differences in study participants and
the ASL method used.

The aim of this study was to evaluate accordance in resting state CBF values based
on simultaneously acquired ASL (CBFASL) and 15O-water PET (CBFPET) on an integrated
PET/MR system and using ZTE-based attenuation correction and arterial sampling.

2. Materials and Methods
2.1. Scope and Subjects

In this methodological study, conducted between December 2015 and May 2018, a
comparative analysis was performed on, in total, eighteen participants—eight patients
with focal epilepsy (5 females, 3 males) with a mean (standard deviation, SD) age of 39
(13) and ten healthy controls (5 females, 5 males) with a mean (SD) age of 40 (12). The
patients were given lamotrigine (4 patients) or carbamazepine (6 patients). Two patients
were given carbamazepine in combination with clonazepam or valproic acid. No patient
had a history of taking levetiracetam. Furthermore, none of the enrolled participants had
any intellectual disability. The healthy controls were matched on age and sex with the
patients. Recruitment was done by advertisement and no participant had any relations to
the hospital or the faculty staff. Each participant was its own control, and thus potential
regional differences in CBF due to factors like age, gender and groups of participants were
outside the scope of the study. Epilepsy patients were scanned in interictal state.

The study was done in accordance with the declaration of Helsinki. Approvals were
obtained by the Regional Board of Medical Ethics in Uppsala (DNR 2015/187) and the
Radiation Ethics Committee at Uppsala University Hospital. After a complete description
of the study, and prior to inclusion, all participants signed an informed consent form.

2.2. Data Acquisition

All examinations were performed on an integrated PET/MR (SIGNA, GE Healthcare,
Waukesha, WI, USA) which combines a 3T MRI with a time-of-flight capable silicone
photomultiplier-based PET scanner [18]. All subjects were scanned in supine position
using an eight-channel head coil (MR Instruments Inc., Minneapolis, MN, USA). A 10-min
dynamic PET scan was started after automatic bolus injection (1 mL/s during 5 s) of
5 MBq/kg 15O-water (max 500 MBq), followed by flushing with 35 mL saline at 2 mL/s.
Continuous blood sampling (3 mL/min) was conducted from a radial artery, generally in
the non-dominant arm, and blood radioactivity was measured using a Twilite Two blood
detector (Swisstrace, Zurich). The blood detector was positioned on the scanner bed as
close as possible to the subjects’ wrists to minimise dispersion. During PET scanning, a
3D pseudo-continuous ASL with background suppressed fast spin echo spiral read-out
using a PLD of 2025 ms and label duration of 1800 ms was acquired. In addition, the
protocol included a high-resolution 3D-T1-weighted (T1w) image and a 3D-T2-weighted
fluid attenuated inversion recovery (T2w-FLAIR) as anatomical references and a ZTE image
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for attenuation correction of PET data. The full set of acquisition parameters for MRI scans
is presented in Supplementary Table S1.

2.3. Image Reconstruction and Generation of Parametric CBF Images

The 15O-water PET images were reconstructed using time-of-flight ordered subset
expectation maximization (4 iterations, 28 subsets), with ZTE-based attenuation correc-
tion [13,14] and a 5 mm Gaussian post-filter into 22 frames of increasing durations (1 × 10 s,
8 × 5 s, 4 × 10 s, 2 × 15 s, 3 × 20 s, 2 × 30 s, 2 × 60 s) into a 128 × 128 × 89 matrix with
2.34 × 2.34 × 2.81 mm3 voxels. The last four minutes of the acquisition were not included
due to limited information and increasingly noisy blood data. All subject-specific AIFs
were corrected for delay and dispersion [19] and 15O-water PET derived parametric CBF
images (CBFPET) were produced using a basis function implementation of the standard
single-tissue compartment model including a fitted blood volume parameter [20]. ASL
derived parametric CBF images (CBFASL) were generated according the single compart-
ment model defined by Buxton et al., [21] and recommended by Alsop et al., [8] including
a correction term for full proton density reference [22].

2.4. Post-Processing

T2w-FLAIR, CBFASL and CBFPET-images were co-registered to each subject’s correspond-
ing T1w images. Grey matter (GM) tissue probability maps were segmented based on T1w
images and co-registered T2w-FLAIR images. GM maps were defined with a tissue probability
fraction above 75%. White matter (WM) maps were disregarded because of the general limita-
tions of ASL in WM [1,8]. All processing steps, as described above, were performed using the
SPM12 toolbox (Wellcome Trust Centre for Neuroimaging, London, UK).

Various volumes of interest (VOI) across the brain were used. The following VOIs were
included: cortical (frontal, parietal, occipital, and temporal lobe) and subcortical (caudate,
putamen, pallidum, thalamus, amygdala, and hippocampus). VOIs were segmented
on 3D-T1w and co-registered T2-FLAIR images using the Freesurfer processing pipeline
(version 6.0, http://surfer.nmr.mgh.harvard.edu, accessed on 17 April 2020) [23]. The
outline of the VOIs is illustrated in Supplementary Figure S1.

2.5. Comparative Analysis

A descriptive analysis was made to compare CBFASL and CBFPET for both all selected
brain regions as well as for clusters of cortical and subcortical regions and whole-brain GM.
Agreement between quantitative CBFASL and CBFPET values was first studied using corre-
lation analysis including Pearson’s product moment correlation coefficient and orthogonal
regression. The correlation and regression measures are reported with corresponding 95%
confidence interval (CI). Thereafter, Bland-Altman analyses were performed to examine
the relationship between the average of CBFASL and CBFPET and the difference between
CBFASL and CBFPET. In addition, bias, expressed as average difference between both
methods, was estimated with 95% lower and upper limits of agreement (LoAL and LoAU,
respectively). Potential relationships between the difference and the average of CBFPET and
CBFASL were identified using linear regression [24], and regression-based LoAs (RLoAL
and RLOAU) were calculated to account for any potential relationships found [25]. A
calculation example for GM is provided in Supplementary Document S1. All statistical
tests are two-sided using GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA).

3. Results
3.1. Descriptive Analysis

Average parametric CBFASL and CBFPET images and the differences between both
methods are shown in Figure 1. This figure illustrates that CBFASL resulted in lower values
than CBFPET, which was consistent throughout the whole GM. Quantitative CBF values are
presented for all regions and both methods in Table 1. In GM, average CBF was 75 ± 22 and
60 ± 10 mL/100 g/min for CBFPET and CBFASL, respectively. A larger average difference

http://surfer.nmr.mgh.harvard.edu
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between CBFASL and CBFPET was found in subcortical regions compared to cortical regions,
especially in caudate, putamen, pallidum, and thalamus. Further, it can be noticed that
the variability across subjects, given as SD, was substantially greater for CBFPET compared
to CBFASL.
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Figure 1. Average parametric CBFASL and CBFPET images, and differences (CBFASL–CBFPET) in MNI
template space. Normalization performed with SPM12.

Table 1. Descriptive statistics of CBFPET and CBFASL with correlation and slope from the correlation analysis including
orthogonal regression.

Region CBFPET CBFASL r [95% CI] Slope [95% CI] p-Value

GM 75 (22) 60 (10) 0.78 [0.50, 0.92] 0.47 [0.23, 0.71] <0.01
Cortical 73 (22) 60 (10) 0.73 [0.60, 0.82] 0.49 [0.35, 0.62] <0.01

Subcortical 68 (21) 48 (9) 0.53 [0.38, 0.66] 0.42 [0.27, 0.57] <0.01

Cortical

Frontal 74 (23) 62 (10) 0.83 [0.58, 0.93] 0.42 [0.25, 0.59] <0.01
Occipital 74 (22) 57 (10) 0.68 [0.31, 0.87] 0.48 [0.10, 0.87] <0.01
Parietal 76 (23) 61 (11) 0.75 [0.44, 0.90] 0.49 [0.17, 0.81] <0.01

Temporal 66 (20) 60 (11) 0.78 [0.48, 0.91] 0.53 [0.28, 0.78] <0.01

Subcortical

Caudate 62 (20) 46 (8) 0.66 [0.28, 0.86] 0.39 [0.04, 0.74] <0.01
Putamen 85 (22) 50 (7) 0.60 [0.19, 0.84] 0.31 [−0.01, 0.63] <0.01
Pallidum 67 (18) 40 (6) 0.42 [−0.06, 0.74] 0.26 [−0.14, 0.65] 0.08
Thalamus 80 (21) 54 (10) 0.62 [0.21, 0.84] 0.48 [0.09, 0.87] <0.01
Amygdala 55 (16) 49 (9) 0.63 [0.23, 0.85] 0.61 [−0.10, 1.40] <0.01

Hippocampus 60 (14) 50 (8) 0.65 [0.26, 0.85] 0.54 [0.06, 1.02] <0.01

3.2. Correlation and Regression

Correlations between CBFASL and CBFPET are shown for GM as well as clusters of
cortical- and subcortical regions in Figure 2. Correlations between CBFASL and CBFPET
are given for all regions in Table 1. Similar and positive correlations between CBFASL and
CBFPET were found for GM (Figure 2a) and the cluster of cortical regions (Figure 2b), 0.78
and 0.73, respectively. An obvious lower correlation between both methods was found for
subcortical regions (Figure 2c r = 0.53). Correlations in subcortical regions varied between
0.42 (pallidum) and 0.66 (caudate).
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3.3. Analysis of Agreement between CBFASL and CBFPET

Bland-Altman plots displayed a negative, nearly linear relationship for GM (Figure 3a)
as well as cortical- and subcortical regions (Figure 3b,c, respectively). Bias was −15, −13
and −20 mL/100 g/min for GM, cortical- and subcortical regions, respectively. Quan-
titative results of the Bland–Altman analysis are given for individual regions in Table 2.
The differences between the considered cortical regions were relatively small. In contrast,
subcortical regions showed a large variation. The highest bias was found in putamen,
pallidum, and thalamus (−34 to −26 mL/100 g/min) and lowest bias in amygdala and
hippocampus (−10 to −6 mL/100 g/min).
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open circles). For comparison, regression-based limits of agreement (dark red, dotted lines) and
regression (dark red, dashed line) for (d) GM, (e) cortical- (green, closed circles), and (f) subcortical
regions (purple, open circles). The width of the regression-based- and ordinary limits of agreement
are given mL/100 g/min in each graph.
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Table 2. Bland–Altman analysis with slope from the linear regression of the difference between CBFASL and CBFPET on the
average of CBFASL and CBFPET.

Region Bias [95% CI] LOAL [95% CI] LOAU [95% CI] Slope [95% CI] p-Value

GM −15 [–22, –7] −45 [−59, −32] 16 [2, 29] −0.80 [−1.12, −0.49] <0.01
Cortical −13 [−16, −9] −44 [−50, −37] 18 [12, 25] −0.80 [−0.96, −0.64] <0.01

Subcortical −20 [−23, −16] −56 [−50, −61] 16 [10, 22] −1.00 [−1.18, −0.84] <0.01

Cortical

Frontal −12 [−20, −4] −44 [−58, −30] 19 [5, 33] −0.88 [−1.15, −0.61] <0.01
Occipital −17 [−25, −9] −50 [−64, −35] 15 [1, 30] −0.83 [−1.23, −0.44] <0.01
Parietal −15 [−23, −7] −47 [−61, −33] 17 [3, 31] −0.77 [−1.12, −0.43] <0.01

Temporal −6 [−13, 1] −32 [−44, −21] 20 [9, 32] −0.67 [−1.00, −0.33] <0.01

Subcortical

Caudate −16 [−24, −8] −47 [−60, −33] 14 [1, 28] −1.01 [−1.38, −0.64] <0.01
Putamen −34 [−44, −25] −71 [−87, −55] 2 [−14, 18] −1.22 [−1.58, −0.86] <0.01
Pallidum −27 [−35, −19] −60 [−74, −45] 6 [−9, 20] −1.36 [−1.79, −0.93] <0.01
Thalamus −26 [−34, −18] −59 [−73, −44] 7 [−8, 21] −0.85 [−1.29, −0.41] <0.01
Amygdala −6 [−12, −1] −30 [−41, −20] 17 [7, 28] −0.62 [−1.08, −0.15] 0.01

Hippocampus −10 [−15, −4] −32 [−42, −22] 13 [3, 23] −0.70 [−1.14, −0.25] <0.01

3.4. Regression-Based Limits of Agreements

A negative relationship of the difference on the average of CBFPET and CBFASL was
found and RLoAs were calculated for all regions. The bias remains unchanged using
RLoAs. The width between upper and lower LoAs changed from 61 mL/100 g/min to
35 mL/100 g/min in GM using RLoAs. In cortical- and subcortical regions, the width
changed from 62 mL/100 g/min to 40 mL/100 g/min and from 71 mL/100 g/min to
46 mL/100 g/min, respectively (compare Figure 3a–c with Figure 3c–f). A consistent nar-
rowing was found for all regions when using RLoAs instead of ordinary LoAs. Quantitative
results from the RLoA method are given for individual regions in Table 3.

Table 3. Slope and intercept of the upper and lower regression-based limits of agreement (RLOAU and RLOAL, respec-
tively) with slope and intercept from the regression analysis of the difference between CBFASL–CBFPET on average of
CBFASL + CBFPET. A calculation example is given in Supplementary Document S1.

Region Linear Regression RLOAL RLOAU

Slope Intercept Slope Intercept Slope Intercept

GM −0.80 40 −0.80 22 −0.80 57
Cortical −0.80 41 −0.80 21 −0.80 61

Subcortical −1.00 39 −1.00 18 −1.00 64

Cortical

Frontal −0.88 47 −0.88 30 −0.88 64
Occipital −0.83 38 −0.83 17 −0.83 58
Parietal −0.77 38 −0.77 19 −0.77 57

Temporal −0.67 36 −0.67 18 −0.67 54

Subcortical

Caudate −1.01 39 −1.01 20 −1.01 58
Putamen −1.22 48 −1.22 30 −1.22 66
Pallidum −1.36 46 −1.36 29 −1.36 63
Thalamus −0.85 31 −0.85 10 −0.85 52
Amygdala −0.62 26 −0.62 7 −0.62 44

Hippocampus −0.70 29 −0.70 12 −0.70 46

4. Discussion

This study evaluated the agreement between CBFASL and CBFPET derived from para-
metric images allowing a quantitative comparison between both methods. We found a
relatively high correlation between CBFASL and CBFPET in GM in comparison to previously
published work. However, the agreement between CBFASL and CBFPET was poor. We
observed a negative proportional bias between the difference and average of CBFPET and
CBFASL in all regions. This is also apparent in the orthogonal regression, where the slope
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is less than 1 for all regions, i.e., the difference will increase as the average of CBFPET and
CBFASL increases. There is also an apparent underestimation of CBFASL in subcortical
regions, which may be caused by shorter than assumed T1 relaxation and earlier arrival of
labeled blood compared to cortical regions [9,22].

Previous studies comparing ASL and 15O-water PET have reported correlation coef-
ficients in GM ranging from 0.26 to 0.81 [4,10,11,26–33] (see Figure 4). In our study, we
found correlations between CBFASL and CBFPET varying between 0.42 in pallidum and
0.83 in frontal cortex. Two of the previous studies performed arterial blood sampling and
used an integrated PET/MR. Zhang et al. [11]. reported a correlation of 0.80 in GM and
0.61 to 0.87 in cortical- and subcortical regions comparing simultaneously acquired CBF
measurements. Although the reported correlation coefficients agree with ours, Zhang
et al. [11]. found generally higher values for CBFASL than for CBFPET, which is contrary to
our results. However, Zhang et al. [11], used template-based attenuation correction, which
might underestimate PET tracer uptake [14,34]. Puig et al. [4]. compared simultaneously
acquired CBF measurements during rest in healthy subjects and found a correlation of
0.32. Correlations in cortical- and subcortical regions were reported using combined data
from rest and altered perfusion states, so any comparisons to our study are hard to make.
Both Zhang et al. [11] and Puig et al. [4] also performed a Bland–Altman analysis and
reported a bias (LoAL and LoAU) of 15 (−5 and 25, width 30) and 0 (−15 and 15, width
30) mL/100 g/min in GM [4,11], respectively, compared to −15 (−45 and 16, width 61)
mL/100 g/min in the present study. No regression analysis was performed in any of the
two studies. Furthermore, Bland–Altman analysis of cortical and subcortical regions was
omitted or included several altered perfusion states in the two above mentioned studies,
so no further comparison to our results is possible except for whole GM.
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and ASL.

When using RLoAs, the width between the upper and lower LoAs is drastically
narrowed, indicating that the negative relationship between the difference and the average
of CBFPET and CBFASL has a high impact on data interpretation. In GM, the width of the
LoAs went from 61 mL/100 g/min to 35 mL/100 g/min, LoAU and LoAL were 16 and
−45 mL/100 g/min, respectively. RLoAs are uniform around the regression line; therefore
the corresponding upper and lower limits were 18 and −18 mL/100 g/min, which is more
comparable to the LoAs reported by other investigations.

Still, given the width of the RLoAs compared to the normal-range CBF values, the
agreement between CBFASL and CBFPET is not sufficient to be used interchangeably for
measuring absolute and comparable CBF. However, re-scaling of ASL values using the
relation between CBFPET and CBFASL found in the present work could be considered. As
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different re-scaling would be required in cortical and subcortical regions, this may not be a
feasible way to proceed.

We report an average CBFPET in GM at 75 mL/100 g/min. In contrast, previous studies
using 15O-water PET with arterial sampling have reported CBF values in GM ranging
from 37 to 67 mL/100 g/min in healthy subjects [11,28,35–41]. Thus, current published
normal-range CBF measured by 15O-water PET with arterial blood sampling shows large
variations [36,42]. A generally accepted and often-cited average normal whole-brain CBF
value in younger adults is 50 mL/100 g/min [43]. Moreover, average whole-brain, GM and
WM CBF values of 50, 80, and 20 mL/100 g/min in neurologically normal subjects were
early established using the Kety-Schmidt method with intra-arterial injection [36,44,45],
which is in line with the CBFPET values found in the current work. We acknowledge that our
reported average CBFPET in GM are high compared to other investigations, however, during
quality control of our data we found no technical explanation. Of note, in subjects/patients
with high average CBFPET, we also found high CBFASL. Thus, a physiological explanation
cannot be ruled out, but appears to be unlikely.

CBF derived from ASL is inherently dependent on the sequence implantation, vendor,
and quantification method used. Therefore, caution is advised when generalizing the
results and conclusions found here. Other investigations have stressed the importance of
the PLD for the quantification of CBF with ASL. In studies where ASL and 15O-water PET
were compared in patients with cerebrovascular diseases affecting the blood transit time,
PLD appeared to be a critial parameter that can affect the results. However, all subjects
and patients in this study are regarded to have a normal blood transit time. Hence we have
used a PLD of 2000 ms as described by Alsop et al. [8].

We evaluated agreement in the normal CBF range. In addition to ten healthy volun-
teers, we included eight patients with epilepsy. However, interictal focal hypoperfusion is
expected to have a negligible impact on our results since we used mostly large VOIs. More-
over, an unpaired t-test between patients with epilepsy and healthy subjects did not reveal
any significant differences for any region (results not shown). A thorough investigation of
potential differences was outside the scope of the current study and therefore not reported
in detail.

5. Conclusions

Although a high correlation between CBFASL and CBFPET was found, the agreement in
absolute and comparable CBF values was not sufficient for ASL to be used interchangeably
with 15O-water PET.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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