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The development of novel approaches to control immune responses to self- and allo-
genic tissues/organs represents an ambitious goal for the management of autoimmune 
diseases and in transplantation. Regulatory T cells (Tregs) are recognized as key players 
in the maintenance of peripheral tolerance in physiological and pathological conditions, 
and Treg-based cell therapies to restore tolerance in T  cell-mediated disorders have 
been designed. However, several hurdles, including insufficient number of Tregs, 
their stability, and their antigen specificity, have challenged Tregs clinical applicability.  
In the past decade, the ability to engineer T cells has proven a powerful tool to redi-
rect specificity and function of different cell types for specific therapeutic purposes. By 
using lentivirus-mediated gene transfer of the thymic-derived Treg transcription factor 
forkhead-box-P3 (FOXP3) in conventional CD4+ T cells, we converted effector T cells 
into Treg-like cells, endowed with potent in vitro and in vivo suppressive activity. The 
resulting CD4FOXP3 T-cell population displays stable phenotype and suppressive function.  
We showed that this strategy restores Treg function in T  lymphocytes from patients 
carrying mutations in FOXP3 [immune-dysregulation, polyendocrinopathy, enteropathy, 
X-linked (IPEX)], in whom CD4FOXP3 T cell could be used as therapeutics to control auto-
immunity. Here, we will discuss the potential advantages of using CD4FOXP3 T cells for 
in vivo application in inflammatory diseases, where tissue inflammation may undermine 
the function of natural Tregs. These findings pave the way for the use of engineered 
Tregs not only in IPEX syndrome but also in autoimmune disorders of different origin and 
in the context of stem cell and organ transplantation.

Keywords: regulatory T  cells, forkhead box P3, tolerance, regulatory T  cell-based cell therapy, gene transfer, 
antigen specificity, autoimmunity, immune dysregulation

inTRODUCTiOn

Regulatory T cells (Tregs) are a subset of T  lymphocytes devoted to the modulation of immune 
responses and to the maintenance of immunological tolerance. They control aberrant immune 
responses toward a wide range of antigens (Ags), including self-, food-Ags, allergens, and tumors (1). 
Several subsets of Tregs have been identified. Among those, Tregs expressing the forkhead-box-P3 
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(FOXP3) transcription factor (FOXP3+-Tregs) (2, 3) and the 
IL-10-dependent T-regulatory-type-1 cells (4) are the best char-
acterized. The latter will be the subject of a review by Gregori et al. 
in the present Research Topic, whereas the former subset and its 
application in the clinical practice will be discussed here.

FOXP3+-Tregs can originate either in the thymus [thymic-
derived Tregs (tTregs)] or differentiate in the periphery from 
naïve T  cells (pTregs) (5, 6). Regardless of their origin, both 
subsets are characterized by constitutive expression of FOXP3,  
a transcription factor critical for their function, as demonstrated 
by the devastating autoimmunity resulting from mutations of 
FOXP3 (7, 8). Impaired Treg function is the key pathogenic event 
leading to disruption of self-tolerance in patients with immune-
dysregulation, polyendocrinopathy, enteropathy, X-linked 
(IPEX) syndrome (9, 10).

It is now well accepted that although FOXP3 expression is 
dispensable for thymic development of tTregs, mainly dictated 
by epigenetic remodeling occurring regardless of FOXP3, its 
expression becomes fundamental in later stages for the periph-
eral function and maintenance of Tregs (11). Indeed, high and 
stable FOXP3 expression allows the acquisition of full suppressive 
function and stability of the Treg lineage by orchestrating the 
expression or repression of multiple genes indispensable for Treg 
suppressive function (12–14).

In addition to FOXP3, the expression of several molecules, 
including high CD25 (IL2Rα chain) in the absence of CD127 
(IL7Rα chain) (15), CTLA-4 (16), GITR (17), CD39 (18), Galectin 
10 (19), latency-associated peptide (20), Helios (21), the T-cell 
immune receptor TIGIT (22), and glycoprotein-A rep etitions 
predominant (23) has been associated with human FOXP3+-
Tregs, although none of these molecules is exclusive for this 
subset, but shared with activated conventional T cells. To date, the 
most reliable feature unambiguously identifying FOXP3+-Tregs is 
the epigenetic remodeling of specific genomic regions within the 
FOXP3-locus (CNS2-TSDR) (24) or in Treg-related genes (11).

FOXP3+-Tregs modulate both innate and adaptive immune 
cells by various mechanisms. The inhibitory activity of Tregs is 
primarily dependent on contact with target cells, which allows 
modulation of antigen-presenting cells stimulatory capacity via 
CTLA-4 (25) or the killing of T effector (Teff) cells through the 
granzyme/perforin axis (26, 27). Additional mechanisms of sup-
pression include the release of inhibitory cytokines, e.g., IL-10 
(28), TGF-β (29, 30), and IL-35, at least in murine Tregs (31), 
cytokine deprivation (32), and generation of immunosuppressive 
metabolites, i.e., extracellular adenosine (33) and intracellular 
cAMP (34). FOXP3+-Tregs are not a homogeneous population 
but are rather constituted by a heterogeneous pool, including 
specialized subtypes (28, 35–39).

Their great potential as modulators of immune responses, 
resulting from both preclinical models and clinical evidences, 
convinced investigators that Tregs could be used as tools to 
control unwanted immune responses in the context of transplan-
tation or to treat autoimmune/inflammatory diseases (40, 41).  
A great effort has been devoted to the development of good-
manufacturing practice-grade protocols to isolate/expand human 
Tregs in vitro allowing translation of Treg-based cell therapy to 
the clinical practice (42–45).

In this review, we will give an overview of the clinical trials that 
applied FOXP3+-Tregs as therapeutics for the control of graft-
versus-host disease (GvHD) in the context of hematopoietic stem 
cell transplantation (HSCT) and for the modulation of autoim-
mune reactions and the challenges that these trials highlighted. 
We will discuss the innovative therapeutic approach based on 
adoptive transfer of engineered Treg-like cells that we are devel-
oping for the treatment of IPEX syndrome, whose application 
could potentially extend to reestablish tolerance in autoimmune 
diseases of different origin and in transplantation.

Treg-BASeD CeLL THeRAPY in  
CLiniCAL TRiALS

Several Phase I-clinical trials have been conducted to assess the 
effect of Treg-based cell therapy on GvHD following allogenic 
HSCT, organ transplantation, in patients with type 1 diabetes 
(T1D) and chronic inflammatory diseases. Overall, results 
obtained with different subsets of Tregs demonstrated favorable 
safety profiles (46, 47).

Regulatory T cell-based clinical trials in HSCT have preceded 
other indications because the timing of GvHD onset is known 
and can be monitored, the time needed for prevention is relatively 
short, the initial efficacy is likely to provide lifelong protection, 
and complications of GvHD can be lethal.

Several groups have applied polyclonal CD4+CD25+ Tregs 
containing a high proportion of FOXP3+ T cells, either freshly 
isolated or ex vivo expanded, with the aim of preventing GvHD 
after allogenic HSCT for onco-hematological diseases. The results 
showed that the overall procedure is feasible and safe (48–52). 
One trial reported decreased incidence of grade II–IV GvHD as 
compared with historical controls in patients receiving umbilical 
cord blood-derived Tregs, without increased infections (49). Data 
were confirmed in a more recent trial from the same group, in 
which the clinical outcome of patients receiving Treg-based cell 
therapy was compared with that of control patients who received 
the same conditioning regimen and immunosuppressive treat-
ment but no Tregs. The incidence of grade II–IV acute-GvHD 
at 100 days was 9 vs 45% in controls, whereas chronic-GvHD at 
1 year was 0 in treated patients (52).

In a third trial patients injected with freshly isolated peripheral 
Tregs showed low grade GvHD and no development of chronic-
GvHD (50). More recently, the same group showed reduced 
incidence of relapse in Treg-treated patients (53).

These initial reassuring results encouraged a wider applica-
tion of Tregs as therapy after solid organ transplantation. Several 
trials are currently ongoing, although final results are not cur-
rently available (47). Among those, in The-ONE-Study (http://
www.onestudy.org/), a Phase I/II dose-escalation study, several 
subtypes of Tregs, including ex vivo expanded FOXP3+-Tregs, 
have been infused in patients undergoing kidney transplant with 
the goal of avoiding lifelong immunosuppression through the 
induction of active tolerance (NCT02129881) (47, 54). Similarly, 
a Treg-immunotherapy trial in the setting of liver transplantation, 
ThRIL (NCT02166177), has been initiated, although safety data 
are not yet available (44).
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FOXP3+-Treg-based therapy was safely tested also in the 
context of autoimmune diseases. In a trial limited to few patients, 
ex vivo expanded CD4+CD25hiCD127− Tregs were administered 
to children with recent-onset T1D (55), and more recently to 
new-onset adult T1D patients (43). In both cases, the procedure 
appeared to be safe, although published data do not allow to draw 
conclusions on efficacy. Importantly, in the latter trial, safety 
was demonstrated for transfer of high number of Tregs (up to 
2.6 × 109 cells) (43).

Overall, the data available support the feasibility and safety 
of the approach. These results convinced researchers to pursue 
adoptive Treg-cell therapy and much effort is currently devoted to 
address open issues in the field, such as the in vivo persistence and 
stability of the injected product and the need for Ag speci ficity to 
increase efficacy.

iPeX SYnDROMe: A DiSeASe MODeL  
OF Treg DYSFUnCTiOn

Immune-dysregulation, polyendocrinopathy, enteropathy, 
X-linked syndrome is the prototype poly-autoimmune disease 
caused by mutations in the gene encoding for the transcription 
factor FOXP3 (8). Affected patients develop early-onset multi-
organ autoimmunity, which includes severe enteropathy, T1D, 
and eczema (9, 56). Beside the severely affected patients, many 
subjects manifest with a milder form of the disease, which is often 
misdiagnosed or diagnosed later due to the atypical presentation 
(57). FOXP3 mutations result in loss of functional Tregs, which 
is considered the primary cause of disease. FOXP3-mutated 
Tregs display defective in vitro suppressive function (58–60) and 
unstable behavior in inflammatory conditions, with conversion 
from a regulatory to an effector (i.e., IL-17-producing) phenotype 
(61). Defects in peripheral cells other than Tregs have also been 
described, e.g., conventional T cells (58, 61–63) and B cells (64). 
Those additional defects are likely to be an indirect consequence of 
Treg dysfunction, rather than a direct effect of the mutations, thus 
suggesting that therapies aimed at improving/restoring a func-
tional Treg compartment should be beneficial to IPEX patients.

The treatment of IPEX syndrome currently relies on supportive 
therapy, immunosuppression, and HSCT. Allogenic HSCT has 
proven curative (9), but for patients who do not undergo HSCT 
the treatment is limited to nutritional support, replacement 
therapy for endocrine organ failure, and to multiple immuno-
suppressive drugs, with incomplete control of autoimmunity and 
burdensome side effects in young patients. Therefore, a therapy 
aimed at restoring Treg functions represents an unmet medical 
need. Furthermore, experimental evidence in scurfy mice, the 
murine model of FOXP3-deficiency, shows that adoptive Treg 
transfer improves lifespan (65). On the same line, experience 
from transplanted patients with partial donor chimerism (66–68) 
and the presence of a fully wild-type Treg compartment in 
healthy carriers of FOXP3 mutations (69) supports the idea that 
few functional Tregs are sufficient to control disease progression 
and induce remission.

The latter evidences convinced us that restoration of a 
functional Treg compartment in IPEX patients is a therapeutic 

option. We therefore designed an approach to genetically modify 
autologous T cells for adoptive transfer in these patients.

THe GeneRATiOn OF Treg-LiKe CeLLS 
BY LenTiviRUS-MeDiATeD FOXP3  
Gene TRAnSFeR

The genetic reprogramming of mammalian cells for clinical pur-
poses has recently become an available option, with the comple-
tion of clinical trials for the treatment of genetic diseases (70–73) 
and cancer (74, 75) and their translation in market-authorized 
therapies (76). Gene-transfer technology has been applied also 
to the field of Treg-based cell therapy, with the aim of generating 
high numbers of functional Tregs. Ectopic overexpression of 
FOXP3 in conventional CD4+ T  cells from healthy donors (3, 
77–79), ectopic expression of T cell receptors (TCRs) with known 
specificity in polyclonal Tregs (80–82), and the use of chimeric 
antigen receptors (CARs) (83–86) are the approaches so far tested 
in preclinical settings (Table  1). While the former approach 
would maintain the Ag specificity of the starting population, 
the latter would redirect Treg specificity. In preclinical studies, 
expression of TCRs specific for tumor-Ags/allergens conferred 
human Tregs the ability to suppress Ag-specific responses (80, 
81). More recently, Tregs-expressing CARs specific for HLA-Ags 
have proven effective in inhibiting xenogeneic GvHD and allo-
graft rejection in preclinical models (84–86).

With the ultimate goal of controlling the devastating autoim-
munity resulting from mutations of FOXP3 in IPEX syndrome, 
we envisaged the possibility of performing adoptive transfer of 
functional autologous Tregs generated in vitro. To this aim, the 
human FOXP3 coding sequence was cloned under the control of 
a constitutive promoter in a bidirectional lentiviral vector (LV) 
construct (88) allowing simultaneous expression of full-length 
FOXP3 and of a cell-surface marker (ΔNGFR) for the identifica-
tion/selection of transduced T cells (79) (LV-FOXP3) (Figure 1A). 
Transduction of peripheral CD4+ T lymphocytes with LV-FOXP3 
and in vitro expansion of transduced cells lead to the generation 
of a homogeneous pool of T cells constitutively overexpressing 
FOXP3 (Figure  1B). The resulting CD4FOXP3 T  cells behave as 
functional and stable FOXP3+-Treg-like cells, with potent in vitro 
suppressive activity, reduced proliferative capacity, and limited 
cytokine production (79, 87). CD4FOXP3 T  cells stably express 
FOXP3 in steady-state and inflammatory conditions, especially 
when generated from naïve T cells, and maintain inhibitory func-
tions in vivo in a model of xenogeneic GvHD (87). Furthermore, 
we demonstrated that fully functional CD4FOXP3 T  cells can be 
generated from T  cells of IPEX patients (87), regardless of the 
underlying FOXP3 mutation and co-expression of mutated 
protein, thus demonstrating the feasibility of our approach and 
paving the way for the development of alternative therapies based 
on the adoptive transfer of autologous genetically modified Treg-
like cells for the control of autoimmunity in IPEX syndrome.

The fact that CD4FOXP3 T  cells can be obtained from CD4+ 
T cells renders the manufacturing process easy and cost-effective. 
CD4FOXP3 T cells do not require extensive in vitro expansion with 
high cytokine concentration. The current preclinical small-scale 
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method for the generation of CD4FOXP3 T cells leads up to 10-fold 
expansion in 3/4-week culture. This guarantees the feasibility of 
the production for infusion into patients, taking into considera-
tion that the starting conventional CD4+ T cells can be available 
in large numbers. In addition, the clinical use of LV platforms 
does not pose a limitation, since it has proven to be safe in cancer 
patients and pediatric patients who received HSC gene therapy 
(72, 73, 89, 90).

Although in principle, the use of CAR-Tregs or TCR-transgenic 
Tregs would allow the generation of Ag-specific Tregs suitable 
for the treatment of autoimmune diseases, the Ag target of the 
autoimmune damage is still unknown in many diseases. The fact 
that CD4FOXP3 originate from polyclonal CD4+ T cells may con-
stitute an advantage for such diseases. Indeed, the CD4+ T cells 
obtained from a patient suffering with autoimmunity would most 
likely comprise the pathogenic T cells with TCRs specific for the 
target Ags. Therefore, in specific disease context, CD4FOXP3 cells 
may find a broader and more effective use, as compared with the 
TCR-transgenic-/CAR-Tregs.

CHALLenGeS in Treg-BASeD 
iMMUnOTHeRAPY FOR iPeX SYnDROMe

Despite their promising results, the initial trials of Treg-based cell 
therapy raised some concern on issues related to FOXP3+-Treg 
biology. Due to their intrinsic anergic and terminally differenti-
ated phenotype, one open issue is the in vivo lifespan of the infused 
product. Initial data on in  vivo infused Tregs showed 2-week 
survival post-injection (49). We obtained similar results when 
CD4FOXP3 T  cells were injected in immune-deficient mice (87). 
Surprisingly, data from a Treg-cell therapy trial in T1D patients 
demonstrated that, although the majority of ex vivo expanded 
autologous Tregs persists for 2 weeks post-infusion, a fraction of 
the injected cells is detectable after 1 year, suggesting that Tregs 
might contribute to tolerance maintenance long term (43).

Several evidences demonstrated that FOXP3+-Tregs are intrin-
sically plastic and that under inflammatory conditions Tregs can 
downmodulate FOXP3 and secrete pro-inflammatory cytokines 
(91–93). Therefore, the risk of loss of regulatory functions by 
infused Tregs could be worrisome. To address this issue, culture 
with rapamycin, to favor the generation of stable Treg products, 
has been developed (94–96). In this context, CD4FOXP3 T  cells 
represent the ideal Treg product: constant FOXP3 expression 
is warranted by a constitutive promoter-driven transcription, 
and stability has been demonstrated in steady-state and inflam-
matory conditions, both in  vitro and in  vivo (87). Stability is 
especially maintained when CD4FOXP3 T cells are generated from 
naïve T  cells. In the case of memory-derived CD4FOXP3 T  cells, 
FOXP3 expression appeared slightly reduced with inflammatory 
cytokines, resulting in weaker suppressive function and increased 
proliferation, as compared with naïve T cell-derived products (87), 
most likely due to posttranscriptional regulatory mechanisms.

Finally, the possibility of a generalized effect of immunosup-
pression that injection of suppressor cells may cause, as well as 
concerns about the dose required for injection of polyclonal Tregs 
has prompted investigators to design more targeted therapies. 
Methods to expand human Ag-specific Tregs have been developed 
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(42, 97, 98). These protocols well apply to allo-Ag-specific Tregs. 
Of note, encouraging safety and efficacy results come from a 
recently published Treg-based cell therapy trial, in which Tregs 
induced in the presence of donor-irradiated PBMCs were infused 
after liver transplantation. Despite low doses of Tregs, in 7/10 
patients, immunosuppression was stopped, and operational 
tolerance to the graft was induced (99). Currently, ongoing trials 
in solid organ transplantation, which foresee the injection of 
donor-specific Tregs, will lead to further progresses (47).

We believe that in the case of IPEX syndrome and diseases with 
multiple autoimmune manifestations, the need for Ag specificity 
is unlikely to be necessary. The use of patients’ Teff cells as source 
of CD4FOXP3 cells will potentially allow the generation of Treg-like 
cells enriched for autoreactive specificities. Still, the infusion of 
polyclonal potent suppressor cells may result in a generalized 
effect of immunosuppression, which could potentially interfere 
with protective responses to common pathogens. Although the 
results of the clinical trials using polyclonal Tregs were reassur-
ing, we are currently establishing a protocol to generate CD4FOXP3 
T  cells from Ag-experienced T  cells with known specificity, 
which should restrict their suppressive effect to the target Ag. 
Briefly, the protocol foresees pre-activation of T cells with a target 
Ag; Ag-specific T cells activating in response to their cognate Ag 
will be preferentially transduced. Subsequent in vitro expansion 
allows generation of a T-cell population enriched of FOXP3-
overexpressing cells with known Ag specificity (Passerini and 
Bacchetta, unpublished results). This method could be used to 
extend the application of the CD4FOXP3 T-cell product beyond 
IPEX syndrome, to treat autoimmune/inflammatory diseases 
with known target Ags or in the context of transplantation 
tolerance.

Finally, a relevant open issue on the way to the clinical applica-
tion of CD4FOXP3 T cells is definitely their in vivo lifespan, difficult 
to assess in preclinical models. Short-lived cells would likely be 
safer, although they may imply clinical protocols with multiple 
infusions of the therapeutic product. Long-lived CD4FOXP3 T cells 
would allow single infusion but would likely require an additional 

safety layer, such as addition of a suicide gene in the construct 
used for their generation. The use of a suicide gene may also be 
considered as a safety measure to contrast the consequences of 
possible insertional mutagenesis, although it has been demon-
strated that the use of LV-mediated gene transfer is not associated 
with selective integrations near oncogenes (100). However, for 
any type of genetically modified cellular product, analysis of the 
integration sites is recommended during preclinical assessments.

COnCLUDinG ReMARKS

Thanks to the successfully completed trials, the use of adoptive 
Treg-cell therapy to control undesired immune responses has 
become applicable. The next challenge for researchers is the tailor-
ing of the Treg-based therapy for specific diseases. We envisaged 
an approach based on the use of FOX3+-Treg-like cells electively 
designed to restore immune regulation in IPEX syndrome. Once 
safety and proof-of-concept will be completed in IPEX patients, 
the use of these autologous Treg-like cells could become the 
future standard of care for certain autoimmune diseases, akin to 
how CAR-T cells will become the standard of care in hematologic 
malignancies.
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