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Abstract

Many key findings in neuroimaging studies involve similarities between brain maps,

but statistical methods used to measure these findings have varied. Current state-of-

the-art methods involve comparing observed group-level brain maps (after averaging

intensities at each image location across multiple subjects) against spatial null models

of these group-level maps. However, these methods typically make strong and poten-

tially unrealistic statistical assumptions, such as covariance stationarity. To address

these issues, in this article we propose using subject-level data and a classical permu-

tation testing framework to test and assess similarities between brain maps. Our

method is comparable to traditional permutation tests in that it involves randomly

permuting subjects to generate a null distribution of intermodal correspondence sta-

tistics, which we compare to an observed statistic to estimate a p-value. We apply

and compare our method in simulated and real neuroimaging data from the Philadel-

phia Neurodevelopmental Cohort. We show that our method performs well for

detecting relationships between modalities known to be strongly related (cortical

thickness and sulcal depth), and it is conservative when an association would not be
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expected (cortical thickness and activation on the n-back working memory task). Nota-

bly, our method is the most flexible and reliable for localizing intermodal relationships

within subregions of the brain and allows for generalizable statistical inference.

K E YWORD S

covariance stationarity, hypothesis, testing, intermodal correspondence, permutation testing

1 | INTRODUCTION

Neuroimaging studies often seek to understand similarities across

modalities. However, methods underlying these studies' findings con-

tinue to vary. Naive approaches to the so-called “correspondence
problem” have included simply visualizing two maps next to each

other and observing whether the two maps look similar. Another

approach involves the use of parametric p-values; for example, fitting

a linear regression or estimating the correlation across locations of

the cortex and using a parametric null distribution (e.g., Student's t-

distribution), ignoring inherent spatial autocorrelation. A third

approach has been to use a partial correlation coefficient controlling

for anatomical distance (Honey et al., 2009; Horn, Ostwald, Reisert, &

Blankenburg, 2014).

Methods that ignore spatial autocorrelation have been shown to

inflate type I error rates (Markello & Misic, 2021); thus, recent meth-

odological advancements that do account for spatial correlation have

been widely adopted by the neuroimaging community. A spatial per-

mutation framework was first introduced by Alexander-Bloch,

Raznahan, Bullmore, and Giedd (2013), using spatially constrained ran-

domization to generate null models for testing intermodal develop-

mental synchrony (Alexander-Bloch et al., 2013). Vandekar

et al. (2015) then used spherical rotations to obtain null models of

spatial alignment in testing correspondence between various cortical

measurements in the human brain. The spin test was formally intro-

duced by Alexander-Bloch et al. (2018), who used random spherical

rotations of group-level or population-averaged surfaces to generate

null models of spatial alignment. A surface-based permutation null

model was also developed independently in the context of validating

functional magnetic resonance imaging parcellations (Gordon

et al., 2016; Gordon et al., 2017; Gordon, Laumann, Adeyemo, &

Petersen, 2017).

Since the advent of the spin test, numerous neuroimaging

experiments have adopted it to corroborate claims about intermodal

similarities (Cui et al., 2020; Lefèvre et al., 2018; Paquola

et al., 2019; Schmitt et al., 2019; Shafiei et al., 2020; Stoecklein

et al., 2020) and have extended its implementation to regionally

parcellated maps (Baum et al., 2020; Cornblath et al., 2020; Váša

et al., 2018; Vázquez-Rodríguez et al., 2019). The spin test was cer-

tainly an improvement compared with prior approaches; however,

deriving frequentist properties of inference across datasets using

this method depends on strong and often unrealistic statistical

assumptions, such as stationarity of the covariance structure. Other

critiques of the spin test include its limited use in the context of cor-

tical surface maps without a straightforward extension to volumetric

data, its lack of flexibility for incorporating subject-level data by

accommodating only two (group-level) maps, and that it cannot be

used to test correspondence in small regions of the brain. Another

limitation of the formal support for the spin test presented in

Alexander-Bloch et al. (2018) is its ad hoc treatment of the medial

wall, which is an artifact of generating a topologically spherical sur-

face that does not represent neuroanatomical features (Dale, Fis-

chl, & Sereno, 1999).

More recently, Burt, Helmer, Shinn, Anticevic, and Murray (2020)

proposed Brain Surrogate Maps with Autocorrelated Spatial Hetero-

geneity (BrainSMASH), using generative modeling to obtain null

models seeking to preserve the spatial autocorrelation structure of

the observed data. Burt et al.'s approach greatly improves on several

aspects of the spin test in its flexibility to incorporate volumetric data,

its inclusion of the medial wall, and its ability to test correspondence

in small regions of the brain. Still, BrainSMASH has some limitations.

When applied to subregions of the brain, one can only account for

spatial autocorrelation among locations within each subregion. For

instance, when testing intermodal correspondence between two maps

of the left hemisphere, spatial autocorrelation among locations within

that hemisphere are modeled, but correlation with locations in the

right hemisphere are not. Furthermore, BrainSMASH models spatial,

but not functional, relationships between locations throughout the

brain.

The spin test, BrainSMASH, and other related methods

recently described by Markello and Misic (2021) involve testing

null hypotheses of intermodal correspondence conditional on

observed group-level data (Alexander-Bloch et al., 2018; Baum

et al., 2020; Burt et al., 2018, 2020; Cornblath et al., 2020; Váša

et al., 2018; Vázquez-Rodríguez et al., 2019; Wael et al., 2020). As

illustrated in Figure 1, averaging images across subjects precludes

evaluation of inter-individual heterogeneities. Importantly, these

previous methods may not be well-suited to account for dataset-

to-dataset variability without strong assumptions about

stationarity of the covariance structure. Burt et al. (2020) use a

variogram-matching model that assumes stationarity and

normality—assumptions that have been subject to criticism in the

context of neuroimaging studies (Eklund, Nichols, &

Knutsson, 2016; Ye, Lazar, & Li, 2015). While these methods are

currently the most sophisticated in the field, their underlying

assumptions may give rise to inferential missteps, with high false

positive rates and substantial variability in results (Markello &

Misic, 2021). Thus, careful consideration of the plausibility of

these assumptions is warranted, and the appeal of a method with-

out strong assumptions motivates our current work.
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In this article, we propose the simple permutation-based inter-

modal correspondence (SPICE) test, a novel procedure that is intuitive,

easy to implement, and does not depend on strong statistical assump-

tions. This test considers a setting with subjects i¼1,…,n for whom

we observe two imaging modalities each: Xi vð Þ and Yi vð Þ at locations
(e.g., pixels, voxels, or vertices) indexed by v¼ 1,…,V½ �. Our null

hypothesis states that the distribution of within-subject intermodal

similarity between Xi vð Þ and Yi vð Þ (i.e., two modalities belonging to

the same subject) is no different than the distribution of between-

subject intermodal correspondence—for example, between Xi vð Þ and

Yj vð Þ (i≠ j). In prior studies, the Pearson correlation has been widely

used to measure intermodal correspondence (Alexander-Bloch

et al., 2018; Burt et al., 2020). While in this article we adopt this com-

monly used statistic, in Section 4, we propose alternative measures

that we hope to explore in future work.

The intuition behind the SPICE test is that, if there is a genuine

anatomical correspondence between two modalities, this corre-

spondence should be greater in brain maps derived from the same

individual than from different individuals. To test the SPICE null

hypothesis, we leverage subject-level data and do not require

altering the spatial structure or alignment of the observed data, in

contrast to BrainSMASH and the spin test. Since we will compare

our proposed method to BrainSMASH and the spin test, it is

important to highlight that their underlying null hypotheses are

fundamentally different, though they may be used to answer

related— but nevertheless different—questions about intermodal

correspondence. Figure 1 outlines these three null hypotheses

alongside the different types of data required for each test. We

will reference the three null hypotheses throughout the article as

H0 spiceð Þ, H0 b�smashð Þ, and H0 spinð Þ.

2 | METHODS

2.1 | The SPICE test

Formally, we express the SPICE test's null hypothesis as:

H0 spiceð Þ :ψ Xi vð Þ,Yi vð Þð Þ ¼d ψ Xi vð Þ,Yj vð Þ� �
i≠ j, ð1Þ

where ψðÞ represents a measure of intermodal similarity between X

and Y across all locations indexed by v, either for the same subject or

for different subjects (when i≠ j). Adopting the Pearson correlation to

measure intermodal correspondence (which has been widely used in

previous work), the test of equality of means (1) is a test of whether

within-subject intermodal correlation is higher than the between-

subject intermodal correlation.

To test this null hypothesis, we first obtain the following empirical

estimate of the mean of the left hand side of (1):

A0 ¼bE ψ Xi vð Þ,Yi vð Þð Þ½ � ¼1
n

X
n
i¼1 bψ Xi vð Þ,Yi vð Þð Þ, ð2Þ

where, for the ith subject, the Pearson correlation across all V loca-

tions in the image is:

F IGURE 1 Example left hemisphere sulcal depth, cortical thickness, and n-back maps used for (a) the spin test and BrainSMASH and (b) the
SPICE test. Brain map visualizations were generated using the R packages fsbrain (Schäfer, 2020b), freesurferformats (Schäfer, 2020a), and gifti
(Muschelli, 2018). (c) Null hypotheses for previous methods and our proposed method for testing intermodal correspondence. Of the three
methods, the SPICE test is the only one to incorporate subject-level data
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After estimating the mean within-subject intermodal correspondence

(A0), we generate a null distribution for A0 by randomly shuffling the Y

maps across subjects. Then, for the kth permuted sets of map pairs

(k¼1,…,K permutations), we re-calculate (2) as Ak , providing draws

from an empirical null distribution of A0. These random permutations

are illustrated in Figure 2.

A p-value is estimated by counting the number of permutations

for which the magnitude of Ak exceeds that of A0:

pspice ¼
PK

k¼0I jA0j≤ jAkjð Þ
Kþ1

, ð4Þ

where we add 1 to the denominator to account for the identity per-

mutation (Phipson & Smyth, 2010). We reject the null hypothesis for

pspice < α, the nominal type I error rate. Under the null hypothesis,

pspice is a random variable distributed as Uniform(0,1), and we would

reject H0 spiceð Þ in only approximately 5% of cases. Under the alternative

hypothesis, we expect Ak to rarely be greater in magnitude than A0

and would reject H0 spiceð Þ.

2.2 | Simulations and application in the
Philadelphia neurodevelopmental cohort

We assess the performance of our proposed method using neuroim-

aging data from the Philadelphia Neurodevelopmental Cohort (PNC).

The PNC is a research initiative at the University of Pennsylvania con-

sisting of 9,498 subjects between the ages of 8 and 21 who received

care at the Children's Hospital of Philadelphia and consented

(or received parental consent) to participate. A subset of 1,601 sub-

jects were included in multimodal neuroimaging studies and were

scanned in the same scanner at the Hospital of the University of

Pennsylvania, per protocols described briefly below and in

Appendix A1.

For the current study, we first consider correspondence between

cortical thickness and sulcal depth—a pair of imaging measurements

for which we expect to reject the null hypothesis due to well-

established interdependence in structure throughout multiple brain

regions shown in research from the last two decades (Shaw

et al., 2008; Sowell et al., 2004; Vandekar et al., 2015; Vandekar

et al., 2016), as well as in much earlier studies of neuroanatomy from

nearly a century ago (Von Economo, 1929). Second, we consider corti-

cal thickness and n-back, a measure of working memory function

(described below), to demonstrate how our method performs in a situ-

ation where intermodal correspondence would typically not be

expected.

In this study, we include a subset of n = 789 subjects with

all three image types (cortical thickness, sulcal depth, and n-

F IGURE 2 Illustration of simple permutation-based intermodal correspondence (SPICE) testing procedure. A null distribution for A0, the
average within-subject correspondence statistic, is calculated by randomly permuting the Y maps K¼999 times and re-estimating Ak in each
permuted version of the data. A p-value is estimated as in (4)
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back) meeting quality control criteria. This subset also excluded

individuals with existing health conditions, who were taking psy-

choactive medications, had a history of psychiatric hospitaliza-

tion, or other abnormalities that could impact brain structure or

function.

2.2.1 | Acquisition and processing of multimodal
imaging data

Relevant protocols for the acquisition and pre-processing of both

structural and functional magnetic resonance imaging (MRI) data

are described in Appendix A1. In brief, all subjects underwent MRI

scans in the same Siemens TIM Trio 3 T scanner with a 32-channel

head coil and the same imaging sequences and parameters

(Satterthwaite et al., 2014, 2016). Cortical reconstruction of

T1-weighted structural images was implemented using FreeSurfer

(version 5.3). We also consider the fractal n-back task sequence

acquired during functional MRI (fMRI) acquisition sequences, which

involved presenting each subject with a series of stimuli (geometric

pictures on a screen) with instructions to press a button if the cur-

rent stimulus matches the nth previous one. In our present analysis,

we consider maps that represent the percentage change in activa-

tion between the 2-back and 0-back sequences, which has been

previously shown to isolate executive network function (Ragland

et al., 2002; Satterthwaite et al., 2013). All measurements were res-

ampled to the fsaverage5 atlas, consisting of V¼10,242 vertices in

each hemisphere for every subject.

2.2.2 | Simulations

To evaluate the performance of the SPICE test under the null and

alternative hypotheses, we conduct several simulation studies. Using

average cortical thickness, sulcal depth, and n-back maps from the

PNC, we simulate subject-level multimodal imaging data by adding

and multiplying random noise and signal to mean maps, as shown in

Figure 3. While we generate three hypothetical imaging modalities

per simulated subject, to test the null hypothesis of intermodal corre-

spondence we consider only two such modalities at a time (hence

Figure 3 illustrates the simulation set-up when mean cortical thickness

and mean sulcal depth maps are used). The null or alternative hypoth-

esis is true depending on σ2a , the variance of the simulated signal (ai

term in Figure 3), and the null hypothesis is more difficult to reject for

larger values of σ2e , the variance of the simulated noise (elements of

Ei1 vð Þ or Ei2 vð Þ in Figure 3).

For the ith subject, we simulate Xi vð Þ and Yi vð Þ, which have a

one-to-one correspondence at all locations in the fsaverage5 atlas

space, indexed by v¼ 1, :::,10,242½ �. We define Xi vð Þ¼ ai�M1 vð Þþ
Ei 1ð Þ vð Þ and Yi vð Þ¼ ai�M2 vð ÞþEi 2ð Þ vð Þ, where M1 vð Þ is the mean cor-

tical thickness map, M2 vð Þ is either the mean sulcal depth map

(in which Cor(M1 vð Þ,M2 vð ÞÞ¼�0:15) or the mean n-back map (Cor

(M1 vð Þ,M2 vð ÞÞ¼�0:04). We consider two sets of simulations, where

M1 vð Þ is mean cortical thickness in both cases, and M2 vð Þ is mean sul-

cal depth in one setting and mean n-back in the other. The purpose of

these two separate settings is to consider the degree to which

population-level modality similarity (e.g., correlation between M1 vð Þ
andM2 vð Þ) impacts the power of our test.

F IGURE 3 Illustration of bi-modal image simulation. Subject-level images are derived from average cortical thickness (M1 vð Þ) and sulcal depth
(M2 vð Þ) data from the Philadelphia Neurodevelopmental Cohort. For illustrative purposes, the example above shows M2 vð Þ as mean sulcal depth,
but we also consider a simulation setting using mean n-back as the second population-level map. Subject-level images for i¼1,…,n subjects are
simulated as Xi vð Þ¼ ai�M1 vð ÞþEi 1ð Þ vð Þ and Yi vð Þ¼ ai�M2 vð ÞþEi 2ð Þ vð Þ, where ai and the elements of Ei 1ð Þ vð Þ and Ei 2ð Þ vð Þ are normally
distributed, with mean and variance parameters specified in Section 2.2.2. The null hypothesis is true when the variance of ai, σ2a is equal to
0. Otherwise, we expect to reject H0, with test power varying according to other parameter values
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Since Xi vð Þ and Yi vð Þ share ai (distributed N 1,σ2a
� �

), the SPICE

test's null hypothesis (1) is true when the variance of ai, σ2a ¼0

because in this case, the covariation between Xi vð Þ and Yi vð Þ is no

stronger than it is between Xi vð Þ and Yj vð Þ (i≠ j). The V-dimensional

surfaces Ei 1ð Þ vð Þ and Ei 2ð Þ vð Þ consist of elements that are independent

and identically distributed as N 0,σ2e
� �

.

We consider sample sizes of n = 25, 50, and 100, σ2a ranging from

0 to 3.0, and σ2e of 0.5, 1.5, 3.0, or 6.0. While the signal-to-noise ratio

varies with the magnitude of intensities at different locations in M1 vð Þ
and M2 vð Þ (i.e., higher magnitudes of intensities at each location

would multiplicatively increase the variance of the signal at those

locations), the relative size of σ2a and σ2e translates to varying degrees

of statistical power when we conduct tests of intermodal correspon-

dence between simulated surfaces. For instance, higher variance of

the signal (σ2a ) and lower variance of the noise (σ2e ) would produce

more signal than noise, adding to the similarity between Xi vð Þ and

Yi vð Þ (from the same subject). In contrast, lower σ2a relative to σ2e

would mute the dissimilarity between Xi vð Þ and Yj vð Þ (i≠ j) (more

noise than signal) and induce lower statistical power.

When σ2a ¼0, we repeat 5,000 simulations of each combination

of n, σ2e , and M1 vð Þ and M2 vð Þ to estimate type I error as the propor-

tion of simulations for which pspice < 0:05. In addition, from 5,000 sim-

ulations of each combination of parameters where σ2a >0, we estimate

power by the proportion of simulations for which pspice < 0:05. R code

for implementing the SPICE test and reproducing our simulations may

be found at https://github.com/smweinst/spice_test.

2.2.3 | Comparing the SPICE test with previous
methods

In assessing intermodal correspondence in the PNC, we compare

the performance of our method to that of the spin test and

BrainSMASH. Since both the spin test and BrainSMASH require

group-level surfaces and their underlying null hypotheses differ, our

goal here is to assess whether the general conclusions of their

respective null hypotheses (Figure 1) agree with one another. Given

the developmental focus of the dataset and prior research

suggesting that intermodal coupling may change throughout devel-

opment (Vandekar et al., 2016), we apply each method in imaging

data within seven age subgroups (group-averaged for the spin test

and BrainSMASH, and subject-level for the SPICE test). We also

apply each method to test for intermodal correspondence in the full

group of n = 789 subjects. We account for multiple comparisons by

using a Bonferroni-adjusted p-value threshold for statistical signifi-

cance (0.05/16 = 0.003) to correct for the seven age groups and

one group including all subjects, times two hemispheres tested

within each group.

The spin test is implemented using publicly available MATLAB

code (https://github.com/spin-test). We generate 1,000 null models

of spatial alignment through random rotations of cortical thickness

maps within each hemisphere, after removing vertices identified to be

part of the medial wall. The same “spun” maps are used to test

H0 spiceð Þ of cortical thickness versus sulcal depth as well as cortical

thickness versus n-back.

BrainSMASH is implemented in Python (https://github.com/

murraylab/brainsmash) on parcellated left and right hemispheres.

Parcellated surfaces, according to the 1,000 cortical network

parcellation described by Schaefer et al. (2018), are used instead of

vertex-level data due to computational challenges of computing the

required pairwise distance matrix for vertex-level data. As noted by

Markello and Misic (2021), using such parcellations does not appear

to compromise null model performance. For each hemisphere, a

501�501 geodesic distance matrix (which includes one parcel for the

medial wall that does not need to be removed for BrainSMASH, unlike

the spin test) is constructed using the SurfDist package in Python

(Margulies, Falkiewicz, & Huntenburg, 2016). For BrainSMASH, we

generate 1,000 surrogate maps whose variograms are intended to be

as close as possible to the empirical variogram of the observed cortical

thickness maps. Variogram estimation includes pairwise distances in

the bottom 25th percentile of possible pairwise distances, in accor-

dance with Viladomat, Mazumder, McInturff, McCauley, and

Hastie (2014) and Burt et al. (2020). Since both tests of interest

involve cortical thickness, for computational efficiency, we use the

same 1,000 surrogate cortical thickness maps tests against both sulcal

depth and n-back in each age group.

2.2.4 | Testing correspondence within functional
networks

Next, we test H0 spiceð Þ and H0 b�smashð Þ and consider the same pairs of

modalities as before in the left hemisphere, within canonical large-

scale functional networks defined by Yeo et al. (2011) in their

reported 7-network solution. Each network consists of a subset of the

1,000 cortical parcellations described by Schaefer et al. (2018). For

BrainSMASH, we increase the truncation threshold for pairwise dis-

tances included in variogram calculation to the 70th percentile, thus

allowing variation between locations located farther apart to be incor-

porated in variogram calculation, following Burt et al. (2020)'s meth-

odology for assessment of spatial autocorrelation in subregions of the

brain. To adjust for multiple comparisons across the seven age groups,

we use a Bonferroni-adjusted p-value threshold for statistical signifi-

cance (0.05/7 = 0.007). Because the main interest is in studying

developmental changes throughout development in each network, we

adjust for comparisons across age groups, but not across the Yeo net-

works nor the two tests.

3 | RESULTS

3.1 | Type I error and power of the SPICE method

Simulation results are shown in Figure 4. Under both the null and

alternative hypotheses, our proposed method performs well and as

expected. The type I error (when σ2a ¼0) is close to 5% for all sample

5180 WEINSTEIN ET AL.

https://github.com/smweinst/spice_test
https://github.com/spin-test
https://github.com/murraylab/brainsmash
https://github.com/murraylab/brainsmash


sizes, for all values of the vertex-level variance parameter, σ2e , and for

both settings involving M2 vð Þ as either mean sulcal depth or mean n-

back. Under the alternative hypothesis (when σ2a >0), a higher signal-

to-noise ratio (lower σ2e , higher σ
2
a ) correspond to higher power, and

power decreases incrementally as the signal-to-noise ratio decreases

(higher σ2e , lower σ2a ). As expected, larger sample size and higher mag-

nitude of population-level image similarity (Corr(M1 vð Þ,M2 vð Þ)) also

improve statistical power.

3.2 | Results and comparison of methods in the
Philadelphia neurodevelopmental cohort

We first consider tests of intermodal correspondence for seven age

groups in the left and right hemispheres. Unadjusted p-values are

provided in Table 1. The SPICE test, BrainSMASH, and spin test all

produce results that are consistent with what one would expect bio-

logically: all three methods produce small p-value when testing sul-

cal depth versus cortical thickness (Table 1(a)), although

BrainSMASH's results in the right hemisphere for the youngest

three age groups do not reach statistical significance based on our

Bonferroni-adjusted p-value threshold of 0.003. None of the

methods indicate significant correspondence between the n-back

and cortical thickness maps (Table 1(b)). For BrainSMASH, we also

verify that the surrogate maps' variogram surrogate cortical thick-

ness maps appear valid (Figure S1).

It is clear that intermodal coupling may occur with both anatomi-

cal and developmental specificity (Vandekar et al., 2016). For example,

a positive result could be driven disproportionately by specific neuro-

anatomical sub-systems or specific age groups, suggesting the need

for post-hoc regional or network analysis tests at higher anatomical or

developmental resolutions. An important attribute of the SPICE test is

its applicability for post-hoc testing in this sense. We therefore con-

sider age-stratified tests of intermodal correspondence within func-

tional networks from Yeo et al. (2011) with the SPICE test and

BrainSMASH (plotted in blue and red, respectively, in Figure 5). As

expected, the p-values for SPICE and BrainSMASH tests of correspon-

dence for n-back versus cortical thickness (solid lines) appear uni-

formly distributed between 0 and 1, which we anticipate under their

respective null hypotheses. However, we observe some discrepancies

in their results for testing sulcal depth versus cortical thickness (dot-

ted lines) within functional networks, despite the agreement of the

F IGURE 4 Power and type I error of the simple permutation-based intermodal correspondence (SPICE) test based on 5,000 simulations. Each
point is the rate of rejecting H0 (based on pspice <0:05) from 5,000 simulations of of the data (as shown in Figure 3) with unique combinations of
parameters: sample size (n¼25,50,or100), subject-level variance (σ2a , ranging from 0.0 to 3.0 in increments of 0.15), and vertex-level variance (σ2e ,
either 0.5, 1.5, 3.0, or 6.0). (a) Simulation setting 1: using mean cortical thickness and sulcal depth (from a subset of 789 participants in the
Philadelphia Neurodevelopmental Cohort) as population-level mapsM1 vð Þ and M2 vð Þ, respectively (Corr(M1 vð Þ,M2 vð ÞÞ¼�0:15). (b) Simulation

setting 2: using mean cortical thickness and n-back as population-level mapsM1 vð Þ and M2 vð Þ, respectively (Corr(M1 vð Þ,M2 vð ÞÞ¼�0:04)
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F IGURE 5 Unadjusted p-values from tests of intermodal correspondence within seven functional networks described by Yeo et al. (2011) in
the left hemisphere for different age groups. We consider p < 0.007 to provide evidence against the null hypotheses (defined in Figure 1), after
using a Bonferroni correction for comparisons across seven age groups

TABLE 1 Unadjusted p-values from tests of intermodal correspondence in the left and right hemispheres using the SPICE, BrainSMASH, and
spin methods

Age 8–9 10–11 12–13 14–15 16–17 18–19 20–21 All subjects

n = 69 n = 95 n = 129 n = 157 n = 170 n = 147 n = 22 n = 789

(a) Sulcal depth vs. cortical thickness

SPICE

Left 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Right 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

BrainSMASH

Left 0.007 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Right 0.034 0.004 0.005 0.002 <0.001 0.001 0.001 0.002

Spin

Left <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Right <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

(b) N-back vs. cortical thickness

SPICE

Left 0.899 0.842 0.281 0.958 0.796 0.345 0.829 0.838

Right 0.222 0.879 0.784 0.513 0.752 0.254 0.468 0.470

BrainSMASH

Left 0.726 0.974 0.907 0.932 0.798 0.771 0.948 0.914

Right 0.344 0.464 0.795 0.786 0.936 0.878 0.868 0.831

Spin

Left 0.987 0.851 0.760 0.894 0.575 0.572 0.835 0.730

Right 0.609 0.711 0.994 0.964 0.742 0.655 0.922 0.947

Note: Null hypotheses for each method are summarized in Figure 1. Additionally, Figure S2 shows the null distributions and observed test statistics used to

estimate each p-value above.
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two methods in tests conducted within full cortical hemispheres dis-

cussed before.

Specifically, the SPICE test provides evidence against its null

hypothesis (H0 spiceð Þ) of coupling between cortical thickness and sulcal

depth in the somatomotor, dorsal attention, ventral attention, limbic,

frontoparietal control, and default networks, with pspice < 0:007, the

Bonferroni-adjusted threshold used for this analysis. BrainSMASH

similarly provides evidence against its null hypothesis (H0 b�smashð Þ) for

coupling between sulcal depth and cortical thickness in the

somatomotor (except ages 8–9 and 10–11), dorsal attention, ventral

attention, and default networks, but not in the limbic and

frontoparietal control networks.

The poor fit of the network-specific surrogate variograms, plotted

in Figure S3, may give some insight for understanding these discrep-

ancies. Specifically, we observe differences between the empirical and

surrogate map variograms in all age groups for the dorsal attention,

ventral attention, limbic, frontoparietal control, and default networks,

suggesting that the surrogate cortical thickness maps in these net-

works failed to preserve the spatial autocorrelation structure of the

target (i.e., original cortical thickness) map, undermining the results

from tests in those networks, and suggesting that this method may

not be reliable in the context of smaller brain regions.

It is also notable that neither the SPICE test nor BrainSMASH

reject their respective null hypotheses for testing correspondence

between sulcal depth and cortical thickness within the visual network,

but that the nonsignificant p-values for the visual network are not uni-

formly distributed. This result is not surprising, given previous work

from Vandekar et al. (2016), who found that in primary visual regions,

we observe a complex relationship between these two modalities.

These authors noted that the nonlinear nature of the association

between sulcal depth and cortical thickness within the primary visual

cortex violates the linearity assumption of their methodology for

assessing intermodal coupling. It is plausible that this nonlinearity also

explains SPICE's and BrainSMASH's failure to reject H0 spiceð Þ and

H0 b�smashð Þ, respectively, within the visual network, as both methods

currently use a linear measurement of similarity (Pearson correlation).

Lastly, although we did not hypothesize an association between

the n-back task and cortical thickness, given the age-related regional

heterogeneity in both cortical thickness growth curves (Tamnes

et al., 2017) and also patterns of activation in the n-back task (Andre,

Picchioni, Zhang, & Toulopoulou, 2016), differences in coupling across

age groups and neuroanatomical systems are not entirely unexpected.

Speculatively, the maturation of multi-modal association areas may be

related to their differential activation in working memory tasks, which

will be an interesting area for future work.

4 | DISCUSSION

In this article, we introduce an intuitive and easy-to-implement

method that leverages subject-level data to test and make inference

about intermodal correspondence. Our method is complementary to

those proposed by Alexander-Bloch et al. (2018), Burt et al. (2020),

and other related methods described by Markello and Misic (2021), as

the null hypotheses of these methods fundamentally differ (Figure 1)

but may all provide meaningful insights about intermodal correspon-

dence. While the spin test and BrainSMASH give a picture of

population-level spatial alignment between two maps, our method

considers subject-level intermodal correspondence, depending only

on the plausible assumption that subjects are independent of one

another. By approaching the correspondence problem from a new

angle—emphasizing inference on subject-level associations as

opposed to more general patterns of spatial alignment in group-

averaged data—the SPICE test addresses five limitations of the earlier

approaches.

Alexander-Bloch et al.'s spin test (i) can only be applied to sur-

faces with spherical representations (i.e., not volumetric data), (ii) does

not specifically address the presence of the medial wall, which must

be accounted for in practical implementations of the test, for example

by disregarding cortical areas that overlap with the medial wall in spun

maps when estimating the null distribution, and (iii) cannot be applied

in small regions of the brain. While Burt et al.'s BrainSMASH can tech-

nically be applied in subregions of the brain, our findings suggest its

generative null models may not be suitable when the small regions are

irregularly shaped or disconnected, such as the widely used functional

networks described by Yeo et al. (2011). One possible extension of

BrainSMASH could incorporate nonparametric variogram estimation,

as proposed by Ye et al. (2015), to account for both spatial proximity

and functional connectivity in variogram estimation. Both the spin test

and BrainSMASH are further limited in that they (iv) are only able to

incorporate group-level data, precluding assessments of inter-subject

heterogeneity (visualized in Figure 1). Finally, by conditioning on

observed group-level maps, both of the previous methods would

require (v) assuming covariance stationarity in order to take into

account dataset-to-dataset variability or be used for generalizable sta-

tistical inference—that is, inference that formally considers the vari-

ability that results when sampling new data from the population.

Without a treatment of this source of variability that does not rely on

unrealistic assumptions, neither the spin test nor BrainSMASH may

fully address concerns about the external validity of findings. The abil-

ity to directly address such concerns is a significant theoretical advan-

tage offered by the SPICE test.

The SPICE test accounts for spatial autocorrelation to the extent

that it is a feature of the underlying data-generating process. Spatially

relevant information has already been encoded in the observed data,

which renders moot any need for assumptions about stationarity. By

conditioning on observed group-level data and altering its spatial struc-

ture in generating a reference null distribution, both the spin test and

BrainSMASH necessitate explicitly modeling spatial autocorrelation or

assuming covariance stationarity to make generalizable inference. In this

sense, the SPICE test has the benefit of being readily usable for post-

hoc analyses; if investigators decide to test correspondence between

brain maps within subregions not considered in their primary analyses,

the SPICE test would not require revisiting questionable assumptions

about the spatial structure of the data when transitioning between test-

ing more broadly or narrowly defined brain regions.
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In addition to the SPICE test's advantage of having minimal statis-

tical assumptions, it is also clear that a method which allows for inter-

individual variability would be advantageous in the neuroimaging field.

Inter-individual variability in coupling between imaging-derived phe-

notypes has been shown to be sensitive to age, sex, and disease-

related changes (Vandekar et al., 2016). However, we know of no sys-

tematic exploration of coupling across possible phenotype pairs, pos-

sibly due to the lack of a clear statistical framework for such a study.

An example use case for the SPICE test is to prioritize phenotypic

pairs for further analysis in large multimodal imaging studies, where

coupling may be related to outcomes of interest such as psychopa-

thology and individual differences (Karcher & Barch, 2021). Given that

inter-individual variability from both genetic and environmental

sources is known to influence imaging phenotypes across modalities

(Fjell et al., 2015; Tooley, Bassett, & Mackey, 2021), higher within-

subject coupling is consistent with “true” biological basis of inter-

modal coupling that also manifests marked inter-individual variability.

The SPICE test does not replace BrainSMASH, the spin test, or

other methods that specifically aim to compare group-level surfaces,

as SPICE is only applicable in settings where subject-level data are

available. For example, the spin test and BrainSMASH may be used to

test similarities between different atlases (e.g., Yeo versus Desikan),

and the SPICE test would not be applicable in such studies.

In future work, we hope to consider more comprehensive testing

strategies, including the use of different correspondence metrics, since

the choice of statistic should be appropriate for the modalities under

consideration. For example, while the Pearson correlation has known

limitations when used in sparse data such as connectivity matrices, a

geodesic distance measure between two connectivity matrices may be

more suitable (Venkatesh, Jaja, & Pessoa, 2020). In addition, since the

null hypothesis for the SPICE test is framed in terms of equality in distri-

butions of a correspondence measure (1), one may consider additional

test statistics (for example, the Kolmogrov-Smirnov statistic) so that the

test can explicitly consider the full distribution function, rather than

focusing on the mean. Implementing the SPICE test using a Pearson

correlation (or other average measurement) tests only one aspect of the

distribution—testing a sufficient but not necessary condition for equiva-

lence in distributions. A rank-based measure of similarity (e.g., the

Spearman correlation coefficient) would be another option more sensi-

tive to nonlinear associations.

Finally, since our method involves permuting subject-level maps

in generating a null distribution, in future work we plan to consider

implications of subject exchangeability on inference using our method.

Various approaches to preserve exchangeability (e.g., defining blocks

within which subjects may be considered “exchangeable”) may be

adapted from methods described by Winkler, Ridgway, Webster,

Smith, and Nichols (2014).

5 | CONCLUSIONS

The SPICE, BrainSMASH, and spin methods may all support similar

findings despite their different null hypotheses. However, the SPICE

test is the most flexible when it comes to analyzing subregions of the

brain, particularly when assumptions regarding the structure of spatial

autocorrelation can pose obstacles to generating surrogate maps

intended to preserve those complex structures, and it is the only

method that is able to consider subject-level data. Depending on the

question of interest and the available data, using a combination of

these three methods may be beneficial in future neuroimaging experi-

ments to obtain a more complete picture of intermodal

correspondence.
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APPENDIX A: IMAGING PROTOCOLS

Acquisition and pre-processing of structural imaging data

All subjects underwent magnetic resonance imaging (MRI) in the same

Siemens TIM Trio 3 T scanner with a 32-channel head coil and the same

imaging sequences and parameters, described in detail by Satterthwaite

et al. (2014) and Satterthwaite et al. (2016). For structural imaging, the

protocol included a magnetization-prepared, rapid-acquisition gradient

echo (MPRAGE) T1-weighted structural image with a voxel resolution

of 0.9 � 0.9 � 1 mm. To ensure adequate quality of images included in

our analysis, quality assurance was independently rated by three experi-

enced image analysts, as described by Rosen et al. (2018).

Cortical reconstruction of T1-weighted structural images was

implemented using FreeSurfer (version 5.3), which included template

registration, intensity normalization, and inflation of cortical surfaces

to a template. Cortical measurements were resampled to the

fsaverage5 atlas, consisting of exactly V¼10,242 vertices in each

hemisphere for every subject. We quantified cortical thickness as the

minimum distance between pial and white matter surfaces (Dale
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et al., 1999) and sulcal depth as the height of gyri (with positive and

negative values indicating outward and inward movement, respec-

tively; Fischl, Sereno, & Dale, 1999).

Acquisition and pre-processing of n-back task sequence

Protocols for functional MRI (fMRI) included task-based BOLD scans

using a single-shot, interleaved multi-slice, gradient-echo, echo pla-

nar imaging sequence, with a voxel resolution of 3 � 3 � 3 mm

voxels and 46 slices. Preprocessing was implemented using the

eXtensible Connectivity Pipeline (XCP) Engine (Ciric et al., 2018). In

the current study, we consider the fractal n-back task sequence,

which involves presenting subjects with a series of stimuli (geomet-

ric pictures on a screen) with instructions to press a button if the

current stimulus matches the nth previous one. For example, in a

1-back sequence, participants would be instructed to recognize

whether a current stimulus matches the one that appeared last; a

2-back sequence would involve recognizing whether the current stimu-

lus matches the one that appeared two stimuli ago. A 0-back sequence

is also considered, in which subjects are instructed to simply press a

button each time a stimulus appears (regardless of whether it matches

a previous stimulus). In our present analysis, we consider maps that rep-

resent the percentage change in activation between the 2-back and

0-back sequences, which has been previously shown to isolate execu-

tive network function (Ragland et al., 2002).

We used the FEAT software tool in the FSL library to fit first-level

general linear models on the n-back time series data (Jenkinson,

Beckmann, Behrens, Woolrich, & Smith, 2012). Three first level

models for each subject considered contrasts to assess change in

working memory load between 1-back and 0-back, 2-back and

1-back, and 2-back and 0-back. Activation maps representing the per-

cent change between the 2-back and 0-back sequences were projec-

ted into the fsaverage5 template with exactly 10,242 vertices per

hemisphere per subject.

Use of cortical and network parcellations from Yeo et al. (2011) and

Schaefer et al. (2018)

Images converted to the fsaverage5 template consisted of exactly

10,242 vertices per hemisphere. We then identified the vertices

belonging to each of the 1,000 parcellations suggested by Schaefer

et al. (2018) as well as each of the seven networks proposed by Yeo

et al. (2011), available for download from GitHub (https://github.com/

ThomasYeoLab/CBIG/tree/master/stable_projects/brain_

parcellation/Schaefer2018_LocalGlobal/Parcellations/FreeSurfer5.3/

fsaverage5/label).
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