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Abstract: Hypoplastic left heart syndrome (HLHS) is a collective term applied to severe congenital
cardiac malformations, characterised by a combination of abnormalities mainly affecting the left
ventricle, associated valves, and ascending aorta. Although in clinical practice HLHS is usually
sub-categorised based on the patency of the mitral and aortic (left-sided) valves, it is also possible
to comprehensively categorise HLHS into defined sub-groups based on the left ventricular mor-
phology. Here, we discuss the published human-based studies of the ventricular myocardium in
HLHS, evaluating whether the available evidence is in keeping with this ventricular morphology
concept. Specifically, we highlight results from histological studies, indicating that the appearance
of cardiomyocytes can be different based on the sub-group of HLHS. In addition, we discuss the
histological appearances of endocardial fibroelastosis (EFE), which is a common feature of one specific
sub-group of HLHS. Lastly, we suggest investigations that should ideally be undertaken using HLHS
myocardial tissues at early stages of HLHS development to identify biological pathways and aid the
understanding of HLHS aetiology.

Keywords: endocardial fibroelastosis; slit-like ventricle; peach-like ventricle; mitral atresia; mitral
stenosis; aortic atresia; aortic stenosis; senescence; myocyte disarray

1. Introduction

Hypoplastic left heart syndrome (HLHS) is a collective term for a group of rare, severe
cardiac malformations characterised by a specific combination of ventricular, valve and
vascular abnormalities [1–4]. In all cases the morphological left ventricle is underdevel-
oped, such that the apex of the heart is represented by the right ventricle, both the mitral
and aortic valves display variable atresia or stenosis, and the ascending aortic segment is
diminutive. HLHS accounts for up to 3% of all congenital heart malformations and affects
~1 in 5–10,000 live births [5–7]. Although initially described by Lev as hypoplastic left heart
complex [8], the term HLHS was later introduced in a clinical review that included patholo-
gies such as coarctation of the aortic arch, that may also have reduction in left ventricular
volume [9]. More recently, a nomenclature committee has defined HLHS and specifically
excluded this and other malformations which, although may have ventricular hypoplasia,
are dominated by another malformation with a distinctly different developmental origin,
for example unbalanced atrioventricular septal defect, double outlet right ventricle and
heterotaxy [1,3,10,11]. Despite this refinement in definition, the developmental failure and
underlying causes of HLHS remain elusive.
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2. Morphological Sub-Types of HLHS

In clinical practice, sub-categories of HLHS can be described based on patency of the
aortic and mitral valves. If the valve appears not to have an open orifice or no blood flow
can be detected passing through, it is described as atretic; whilst if there is an apparent
narrowing—either observed or inferred—it is described as stenotic. It is also possible
to comprehensively re-categorise the valvar sub-types into three sub-types defined by
left ventricular morphology [2]. Mitral atresia with aortic atresia (MA/AA) remains a
sub-group common to both valve and ventricular morphological classifications, as the
presence of mitral atresia with an intact inter-ventricular septum is always associated with
a slit-like ventricle, found with difficulty in the posterior wall of the right ventricle. This
sub-group showed a frequency of 36 to 46% of all HLHS cases [6]. The remaining HLHS
hearts segregate differently between classifications. Some hearts previously described as
examples of mitral stenosis and aortic stenosis (MS/AS), and showed a frequency of 23–26%
of all HLHS cases [6]. Some of these hearts have miniaturised left-sided structures without
the presence of endocardial fibroelastosis (EFE) or apparent thickening of the rudimentary
left ventricle. These miniaturised hearts have been identified as a sub-set particularly
suitable for biventricular surgical repair [12]. The remaining hearts with MS/AS have
a common ventricular appearance to those hearts with mitral stenosis and aortic atresia
(MS/AA), which had a prevalence of 20–29% of all HLHS cases [6]. Both groups of hearts
with MS/AS and MS/AA exhibit EFE, and despite a small left ventricular cavity, do possess
a thickened left ventricular wall. Together, they can be described as a peach-like ventricular
group. It follows from this ventricular morphology-based re-classification that there should
be common appearances between MS/AS and MS/AA hearts with EFE that are different to
MS/AS with miniaturised features and MA/AA with slit-like ventricle (see Figure 1). The
purpose of this review is to evaluate the published human-based studies of the myocardium
in HLHS, asking if the available evidence is in keeping with this ventricular morphology
concept and addressing whether there is any evidence pointing to a myocardial based
aetiology for HLHS. Animal studies will only be briefly mentioned where there is specific
information relating to the myocardium.
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Figure 1. Clinical and morphological classifications of HLHS. (A) mitral atresia and aortic atresia
(AA/MA). The posterior surface of the ventricular mass has been shaved to reveal a slit-like ventricu-
lar cavity phenotype (black arrow heads) without gross evidence of endocardial fibroelastosis (EFE).
The apex of the heart is formed by the right ventricle. (B) Free left ventricular wall of a heart with
mitral stenosis/aortic atresia (MS/AA). There is endocardial fibroelastosis seen on the inner surface
of the left ventricular cavity (*) and the left ventricular wall is thickened (white double arrow). (C)
Further example of MS/AA with thickened left ventricular wall (double white arrow) and prominent
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EFE (*) The right ventricle (RV) forms the apex of the heart. (D) HLHS heart with mitral stenosis/aortic
stenosis (MS/AS) with the left ventricle (LV) opened to show prominent EFE (*) and thickened left
ventricular wall. There is a stenotic aortic valve (white arrow), and the mural leaflet of the small
mitral valve is also seen (black arrow). The appearances of the sectioned ventricle in (B–D) give
the appearance of a peach that has been cut in half and the stone removed. (E). Heart with MS/AS
with small left ventricle but with normal ventricular wall thickness (white arrow heads). The small
mitral valve is also shown (black arrow). This heart with a miniaturised left ventricle has no EFE and
contrasts with the examples of MS/AA and MS/AS with EFE in (B–D) Bar in (A–E) = 2 mm.

3. The Developmental Origins of the Normal Left Ventricular Myocardium

The slit-like ventricle appearances of MA/AA appear to be present from the earliest
stages of heart development that can be visualised with ultrasound scanning and do
not develop in later stages of pregnancy. In contrast, HLHS with peach-like ventricular
morphology, that is MS/AS and MS/AA associated with endocardial fibroelastosis, have
been shown to develop in either the second or third trimesters of human pregnancy when
the human ventricular myocardium is already well formed [13,14], suggesting but not
proving alternative aetiologies.

Animal studies have shown that the left ventricular (LV) myocardium and its en-
docardium are derived from cardiac progenitors that formed the initial heart tube (first
heart field). This is in contrast to the right ventricle (RV), intraventricular septum and
majority of atrial tissue, which are derived from the second heart field that add to the
heart tube at later stages [15]. The initial left ventricular chamber has a thin wall which
then thickens before the trabeculae, finger-like projections of myocardium, extend into the
cavity at Carnegie stage 12 when the human embryo is 26 days old. Myocardial thickening
continues over the next week and at around 33 days of development (Carnegie stage 13)
ventricular septation takes place [16]. The large surface area of the trabeculae is initially
important in oxygen delivery to the myocardium, but as development proceeds, oxygen
delivery to the cardiac muscle via the surface of the trabeculae becomes limiting and de-
veloping coronary vessels take over this role [16]. As proliferation of the trabecular and
compact layer cardiomyocytes progress, there is mixing of these cells in a middle hybrid
layer as demonstrated in mouse studies [17]. Animal studies have shown the importance
of the epicardium in providing trophic signals for growth of the compact layer. In con-
trast, the growth of trabeculae is dependent on endothelial signalling through the Notch
pathway and neuregulin [16]. However, by approximately 9 weeks of development—well
before HLHS is first recognized—there is remodelling of the surface trabeculae resulting
in a smooth left ventricular surface with only residual fine trabeculae at the ventricular
apex [16].

4. The Myocardial Architecture in HLHS

Macroscopically, the LV myocardium of slit-like MA/AA HLHS hearts is very different
from that seen in those hearts with peach-like MS/AA or MS/AS. In the slit-like MA/AA
HLHS hearts, the LV is included within what is considered to be the posterior wall of the
RV. Since this posterior wall is the same thickness as the rest of the RV wall yet encompasses
both the LV free wall and the interventricular septum, it follows that both these structures
are thinner than normal. In contrast, although the ventricular chamber is small in peach-
like hearts, there is variable but marked thickening of the ventricular wall with obvious
endocardial fibroelastosis, which gives the appearance of a peach that has been cut in half
(Figure 2). Although the appearance of cardiomyocytes within the thinned LV walls of the
slit-like hearts are described as being normal [18,19]. It is important to emphasise the almost
complete lack of published studies that relate directly to the slit-like ventricular (MA/AA)
phenotype. Neither the cellular components nor the extracellular matrix appearances have
been clearly described. Indeed, the studies referenced in this review essentially focussed on
the peach-like hearts with EFE (with MS/AA or MS/AS), although, again, there have been
no studies which clearly indicated whether the apparent wall thickening of the hypoplastic
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LV in these hearts is due to either cardiomyocyte hypertrophy, cardiomyocyte hyperplasia,
increased extracellular matrix or any combination of these.
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Figure 2. Histological appearances of HLHS heart with peach-like ventricular phenotype (MS/AS
and EFE). (A–C) Sections through free wall of left ventricle. (A) H&E stain of left ventricular free wall.
(i) High powered views of the myocardium show marked cardiomyocyte disarray and vacuolated
cardiomyocytes in areas close to the endothelial surface. (ii) Further way from the lumen there is
evidence of myocardial disarray, but the vacuolated cardiomyocyte appearances are less prominent.
(iii) The epicardial side the myocardium appears ordered and the cardiomyocytes grossly normal.
(B) Masson’s trichrome stain showing collagen deposits (blue) in the sub-luminal myocardial wall.
This affects the areas of myocardium with most cardiomyocyte disarray. (i) Millers’ elastin stain shows
prominent elastin fibre deposition black staining) in luminal part of the left ventricular myocardium.
Scale bar in (A–C) = 500 um, in (i–iii) = 200 um.

5. Cardiomyocyte Organisation

Each cardiomyocyte is enveloped in a connective tissue sheath, the endomysium,
and several cells are further organised into fibres by thicker areas of connective tissue,
the perimysial sheaths. Within this scaffold, the cardiomyocytes remain as discrete cells
but connect and communicate with each other at their ends, through intercalated discs,
creating an ordered array of contractile components. Further orientation of fibres into
sheets within the myocardial wall is evident orientations [16]. In the formed mature heart,
the right ventricle tends to wrap around the left ventricle, but both ventricles have walls
that are macroscopically organised into layers of fibres with oblique orientations [16]. Lon-
gitudinal running muscle layers are found at the inner and outer parts, and in between
them are helically orientated fibres. Although there are some apparently disorganised
cardiomyocytes at the apical end of the interventricular septum where the left and right
ventricular myocardium meet, in the normal heart there is little evidence of any cardiomy-
ocyte disorganisation. It is not known to what extent this fibre orientation is based on a
genetically-regulated developmental process or is secondary to mechanical forces. One of
the most obvious abnormalities in hearts with peach-like thickening and EFE, i.e., MS/AS
or MS/AA, is myocardial disarray affecting the inner two thirds of the left ventricular
wall [18,19]. Although myocardial disarray was initially thought to be pathognomonic and
specific for hypertrophic cardiomyopathy, it is also found in congenital heart malformations
where the ventricles have abnormal wall loading due to obstructed outlets, for example
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pulmonary atresia [20]. Although most HLHS studies do not report disarray in the right
ventricle [18,19], one histological study of HLHS myocardium, examining hearts aged from
6 postnatal days to 6 months, did indicate such changes also affecting the right ventricle [21].
It is likely that this right ventricular abnormality may be also secondary to changes in right
ventricular loading in failing hearts. There is a need for these issues to be addressed in
well-designed comprehensive studies.

6. Cardiomyocyte Ultrastructure in the Slit-like and Peach-like Ventricles

In addition to disorganised arrangement of cells, the ultrastructural organisation of
the cardiomyocytes is also grossly disrupted in the peach-like MS/AS; MS/AA hearts.
Histological studies indicate the cells are vacuolated, have reduced cytoplasm and are
of variable size [21]. However, these studies have universally been carried out in late
gestation and/or postnatal HLHS cases and thus may not be representative of the early
stages of pathology. In similar studies performed by the Toronto group, the nuclei have
been described as being ovoid and centrally placed, presumably implying these are newly
replicated cardiomyocytes. Similarly, chromatin deposits implying DNA remaining after
cell death have also been reported [22]. Again, these studies have examined myocardium
late in the evolution of this HLHS phenotype and it is not known whether these are late
changes of a profoundly damaged and potentially scarred myocardium or whether they
represent a primary aetiology.

An important aspect of myocardial biology is the close alignment of mitochondria
to sarcomeres, thought to be essential to meet the high energetic requirements of the
tissue. There is a paucity of electron microscopy data, required to visualise the cardiac
mitochondria for HLHS cases. The images that do show these organelles also indicate a
very abnormal sclerotic myocardium and are not sufficient to determine relationships to
sarcomeres [22].

It has been suggested from immunohistological data, that Connexin 43, the gap
junction protein responsible for electrical coupling of ventricular cardiomyocytes, is absent
in the peach-like MS/AS; MS/AA hearts [23,24]. However, this finding has not been
confirmed and may represent a late change in severely disturbed cardiomyocytes. Similarly,
it has been suggested that PECAM1, a surface antigen that is considered highly specific
for endothelial cells, is aberrantly expressed by cardiomyocytes in these hearts [21]. This
has not been confirmed and a recent study used PECAM1 antibody to specifically identify
endothelial cells from cardiomyocytes by FACS [22], suggesting that endothelial cells
express PECAM1 and other cells, i.e., cardiomyocytes, do not.

7. Endocardial Fibroelastosis in Peach-like Ventricles

The cardinal feature of the peach-like HLHS hearts with either MS/AS or MS/AA
is the presence of EFE. When established, EFE is recognised visually as an opalescent,
white coating that extends over the mitral and aortic valve surfaces. On echocardiography,
EFE presents as a highly echogenic signal on the inner myocardium and valves [25].
Histologically, EFE is recognised as an abundance of elastin fibres, collagen and smooth
muscle cells expanding the potential space between the endothelium and myocardium, but
a predominantly fibrotic infiltrate also extends into the inner part of the myocardium [26].

EFE is recognised in a wide range of situations that have dilation of the ventricle as a
common finding, especially dilated cardiomyopathy [26]. It has historically been associated
with viral infections and viral particles have been described within it [26–28]. The reduction
in childhood infections, such as mumps, in recent years, has been suggested as a reason
why EFE in childhood has become less common [26]. Although EFE appears in certain
pathological conditions at all ages, it is much more exuberant prior to birth, predominantly
occurring in young infants, showing an inverse correlation with age [29]. With respect to
HLHS, there have been few studies, but the EFE appearances seem similar to examples of
isolated EFE or that found in association with childhood- or adult-dilated cardiomyopathy,
where much more is known [13,30].
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The histological appearances of EFE are well recognised. The sub-endocardial space
normally contains very little connective tissue but does contain occasional cells with the
appearance of smooth muscle cells (SMCs). As EFE develops, there is an increase in
the number of these cells, which are the likely source of collagen and elastin. Electron
microscopy shows that they contain electron dense cytoplasm, myofilaments and vesicles,
which is in keeping with the phenotype of SMCs [26]. Immunohistochemical analyses have
supported that these cells possess a SMC phenotype as they express the same markers
as the vascular SMC of the coronary circulation, including alpha smooth muscle actin,
smooth muscle myosin, desmin and calponin. In contrast, the cells do not immunolabel
with fibroblast markers, such as vimentin, fibronectin, periostin or tenascin [31]. The
source of these cells is presumed to be the underlying endothelium through endothelial to
mesenchymal transition (EndoMT). In support of this, cells in this compartment have been
shown to co-label with antibodies against an endothelial-specific antigen, CD31 and alpha
smooth muscle actin [32]. The endothelium in HLHS also expresses markers of EndoMT
such as SLUG, SNAIL and TWIST, which also support the hypothesis that the SMCs are
derived from these endothelial cells [33]. Electron microscopy suggests that cells further
away from the sub-endothelial space are more fibroblastic in phenotype [26] and although
it is suggested that the SMC-like cells within the sub-endothelial space give rise to these
cells, there is no solid evidence to support this. Indeed, there are abundant fibroblasts
in this region of the outer ventricular wall that could participate in this fibrotic reaction.
Limited studies have been carried out in HLHS samples. A study of well-established
EFE from (peach-like) MS/AS; MS/AA late foetal hearts showed an increase in collagen
I immunolabelling [22]. The examination of resected EFE showed collagen and elastin
through both histological and immunohistochemical methods and indicated active elastase
and gelatinase activity through in situ zymography. However, there were no statistical
differences between patients across a range of ages up to 5 years, thus it was not possible to
exclude the failure of matrix turnover as a reason for EFE accumulation [32]. Whilst this
study was carried out in samples removed from children with critical aortic stenosis and
EFE, rather that HLHS, it is likely to be relevant as many of these patients will have also
had reduced left ventricular cavity size.

Transgenic Cre-lox-based lineage tracing studies in mice have provided some insight
as to the origins of the cells involved in EFE and both support and extend the human
studies. Whilst an in-depth discussion of these models is beyond the scope of this human
pathology review, it is useful to note parallels. The experiments are based on heterotopic
heart transplantation, where a heart is surgically implanted into the vascular system of
another animal. Experiments show that EFE only develops if transplanted mouse hearts are
less than 2 weeks of age [34,35] and if they have been transplanted in a configuration that
introduces the unloading of ventricular strain. Experiments using the Tie2-Cre transgenic
construct, which allows labelling of all endothelial cells and their derivatives, have shown
that cells in the sub-endocardial space originally derive from endothelial cells and that this
is by EndoMT [33]. Further Cre-lox lineage-tracing experiments indicate that the majority
of fibroblasts that proliferate in the adjacent myocardium are part of the complement of
fibroblasts that are originally derived from the epicardium [36]. In this regard, there is the
usual difficulty in identifying fibroblasts specifically from other cells. For example, FSP1
is not only expressed by fibroblasts but also endothelial cells, smooth muscle cells and
myeloid cells [37].

8. Histological Evidence of Myocardial Conditions Leading to HLHS

The initial insults that lead to the thickened and EFE-lined ventricles of the peach-like
MS/AS; MS/AA or the slit-like ventricle morphology of MA/AA remain unknown. Whilst
it is recognised that a primary cardiomyopathy can provoke EFE, or a cardiopathy-related
genetic variant could affect outcome in HLHS [38,39], the evidence for this causing HLHS in
human patients does not exist and the myocyte disarray observed is likely to be a secondary
consequence of an earlier primary pathology. Similarly, inflammatory conditions, such as
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auto-immune phenomena or viral infections, have been suggested. However, there is no
evidence that maternal-derived antibodies could lead to HLHS phenotypes in the same
way as they can cause congenital heart block [40,41]. EFE has been associated with viral
infections and viral particles have been described within the EFE layer [27,28]. However,
despite the possibility of a minor increase in the incidence of HLHS in the spring [42] or
summer months [43], there is no direct evidence that viral infections lead to HLHS. Studies
have not been carried out to identify a T cell or macrophage infiltrate that would provide
important evidence to support or disprove these aetiologies.

Tissue hypoxia, as indicated by the elevated expression of HIF1A and Vegf, has been
described in the myocardium of HLHS hearts with EFE in the context of MS/AS and
MS/AA. There was evidence of cardiomyocyte senescence and DNA damage through the
increased expression of H2Ax but without evidence of shortened telomeres [22]. Taken
together, this might suggest that myocardial hypoxia is an important process in the pro-
gression of HLHS. However, these studies were performed in late gestation hearts with
severe EFE, profound myocardial disarray and extensive fibrosis. Thus, these markers may
not indicate a primary hypoxic event but instead be representative of a secondary prolifera-
tive/fibrotic response or perhaps secondary hypoxia due to the fibrotic EFE barrier. For
example, the expression of HIF1α is associated with a normal mid-gestational proliferative
phase in hypoxic cardiomyocytes [44]. Thus, its upregulation might be a compensatory
process in response to a reduced initial complement of cardiomyocytes or be a component
of a hyperplastic response to loss of cardiomyocytes or poor myocardial function. Of
particular importance is the evidence of DNA damage yet preserved telomere length in
HLHS hearts [22]. This might appear to exclude proliferative exhaustion as a cause for
the senescent phenotype as the telomeres are not shortened, but as there is expression
of telomerase in human embryonic tissues and foetal hearts [45], telomere length may
be maintained despite cardiomyocyte proliferation and progressive DNA damage. The
implication of high levels of senescent cardiomyocytes in HLHS hearts is also unclear.
Much is known about senescence in aging and the potential benefits of clearing senescent
cells from aged hearts. However, it is possible that senescence may play a positive role
during development and/or regeneration. For example, the senescent phenotype has been
associated with reactivating developmental pathways, aiding regeneration in the heart,
promoting angiogenesis and limiting fibrosis [46].

9. Vascular Abnormalities in HLHS

In the developed heart a rich network of endothelial-lined channels provides the dense
myocardium with nutrients and oxygen. These capillaries lie alongside the bundles of
cardiac muscle fibres and connect with the epicardial vessels that branch from the main
coronary arteries on the surface of the heart. Distally they connect to the cardiac veins and
drain into the right atrium through the coronary sinus. However, there are also connections
between this coronary circulation and the chambers of the heart. Although there has been
a relaxed usage of nomenclature, it is appropriate to describe the veno-luminal vessels
that connect to the venous side of the cardiac capillary bed as Thebesian veins, whilst the
arterio-luminal vessels connecting chambers to the arterial side of the capillary bed as
vessels of Wearn [47]. In addition, there are sinusoidal arterial channels on the arterial side
of the coronary circulation that connect to the chambers of the heart, which are irregular
in outline and are composed only of endothelial cells without vascular smooth muscle
support [47,48]. The patterns of the coronary arteries in HLHS have been well described,
although they are largely confined to minor positioning defects where the left or right
coronary artery is not completely centred in the sinus [49]. The anterior descending, or
interventricular, artery is an important and consistent landmark for identifying the extent of
the slit-like ventricle in MA/AA. The overall dominance pattern of the coronary circulation
is indicated by which main coronary vessel supplies the posterior interventricular artery
and normally this is the right coronary artery. Left dominance or a right/left balanced
dominance occurs in the majority of peach-like hearts with EFE, with left dominance also
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seen in approximately half the hearts with a slit-like ventricle [50]. Both the reason for this
and its implications are unclear but may represent coronary blood flow that is unable to
enter the left ventricle, passing on to the posterior interventricular artery. This aberrant
blood flow pattern may explain why coronary artery tortuosity and mural thickening is
limited to the vessels on the LV wall in MS/AS and MS/AA [19]. A major concern for some
clinicians has been the prevalence of atypical connections between the coronary vessels and
the chambers, mainly a feature of MS/AA hearts. Sinusoidal channels have commonly been
seen on histological sectioning [51]; however, connections to the arterial side of the coronary
circulation have also been noted [19,52] but importantly only found in cases of MS/AA
and not in MA/AA. The implications of these connections are unclear as they are more
frequently found post-surgery [52] and are usually small [53]. Thus, adverse outcomes
following surgery may have been more related to technical issues during surgery rather
than myocardial ischaemia resulting directly from these coronary vascular connections [54].

Lymphatic channels are also present, draining extracellular fluid and circulating cells,
but there is no clinical evidence of specific abnormalities in the pre-surgical HLHS heart,
although problems are related to palliative operations such as bi-directional Glenn and
Fontan anastomoses [55].

10. Conclusions and Perspective

This evaluation of human-based research indicates that remarkably little has been
done so far to understand the myocardial substrate in HLHS, particularly in the examples
of MA/AA with the slit-like ventricular morphology. Moreover, studies on myocardium
in the setting of EFE in hearts with MS/AS or MS/AA have involved very late stages in
the natural history of the disease when any primary pathologies have been potentially
overwhelmed by severe sclerotic changes and cardiomyocyte loss (Figure 3). In large
part, this is due to the difficulty in obtaining appropriate samples from the LV, and its
associated valves and structures from these early stages. Whilst some of this lack of
material is due to the improvements in surgical intervention making post-natal survival
more possible, it is clear that the termination of pregnancy does not generally lead to
samples being taken for research-orientated analysis. Many days can pass between the
cessation of the pregnancy and post-mortem examination with the inevitable autolysis of
tissues. The answer to this lies with foetal medicine departments and perinatal pathologists
being persuaded to obtain tissues rapidly, carry out routine stains or immunolabelling
and preserve tissues for RNA and DNA analysis. Whilst high-quality clinical imaging is
now routine, the detailed recording of the valve and ventricular morphology is essential to
allow effective analysis as our understanding of the condition advances, and paediatric and
foetal cardiologists must record the anatomy as well as their interpretation. Another issue
is the persistence of information within the accepted literature that has not been validated
or is probably incorrect. For example, PECAM1 overexpression in cardiomyocytes has
been suggested [21] and obviously refuted through FACS analysis [22]. The relevance of
several aetiological ideas that remain within the literature is unclear and these could be
excluded as major factors through modern analyses of the myocardium. For example,
infective or inflammatory conditions are suggested to be involved in HLHS and markers
for macrophages and T cells should be applied to LV tissue samples. Finally, recent findings
suggesting the activation of senescence pathways, HIF1α and VEGF [22] are important
and should be confirmed independently. They also need to be evaluated at much earlier
stages of HLHS development. Similarly, in-depth histological analysis of myocardium in
the heterotopic transplant model and in resected EFE from critical AS hearts should be
performed to understand the relevance of these models to the HLHS process.
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also diffuse collagen deposition (blue). (B) In the peach-like LV wall seen in hearts with both MS/AA
and MS/AS, the sub-endothelial space is enlarged and there are prominent elastin fibres (black)
with increased collagen deposition (blue). There are also smooth muscle cells (SMC; red), which are
considered to derive from the endothelium. The myocardium close to the lumen has marked disarray
and there are vacuolated cells. There is more collagen deposition in this area. Towards the epicardial
side of the LV wall the cardiomyocytes appear more normal and normally organised. Overall, the LV
wall appears thickened, and this may be due to cardiomyocyte hyperplasia, fibroblast proliferation or
more extracellular matrix deposition or a combination of these changes.
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