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Abstract: Concerns have been raised in recent years regarding co-selection for antibiotic
resistance among bacteria exposed to biocides used as disinfectants, antiseptics and
preservatives, and to heavy metals (particularly copper and zinc) used as growth promoters
and therapeutic agents for some livestock species. There is indeed experimental and
observational evidence that exposure to these non-antibiotic antimicrobial agents can induce
or select for bacterial adaptations that result in decreased susceptibility to one or more
antibiotics. This may occur via cellular mechanisms that are protective across multiple
classes of antimicrobial agents or by selection of genetic determinants for resistance to
non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be
relevant effects of these antimicrobial agents on bacterial community structure and via
non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably,
some co-selective adaptations have adverse effects on fitness in the absence of a continued
selective pressure. The present review examines the evidence for the significance of these
phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in
livestock and that may be transmitted, directly or via the food chain, to human populations.
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1. Introduction

Biocides, in the broadest sense, are substances formulated to be harmful to (or to otherwise control)
living organisms [1]. Many authorities adopt more restrictive definitions, similar to those for
a microbicide, for the purposes of considering non-antibiotic antimicrobial agents, albeit still with
diverse chemical characteristics and applications. Useful definitions in this mould have been provided
by Tumah [2] and Sheldon [3], which the authors of the present review regard as reasonable in scope
and practicality. With few exceptions (such as iodide salts that show some efficacy in the treatment of
certain veterinary fungal and bacterial infections [4]) biocides are not sufficiently selective to be used
within body tissues, but some may be used as antiseptics on body surfaces. Other common applications
include use as disinfectants on equipment and surfaces in many environments including farms and
hospitals, as decontaminants on carcass surfaces following slaughter, as sporicidal sterilants for medical
equipment and as preservatives in pharmaceuticals, cosmetics and food [1]. Heavy metals are arbitrarily
defined, but commonly-included elements show varying degrees of toxicity for organisms [5,6] with
some, such as silver, copper and zinc, being relatively non-toxic to mammalian tissues and systems.
These are used as antimicrobial coatings and wound dressings [7-9] or (in the case of copper and zinc)
in agriculture as in-feed growth promoters and for enteric disease control, particularly in the pig and
poultry sectors [10].

Biocidal substances have been used, in one form or another, for centuries [7,11] and the more recent
development of versatile biocides with limited toxicity for animal tissues, such as quaternary ammonium
compounds (QAC), biguanides and bisphenols, has led to increased use of such compounds to assist
improved hygiene [12]. Hygienic practices have been a cornerstone of efforts to control antibiotic use
(and associated resistance) in clinical and farm environments. In addition, general hygiene and the
in-feed use of copper and zinc have been increased in pig and poultry production to improve disease
prevention in the wake of the phasing out of antibiotic growth promoters in some parts of the World,
notably Europe [13]. Organic acids and phytochemicals such as essential oils are antimicrobial agents
that also have been trialled as in-feed alternatives to antibiotic growth promoters and for pathogen
control [14-17].

In recent decades observations were made among important pathogenic bacteria genera of reduced
susceptibility of isolates to commonly-used biocides, particularly in healthcare settings [18-20].
This was often seen in association with an elevated frequency of antimicrobial resistances [21,22].
Concerns have consequently been raised that in certain circumstances bacteria may become
unsusceptible to some biocide regimes, or that a reduced susceptibility to biocides may foster an elevated
degree or frequency of antimicrobial resistance [1,23,24]. Whilst such concerns were initially focussed
upon healthcare environments, where biocides and antibiotics were frequently used and where
monitoring was commonly practised, the scope of investigations has broadened to include other areas,
such as domestic cleaning and hygiene products where the use of biocides has increased [25,26].

A major area under particular scrutiny is the livestock food chain, from farms and hatcheries through
slaughter facilities and dairy processing plants to food processing, packaging and retail facilities [1].
This has partly been driven by alarm over evidence of multi-resistant pathogens, including
Salmonella (pathovar Typhimurium DT104 and latterly monophasic Typhimurium variants) [27-29],
livestock-associated meticillin-resistant Staphylococcus aureus (LA-MRSA) [30] and extended-spectrum
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B-lactamase E. coli [31], on farms and in the food chain. In this context the possible effects of heavy
metals have attracted particular attention, owing to the frequent heavy supplementation of copper and
zinc in feeds for some animal species.

The present review examines the evidence for reduced biocide and heavy metal susceptibility among
pathogens and bacterial communities, for co-selection with antimicrobials and for mechanisms underlying
the observed patterns. This is a broad remit, and coverage is necessarily selective, with an ultimate focus
on issues in animal production, zoonotic bacteria and the food chain, plus discussion of the notable
differences seen between field and laboratory investigations.

2. Agents with the Potential for Co-Selection of Antibiotic Resistance
2.1. Antibiotics

Antibiotics, and related drugs such as sulphonamides, exhibit high antimicrobial potency and selective
toxicity that is sufficient in many cases to allow their use as anti-infective agents within body tissues.
This is usually because of a highly specific action on a microbial target [32], which is commonly inhibitory
to growth rather than lethal at normal therapeutic concentrations, and which acts in concert with the
host’s immune system to resolve microbial colonisation or infection over an extended period [26,33].

Reduced susceptibility of an organism to an antibiotic may be innate, due for example to features of
the microbe’s cell envelope, energy metabolism or the presence of an alternative metabolic pathway.
Alternatively, reduced susceptibility may be acquired via single- or multi-step mutation that affects the
target site and/or the effective concentration of the antibiotic within the cell, or by the acquisition of
genetic material encoding a feature such as an inactivating enzyme or an alternative to the target
molecule [34].

Bacterial resistance may be promoted by, among other things, sub-therapeutic antibiotic concentrations
in certain tissues or organs, such as the gut, and the tendency for antibiotics to induce non-specific
mutagenesis in bacteria [13,35]. A key parameter of an antibiotic-microbe combination is the minimum
inhibitory concentration (MIC), indicating a concentration of antibiotic preventing growth of the microbe
and likely to prove therapeutically effective if achieved in the target tissue(s).

2.2. Biocides

By contrast with antibiotics, biocides have more varied applications, do not operate with the benefit
of a concurrent immune response, and commonly have to contend with microbes in protected or resistant
states, such as in biofilms or organic matter, in nutrient- or moisture-limited environments, or following
sporulation. Consequently they typically are intended to be lethal, usually after a single application, and
generally have multiple structural and biochemical targets achieving a gross disruptive effect on
micro-organisms [12,36,37]. In consequence of the foregoing considerations, “in use” concentrations of
biocides typically are multiples of the laboratory-determined minimum lethal concentration and are
intended to be rapidly lethal to the target organisms [26,38].

Several recent reviews provide comprehensive comparisons of biocide vs. antibiotic actions and
susceptibilities [2,12,25,26,34,39,40]. Authors vary, sometimes markedly, in their assessment of the
potential significance of altered biocide susceptibility among bacteria. Gilbert and McBain [26] provide
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a useful glossary of the often confusing, and sometimes misused, terminology in this field. Classification
and activity of biocides are well reviewed by McDonnell and Russell [37], whilst Maillard [36] and
Ortega Morente et al. [12] provide further discussion of known and postulated targets and modes of
action for commonly-used biocides.

Mechanisms of biocide action are incompletely understood and appear to be varied, reflecting the
diversity of biocides, applications and associated degrees of toxicity for higher organisms. Only one
commonly-used agent, the bisphenol triclosan, has a well-documented specific enzyme target: the enoyl
acyl carrier protein reductase (Fabl and homologues), involved in fatty acid synthesis [41]. Exposure to
triclosan and the development of reduced susceptibility is associated with mutation plus upregulation of
fabl expression [42]. Some workers believe that all observed effects of triclosan at in-use concentrations
are mediated through this specific pathway [12], although in S. aureus a lack of correlation between
growth phase and kill rate of triclosan [43] suggests that less-specific cell damage may also occur,
at least in some Gram-positive organisms.

Most biocides when applied at in-use concentrations appear to affect multiple targets, with membrane
effects being a common theme. These may manifest as physical disruption and leakage of cell contents,
disruption of membrane ion gradients, and/or permeabilising effects resulting in enhanced uptake of the
biocide itself into the cell interior [12,26,37,44]. Effects on cytoplasmic components appear to be
similarly diverse and to affect multiple targets. Given the centrality of cell membrane effects and the
need for biocides to traverse the cell envelope and cytoplasmic membrane, it is perhaps unsurprising
that Gram-negative bacteria are generally less susceptible to many biocides than are Gram-positive
organisms [2,12], and that some common biocides have lipophilic domains in their molecules,
allowing close association with cell membrane phospholipids. These include the biguanide chlorhexidine
and cationic surfactants, exemplified by the versatile family of quaternary ammonium compounds
(QAC) [37,39].

2.3. Heavy Metals

The use, particularly in pig and poultry production, of heavy metal-containing compounds for growth
promotion and therapy of intestinal disease potentially selects for micro-organisms with reduced
susceptibilities to heavy metals and co-selects for reduced susceptibility to other antimicrobials [10].
Unlike biocides (but in common with antibiotic growth promoters) these compounds are used at inhibitory
rather than lethal concentrations, thus potentially allowing resistance to emerge within the alimentary
tract and the immediate farm environment at a higher frequency than following biocide application.

However, unlike antibiotic growth promoters, such metals are very persistent in the environment.
Heavy metals may accumulate in soil, water and sediments from agricultural practices as well as other
sources such as aquacultural and marine antifouling treatments or industrial effluent. In one study in the
USA around 90% of in-feed copper and zinc was found to be shed in faeces [45], and it has been
estimated in the UK that livestock may in some localities be the major source of environmental
contamination by zinc and copper [46]. Thus, such destinations provide further environments (in addition
to intestinal contents and faeces) in which co-selection for reduced susceptibilities may occur [6,10,47].
Furthermore, it has been hypothesized that genes coding for reduced susceptibilities to copper and zinc
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among diverse bacteria have long been selected for in the environment by eukaryote phagocytes such as
amoebae, which may use copper- and zinc-mediated bacterial killing mechanisms [48].

The modes of action of copper and zinc when used in pig and poultry feed as growth promoters are
not known with certainty and probably involve suppression of bacterial fermentation, but possibly also
modulation of host responses to bacterial lipopolysaccharide [49]. Effects on host growth are not
consistent and may be dependent on animal age [50,51], whilst permitted inclusion rates vary between
regulatory regimes and according to age. In the EU, higher inclusion rates are permitted for young piglets
and in short-term “medicinal remedies”, which for inorganic zinc compounds may result in inclusion
rates in excess of thirty times basal requirements [10,52]. Generally-permitted levels in the EU are
around 3 to 4 times the basal requirements, and at these levels no therapeutic effects on enteric disease
would be expected. Supplementation of ruminant feed with metals is much less intensive than for pigs
and poultry, and in particular sheep are highly susceptible to copper toxicity [53]. Other heavy metals
added to animal feed that may result in elevated environmental deposits include iron, cobalt and
manganese [6]. Arsenic is a metalloid element that is still permitted as a therapeutic and growth
promoting agent in some territories, although its relationship to altered bacterial susceptibilities to other
antimicrobials has been little studied [54].

3. Mechanisms Linking Altered Susceptibilities of Bacteria to Antibiotics, Biocides and
Heavy Metals

3.1. Terminology and Testing

Terms such as “resistance” and “tolerance” have acquired specific technical meanings in the field of
antimicrobials, and looser usage is generally discouraged. Current terminology distinguishes between
clinical and microbiological antibiotic resistance [55]. Clinical resistance is present when phenotypic
testing of a microbe/antibiotic combination against a clinical breakpoint indicates that therapeutic failure
is likely, even with maximal dosing. Microbiological resistance is defined by the presence of an acquired
or mutational resistance mechanism to the drug in question, in comparison with a fully-susceptible
“wild-type”, and may be assessed by genetic analysis or phenotypic testing against a wild-type cut-off
value. The clinical resistance scenario is clearly not applicable in the case of biocides, so to avoid
ambiguity it is desirable to avoid using “resistance” in relation to the activity of biocides [25]. Similarly,
the non-specific use of the term “tolerance” is discouraged, in deference to its technical meaning of
an increase in the minimum bactericidal concentration of a substance without alteration in the MIC [55].
The preferred terminology of many authors concerning variation in the effects of biocides upon bacteria
is “reduced/increased susceptibility”, or variants thereof. This has been adopted in the present review.

The testing of antibiotic susceptibility by determination of MIC has a sound basis in clinical
application, as lethality and speed of killing is less significant than suppression of growth, in the face of
immune system activity. However, for biocides the time required for complete killing of the target
organisms, commonly measured as a >5 log reduction in viable count [56], is in most cases a more
appropriate measure of effectiveness, and a prolongation of this kill time may be viewed as good
evidence for reduced susceptibility. For some biocides, such as QAC and chlorhexidine, there appears
to be a reasonably consistent relationship between changes in MIC and in kill time against planktonic
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suspensions of certain bacteria [57], but for many others correlations between MIC and kill times are
poor or not seen [25,43,57-59].

Additional major complications are the substantial differences between kill tests conducted in
suspension and on surfaces, and with organisms in differing states of growth, attachment and water
stress [25,26,39,56,60]. Indeed, there are few “standard” biocide tests that attempt to mimic accurately
and repeatably the likely in-use conditions, and much biocide research is conducted using MIC or
minimum bactericidal concentration (MBC) tests in suspension or on solid microbiological media. These
have the merit of being inexpensive and repeatable, and they lend themselves to mass screening of many
compounds, formulations, bacterial strains and conditions. However, putative reductions in susceptibility
identified through such tests may prove not to have significant effects on biocide kill times in more
realistic tests of activity [25,39].

Nonetheless, where evidence of co-resistance is being sought, MIC testing can reveal significant
alterations in antibiotic susceptibilities even though MIC values for biocides need to be interpreted
with caution.

In terminology to accurately describe linked changes in susceptibility among antimicrobial compounds
(co-selection) there is an important distinction between cross-resistance and co-resistance [39,61,62].
Links arising as a consequence of physiological adaptations that have effects on the action of a number
of agents, are termed cross-resistance. Examples include efflux pump upregulation or over-expression,
reduced cell envelope permeability, or (usually in relation to antibiotics) alteration in a target site or
acquisition of a neutralising enzyme (such as an extended-spectrum B-lactamase) that prevents the action
of agents from more than one class. By contrast, where the mechanisms of reduced susceptibility are
dissimilar but are selected together owing to genetic linkage, the phenomenon is termed co-resistance.
There is another common definition of cross-resistance, i.e., resistance to related compounds such as
members of the same antibiotic family, but this is too narrow to be of much use in the present discussion.

3.2. Identified Mechanisms of Co-Selection

On initial consideration, differences between antibiotics and biocides in respect of targets and of
modes and intensity of action, would suggest that there is not likely to be much common ground between
the two classes of agents in respect of reduced susceptibilities of micro-organisms. Indeed, antibiotic
effects on bacteria can be markedly reduced by single-step mutations in target enzymes, or by the
acquisition of neutralising enzymes such as B-lactamases [34]. Clinical doses are carefully controlled to
avoid toxicity or other detrimental effects and distribution of antibiotics into certain tissues may be poor.
Therefore such specific, single-step changes can result in clinical resistance to antibiotics, or to further
selection for higher resistance. Similar mechanisms are seen only rarely against biocides (mutation and
upregulation of fabl in relation to triclosan [42] being a case), and are considered likely to have little
effect in “real world” applications where application concentrations are typically multiples of the lethal
dose and several targets are affected simultaneously [25].

However, there are some phenomena that confer reduced susceptibility both to biocides and to
antibiotics and which are either part of the normal adaptive repertoire of micro-organisms (intrinsic) or
are readily acquired by mutation or genetic transfer under appropriate conditions. Intrinsic resistance
may be specific to a bacterial grouping (such as mycobacteria or spore-formers), may be exhibited
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following phenotypic adaptations to the environment (such as biofilm formation or nutrient stress
responses), or be associated with survival in relatively protected environments, such as phagocytes in
the body or protozoa in the soil [25,26]. The phenomena of low cell wall permeability and active efflux
of toxic molecules by multi-drug transporters, discussed below under adaptive resistance, can be considered
part of intrinsic resistance mechanisms in some instances, notably in the case of Pseudomonas aeruginosa,
which exhibits resistance to many antibiotics by virtue of small outer membrane porin channels and
vigorous efflux activity [26]. Whilst some of these examples may manifest as apparent reduced susceptibility
to antibiotic or biocide without there being any long-term change to the organism, they do potentially
allow some proportion of the bacterial population to survive an otherwise terminal challenge, increasing
the risk of selection of organisms permanently adapted to the antimicrobial agent.

By contrast to intrinsic resistance, acquired or adaptive resistance is associated with changes in the
organism caused by mutation and/or altered expression of endogenous genes, or by transfer of mobile
exogenous genetic material [2,63]. Adaptation may be a constitutional and essentially non-reversible
effect, typically following mutation. Alternatively, it may be a transient and regulated response to the
conditions. Triclosan appears to select for mutational adaptation in Stenotrophomonas maltophilia more
intensely than does the QAC benzalkonium chloride [64], indicating that biocides differ in their
propensity to induce mutational adaptation in any given organism. Some mechanisms can manifest as
either stable and constitutional or transient and regulated types of adaptation, with the Multiple
Antibiotic Resistance (MAR) phenomenon of Enterobacteriaceae (discussed later in this section) being
a case in point. The acquisition of resistance mechanisms by genetic transfer may, depending on the
case, present a more or less regulated adaptation. Acquired and adaptive mechanisms associated
variously with co- and/or cross-resistance include: biofilm capability, multi drug efflux, altered cell
envelope permeability, and target site mutation and over-expression.

Biofilms have an extracellular matrix that provides a diffusion barrier and an enhanced medium
for bacterial signalling and genetic exchange, plus a potential site for neutralisation or binding of
chemical agents: enzymes degrading triclosan, chlorhexidine and some oxidising agents, among others,
are known [2,12,65]. Biofilms similarly provide an extracellular site for sequestration of metal ions [6,52].
Minor elevations in MIC may have increased significance for survival of a bacterium in the context of
a biofilm diffusion gradient [66]; furthermore, bacteria in the centre of biofilms are relatively
nutrient-deprived and therefore may exhibit stress responses that additionally diminish their susceptibility
to chemical attack [38,65]. There is evidence for protection of both Gram-positive and Gram-negative
bacteria by biofilm, and elevated MIC values in the order of 10 to 1000-fold have been observed for
benzalkonium chloride and triclosan, among other biocides, in respect of activity against biofilmed
versus planktonic bacteria including Listeria spp. [2,12]. Biofilm formation is likely to be part of the
normal environment-responsive repertoire for capable organisms, although in some cases there may be
selection of mutants with hyper-expressed biofilm capacity [67,68].

Active transport of molecules to the periplasmic or extracellular environment via multi-drug efflux
pumps is a well-established feature of biocide and antibiotic resistance [69], either as intrinsic or
acquired mechanisms. Many Gram-negative organisms encode chromosomal broad-substrate efflux
pumps [70], and a variety of multi-drug pumps are similarly-encoded by some Gram-positive organisms
including S. aureus [69,71]. Alternatively, acquired resistance may be associated with efflux pumps
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introduced on mobile genetic elements among both Gram-positive and Gram-negative bacteria, or with
mutations causing constitutional over-expression of Gram-negative efflux activity [26].

Multi-drug efflux pumps actively expel a broad range of unrelated and structurally diverse compounds,
which includes major biocide classes, dyes and antibiotics, driven by trans-membrane ion gradients
(protons or sodium) or ATP hydrolysis. Poole [34,69] and Putman et al. [72] have provided excellent
reviews. Substrates characteristically have a high degree of hydrophobicity, and there is fair evidence
that, in many cases at least, the cytoplasmic membrane, rather than the cytoplasm, is the site of initial
binding of compounds [72]. This may contribute to the effectiveness of efflux pumps against primarily
membrane-active biocides. Whilst efflux pumps may provide only modest reductions in susceptibility
to antimicrobial compounds, they appear to have an additional role in the development of higher-level
resistance, either by additive or synergistic action with other mechanisms [73], or by increasing the
frequency of mutational high-level resistance by allowing a greater proportion of organisms to survive
antimicrobial exposure [69].

There are also efflux pumps that expel heavy metal ions, such as elements of the czc system encoding
a pump for zinc, cobalt and cadmium, and pcoA, part of a copper extrusion system [45]. Whereas some
efflux pumps for heavy metals may not have broad substrate affinities, there is evidence of co-transport
of non-metals in other cases [52].

Expression of efflux pumps is typically under transcriptional regulation by DNA-binding products of
activator and repressor genes [72]. These may be products of the particular efflux pump gene cluster or
of a global regulator. The AcrR repressor and MarA activator of the AcrAB-TolC efflux pump of E. coli
and Salmonella spp. are local and global regulatory products, respectively. Plasmid-borne efflux pumps,
such as the QacAB QAC exporter of S. aureus, appear to encode similar regulatory apparatus in addition
to structural genes [74]. Transcriptional regulators may themselves be upregulated by substrates or bind
them directly, thereby providing routes by which efflux activity may be modulated by the presence of
potentially toxic substances [72]. This protects the cell from expending energy on indiscriminate
extrusion of metabolically useful compounds when toxic substrates are not present.

Efflux pumps may be upregulated by biocides, for example chlorhexidine or benzalkonium chloride
acting on the MexCD-OprJ pump of P. aeruginosa [69] or QAC and other lipophilic cations acting on
the QacR repressor [74]. Thus, strains possessing such efflux pumps and adapted to survive challenge
by biocides that upregulate them may have developed a hyper-expressing phenotype that is nonetheless
still repressed in the absence of the biocide. However, many substrates do not stimulate their own efflux
and this applies to some biocides, for example triclosan in the case of AcrAB-TolC pump. In this
scenario, a bacterial strain with efflux-mediated reduced susceptibility to a non-upregulating biocide will
likely be a constitutively-expressing mutant, selected from its un-mutated and therefore fully-susceptible
peers, and will not therefore downregulate the efflux once the biocide exposure has waned [75]. This
potentially makes such strains a more persistent risk for cross-resistance, although there will be a fitness
cost in the absence of selective pressure. Sometimes, increased efflux may paradoxically result in
increased susceptibility to an antimicrobial substance [72], possibly as a result of the extrusion of
protective substances.

Alterations in cell envelope permeability have substantial potential for cross-resistance, as either
intrinsic or adaptive phenomena. Recognised changes associated with reduced susceptibility to biocides
relate to the outer membrane of Gram-negative organisms, namely altered fatty acid and protein profiles,
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and changed surface hydrophobicity and ultrastructure [3,12,44]. However, biocide-adapted bacteria
with altered outer membrane proteins do not necessarily show altered permeability in assays [76].
For primarily membrane-active biocides, such as QAC, changes in the cell envelope might also constitute
a target site alteration, in addition to a permeability barrier. However, the cytoplasmic membrane appears
to be a primary target for QAC and changes here have been little investigated.

Examinations of the role of the cell wall in respect of biocide resistance have also been limited.
The waxy, hydrophobic nature of the mycobacterial wall, coupled with narrow cell envelope porins, is
associated with resistance of this genus to many hydrophilic biocides [2,12,77]. Using the fractional
distribution of cell suspensions in aqueous vs. xylene phases Alexander et al. [21] reported consistent
and significant changes in cell surface hydrophobicity between disinfectant-susceptible and
non-disinfectant-susceptible strains of both Gram-positive (S. aureus) and Gram-negative bacteria.
Similarly consistent changes were also noted following higher versus lower challenge concentrations
of disinfectant.

It is perhaps unsurprising that some of the above mechanisms may be found operating in concert.
For example, many cases of reduced susceptibility to antibiotics and/or biocides show both increased
efflux and cell permeability changes [39,40]. Global regulatory responses may drive cross-resistance,
by a combination of the mechanisms already described and probably other changes associated with
protection and repair of the biosynthetic and metabolic machinery of the cell [78]. These changes may
be reversible stress responses or mutational shifts. A well-studied example of the latter is the MAR
phenomenon in E. coli and other members of the Enterobacteriaceae. This is a common phenotype
associated with antibiotic resistance or controlled exposure to biocides [24]. On its own it generates
modest increases in MIC values (around four- to eight-fold) for a range of antibiotics [12]. Sensitivity
to organic solvents, triclosan and pine oil are characteristically decreased, but effects on other biocide
MIC values vary according to the particular biocide or biocide mix, and there may indeed be no
significant change [78]. Affected systems are under the influence of the marRAB operon, and the
phenomenon arises following mutational or substrate-mediated inactivation of the MarR transcriptional
repressor, leading to increased expression of the MarA global regulator and causing, among other things,
upregulation of the mar operon itself plus the AcrAB-TolC multi-drug efflux pump, and downregulation
of the OmpF porin [72,79,80]. Substrates that may reversibly activate the mar regulon include salicylate,
bile salts and the antibiotics tetracycline and chloramphenicol. It appears that a principal mechanism
mediating reversible MarR inactivation in E. coli, and probably other Enterobacteriaceae at least, is
liberation of copper from the cell envelope under the action of stressors, with subsequent interaction between
copper (II) ions and MarR [81]. Whether this effect is seen under direct copper stress remains to
be investigated.

It is clear that other global regulatory systems may exert similar effects, generating cross-resistance
in the face of external stimuli. The SoxS (oxidative stress) and Rob regulators in E. coli are homologues
of MarA, activating the mar operon as well as other systems [24,38,72]. Furthermore, inter-bacterial
signalling may promote cross-resistance in whole populations. Secretion of tryptophanase by relatively
resistant E. coli subjected in a bioreactor to fluoroquinolone or gentamicin was associated with increased
efflux, other stress responses and increased fluoroquinolone MIC values among other strains in the same
reactor [82]. This suggests that the spontaneous or regulated development of resistance to antimicrobial
challenge by some members of a bacterial community may, via signalling, increase the likelihood of
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survival of other members of that community by mechanisms common to other cross-resistance phenomena.
Potentially this may allow longer survival or more survivors, in turn increasing the likelihood of the
development of higher-level resistance.

Co-resistance, arising from the selection of linked genes encoding otherwise unrelated resistance
mechanisms to different antimicrobials, is a well-recognised phenomenon in antibiotic use and resistance,
such as in the case of the chromosomally-encoded penta-resistance typical of Sa/monella Typhimurium
DT104 [83]. However, co-selection via such genetic linkages can occur more broadly, across genes
affecting susceptibility to biocides, heavy metals and antibiotics. Co-location of such genes on mobile
elements, such as plasmids and transposons [25,84], also raises the possibility of transfer of co-resistance
between bacteria. An obvious example is provided by class 1 integrons, which encode a QAC efflux
mechanism (qacEA1) plus sulphonamide resistance (su//) and variable other antibiotic resistance genes [85].
However, the true significance of QAC efflux in class 1 integrons is debatable, not least because QacEA1
is a functionally attenuated Qac pump variant [86]. Variations between bacterial genera in the existence
of resistance-related genes and their linkage in the same organism make co-resistance a variable and

somewhat arbitrary phenomenon [74,87].
3.3. Effects on Bacterial Fitness

Adaptation for reduced susceptibility to antimicrobial substances often comes with associated costs
to the organism. This is particularly significant when the change is mutational resulting in constitutive
expression of the resistance mechanism [26]. In the present context, broad substrate efflux pumps
provide a good example as they consume cell energy resources and indiscriminately remove some useful
metabolic substances from the cell. When a non-upregulating biocide selects for a strain that over-expresses
efflux constitutively (such as mutants in MepR or MarR repressors of S. aureus or E. coli, respectively),
this strain will subsequently incur the costs of efflux regardless of the presence of the biocide [25,71,72].
Plasmids encoding resistance to biocides or heavy metals plus antibiotics provide another example,
where instability and the fitness cost require a selective pressure for their maintenance [88]. However,
in this latter example, the minimum selective concentration of the agent may be very low in comparison
with its MIC [88].

There may be immediate evidence of fitness costs in the laboratory, in the form of reduced colony
size or other growth characteristics [42,76,88], or the cost may be more subtle and seen only in communities
where there 1s competition within and between microbial species. However, co-selection is not uniformly
costly and extended exposure may select for compensatory adaptations to restore fitness [38]. Furthermore,
some resistance adaptations, such as biofilm enhancement, may enhance survival in other environments [68].

3.4. Other Related Phenomena

It is recognised that antibiotic exposure has a non-specific effect on the frequency of mutation and of
horizontal gene transfer among bacteria, which may not be associated with any change in susceptibility
to the inciting antibiotic [13]. Similarly, the frequency of mutation to antibiotic resistance among
Salmonella spp. is elevated following exposure to sub-inhibitory concentrations of phenolic biocides or
triclosan [89]. Non-specific mutagenesis may be a factor in instances where biocide exposure leads to
decreased sensitivity to antibiotics but an unchanged, or even reduced, ability to cope with the biocide
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itself [44,90]. Furthermore, effects (positive or negative) have been noted with biocides at sub-lethal
concentrations in respect of plasmid and phage transfer frequencies [25,26,91].

Susceptibility to metals may be reduced by complexing or sequestering the metal ions or by chemical
reduction to less toxic states [6,52,92]. Furthermore, there are several identified interactions between
antibiotics (or bacterial resistance to antibiotics) and heavy metals, which may have co-selective or
counter-selective consequences. These include: formation of complexes between metal cations and
certain antibiotics (for example tetracycline) leading to altered absorption and distribution, degrading of
B-lactam antibiotics by copper, and metal dependence of certain resistance mechanisms such as
B-lactamases and some tetracycline efflux [93-95].

In order for selection of biocide-insusceptible strains to occur, some proportion of the bacterial
population must survive application of biocides, and this is one scenario where the mode of use of
biocides would appear to offer few opportunities for survivor selection, compared with antibiotics.
However, microbes in stressed or biofilm communities will often show intrinsic resistance and survive
a severe challenge [26,62,96], as discussed above. Furthermore, use of biocides in the presence of heavy
organic soiling or with diluting water containing interfering organic or mineral substances, such as may
occur on farms, can be associated with marked reductions in efficacy even at recommended application
concentrations [12,97]. An allied phenomenon, again of particular relevance to farms but also to sewage
treatment and disposal, is the relative environmental persistence of many biocides such as QAC and
triclosan and their tendency to bind to organic matter and soil [39,70]. This provides a potential
long-lasting low-level exposure of microbes to selective pressure. Concentrations of triclosan in
biosolids and sediments have been reported to lie between the MIC of “fully-susceptible” and “tolerant”
bacteria [41].

When considering the effects of biocides and heavy metals on communities of bacteria, changes in
the structure and diversity of the community become important elements, such as a shift to
predominantly intrinsically-resistant Gram-negative bacteria in the genital tract of catheterised patients
subjected to repeated antiseptic washes [22]. Work with sub-therapeutic antibiotic pressures on pig gut
communities in vivo have shown substantial variability in observed effects, with changes in some cases
appearing to be minor possibly owing to shifts occurring predominantly at strain or species-level [98].
Community-wide changes are often examined in the context of water, soils, sewage and other biosolids,
where sub-lethal concentrations of antimicrobials are typical. Phenotypic testing (using cultural and
non-cultural methods) and metagenomic approaches allow examination of community-wide antimicrobial
sensitivities and the frequency of known antimicrobial resistance genes [47,99,100]. Such studies tend
to focus on the effect of a known selection pressure on the frequency of a number of resistance genes,
on genetic transfer rates and on sensitivity of the bacterial community to other antimicrobials. The risks of
co-resistance arising in specific pathogenic bacteria are considered in relation to shifts in this background.

4. Co-Resistance in Practice: Observational and Experimental Evidence
4.1. Biocides

Many surveys and investigations have involved hospitals or other healthcare environments and
S. aureus, particularly the f-lactam-insusceptible meticillin-resistant S. aureus (MRSA) has commonly
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been targeted. S. aureus strains encode a variety of chromosomal and plasmid-borne efflux pumps, and
laboratory chromosomal efflux mutants to single-agent biocides show co-selection for reduced fluoroquinolone
sensitivity [71]. However, findings in respect of S. aureus biocide-antibiotic co-resistance have in
general been highly variable between studies, between strains and between biocides [3,26,43,57,69,101],
no doubt affected to some extent by differing methodologies. Apparent biocide tolerance may not be stable
and associations seen when comparing MIC values may not be evident when considering kill rates [57],
whilst interpretation can be further hampered by a lack of control isolates to validate an observed
specific association.

Other investigations of field strains from healthcare sources have yielded similarly variable findings.
An early study examined Gram-negative isolates from urine infections submitted by hospitals or
community practitioners and reported MIC values to be above in-use concentrations of some cationic
biocides, including chlorhexidine and cetrimide (QAC), among certain genera (Pseudomonas, Proteus,
Providencia) associated with multiple antibiotic resistance [22]. Hospital strains of S. aureus (considered
cloxacillin-resistant) and Gram-negative bacteria (gentamicin-resistant) commonly exhibited MIC
values for chlorhexidine, cetrimide and chloroxylenol (a phenolic disinfectant) that were above their
respective in-use concentrations, whereas corresponding antibiotic-sensitive strains were generally more
susceptible [21].

By contrast, and using surface disinfection tests, hospital-derived antibiotic-resistant strains of
staphylococci and Gram-negative pathogens did not show significant or consistent differences in kill
rates using QAC or phenolic disinfectants, when compared with antibiotic-sensitive laboratory strains [96].
Vancomycin-resistant and -sensitive enterococci showed no differences in MIC values for QAC and
chlorhexidine antiseptics [57].

A prospective investigation examined E. coli isolates from bacteraemias in one hospital and found no
correlation between source or eventual mortality and the MIC for two QAC compounds [102].
An association was observed in this study between MIC of the QACs and a trimethoprim-sulphonamide
systemic antimicrobial (co-trimoxazole) but QAC MIC values remained below 1% of in-use concentrations.
A follow-up integron analysis confirmed the presence of class I integrons, characteristically encoding
a QAC efflux pump (gacEAI) and sulphamethoxazole resistance (su/l), plus in this case trimethoprim
resistance [85,103].

Several surveys have been performed on biocide (plus or minus antibiotic) susceptibility patterns in
bacterial isolates from livestock units. In a study of environmental bacteria recovered from hatcheries in
the USA, non-susceptibility to in-use concentrations of QAC, phenolic and glutaraldehyde biocide
products was observed among 19 of 350 isolates, these being low-pathogenic Gram-positive and
Gram-negative species [104]. Glutaraldehyde was the most commonly tolerated biocide, which correlated
with the frequent and long-term use of this agent in hatcheries. Among 569 Danish livestock isolates
examined for MIC in respect of a panel of biocides, no distinct subsets of “low-susceptibility” bacteria
were seen, although the MIC ranges were rather wide in some cases: 128-fold and 512-fold ranges for
chlorhexidine and benzalkonium chloride, respectively [53]. Using 310 Gram-positive isolates from
milking cow teats that had been regularly subjected to iodine or chlorhexidine antisepsis, Martin and
Maris [105] demonstrated a significant association among streptococci between reduced susceptibility
(elevated MIC) to chlorhexidine and to ampicillin, tetracycline and three aminoglycoside antibiotics.
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However, no association was seen between bacteria showing elevated MIC values to chlorhexidine and
its use on source animals.

Biocide-manufacturing plants are other environments with bacteria that potentially are regularly
exposed to biocides. Isolates from plants manufacturing the phenolic agents triclosan or chloroxylenol
were typically of low susceptibility to these agents, or from genera with intrinsically low susceptibility
such as Pseudomonas [106]. For those isolates with elevated MIC values to triclosan or chloroxylenol
there was no evidence of associated reductions in susceptibilities to other biocides (chlorhexidine,
benzalkonium chloride or phenol), nor to any of a panel of antibiotics [59].

Laboratory investigations into co-selection often include “training” of field or laboratory strains
by repeated subculture with stepwise increases in the concentration of biocides in liquid or solid media,
by the use of biocide concentration gradients in solid media, or by extended culture in biocides at
near-inhibitory concentrations. This may yield strains with decreased susceptibility to the “training”
biocide and other antimicrobials (usually in terms of increased MIC), which may or may not be stable
upon subculture in the absence of the biocide. Alternatively, there may be little or no change in MIC
value for the training biocide, but more marked changes in those for certain antibiotics. Findings tend to
be highly individual to the particular combination of biocide and bacterial strain being examined [25].
Whilst being a useful tool for investigating possible mechanisms of co-selection, the relevance to “real
world” interactions of such carefully-controlled and prolonged exposure to biocides has often
been questioned.

Stepwise training procedures for triclosan may produce dramatic increases in MIC (three or four
orders of magnitude) for E. coli and some Klebsiella isolates, whereas changes reported for other species
including staphylococcal human skin isolates are far smaller, in the order of one- to ten-fold [68,107—110].
Data for training Salmonella enterica serovars with triclosan is inconsistent, with minor effects in one
report [108], and MIC values elevated 64- to >512-fold in others [42,111]. For other commonly-tested
single-agent biocides such as chlorhexidine, chlorine, peroxyacetic acid and QAC including benzalkonium
chloride, training procedures tend to yield up to eight-fold elevations in MIC, with occasionally a decrease
in MIC being observed for certain combinations of bacterial strain and biocide [67,76,109,112,113].

Following such biocide training of strains, allied shifts in susceptibility to other biocides and
antibiotics are commonly reported, although variable in nature [41]. Bradoukai and Hilton [107] reported
reductions in susceptibility to a panel of antibiotics and to the other test biocides, following stepwise
training of E. coli O157 and various Salmonella serovars against triclosan, chlorhexidine and benzalkonium
chloride. The authors reported shifts occurring in a minority of strain-antimicrobial pairings, with the
pattern varying between species and between Salmonella serovars. Increases in antibiotic MIC values in
this study varied between two- and 500-fold. Exposure training of veterinary field isolates and
a laboratory strain of E. coli to three QAC compounds yielded elevations of MIC that were in some cases
above clinical breakpoints for resistance, for a number of antibiotics: phenicol, tetracycline, fluoroquinolone,
B-lactam classes and trimethoprim [113]. Stepwise training of E. coli strains with benzalkonium chloride
or chloramphenicol resulted in mutual increases in MIC: around six-fold for the QAC training agent,
two-fold for the QAC after antibiotic adaptation and over twenty-fold for chloramphenicol after the QAC
adaptation [76]. Benzalkonium chloride-adapted strains showed higher survival in lethality tests and
increased MIC values, of 1.5- to >20-fold, for antibiotics in most cases.
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Training Listeria monocytogenes and Salmonella serovars Enteritidis and Typhimurium with five
poultry carcase decontaminants (including chlorine dioxide, acidified sodium chlorite and peroxyacetic
acid) resulted in reduction in antibiotic susceptibilities to therapeutic compounds in a minority of cases,
past clinical resistance breakpoints in 13 of 300 pairings [112]. There was no strong pattern, although
development of resistance to the aminoglycosides streptomycin and neomycin was common.
By contrast, triclosan training of a number of Salmonella enterica serovars was associated with neutral
effects on sensitivity or, in the case of the two aminoglycosides tested (gentamicin and kanamycin), increases
in susceptibility [42]. Reviewing the evidence on peroxyacetic acid, chlorine, chlorite and trisodium
phosphate as a poultry carcass and meat decontaminant, the European Food Standards Agency concluded
that there was no evidence that their use would lead to acquired reduced susceptibility among
contaminating bacteria, nor to acquired resistance to antibiotics [114].

Shorter single exposures to sub-lethal concentrations of biocides appear to have effects upon
antibiotic sensitivity that are similar or related to those observed with stepwise training procedures.
Salmonella Enteritidis cells surviving a short exposure to in-use concentrations of chlorine exhibited up
to eight-fold increases in MIC values for tetracycline, nalidixic acid and chloramphenicol [115].
When the low-pathogenic Gram-negative anaerobe Bacteroides fragilis was exposed to triclosan,
benzalkonium chloride, oxidising agents and chlorhexidine only the last was associated with elevated
MIC values to antibiotics, these being of the B-lactam and tetracycline classes but not chloramphenicol
or a fluoroquinolone [116]. Interestingly, non-biocidal drugs known to induce efflux (salicylate, ibuprofen,
paracetamol) exerted a similar effect as chlorhexidine. Similarly, one-time exposure of two E. coli strains
to benzalkonium chloride, salicylate, a bile salt and the oxidising stressor methyl viologen resulted in
modest increases in MIC values for benzalkonium chloride and chloramphenicol in most cases [76].

In some examinations of biocide training and the co-selection of antibiotic resistance, a role for efflux
can be demonstrated or reasonably inferred. Inactivation of the AcrAB-TolC efflux pump increased
E. coli susceptibility to triclosan ten-fold, whilst overexpression of AcrAB-TolC or induction of the MAR
phenotype increased the triclosan MIC by factors of 3 and 20, respectively [117]. Among benzalkonium
chloride-adapted E. coli, ethidium bromide efflux was increased for one of two strains in the study by
Langsrud et al. [76]. Partial or complete reversal of acquired antibiotic resistances upon application of
an efflux pump inhibitor have also been reported in E. coli by Soumet et al. [113] and in B. fragilis by
Pumbwe et al. [116].

Reduced susceptibility of Salmonella enterica serovars to triclosan was partially reversed by exposure
to an efflux pump inhibitor [42], whilst three Salmonella serovars with reduced susceptibilities to
benzalkonium chloride, triclosan or erythromycin following training showed a return to susceptibility in
the presence of an efflux inhibitor [118]. Over-expression of AcrAB was mildly protective of Salmonella
against some biocides, but not an oxidising mix [119], whilst introducing the MAR repressor (MarR) on
a plasmid abolished increases in antibiotic MIC associated with chlorine exposure in Salmonella
Enteritidis [115].

Evidence for efflux in co-selection comes from other sources also. Multidrug efflux pump genes were
far more common than antibiotic-specific resistance genes among Gram-negative food isolates with
reduced susceptibility to biocides plus antibiotics [120]. If co-selection had occurred in these bacteria,
then the dominant mechanism appeared to be cross-resistance, probably involving efflux.
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Where cross-resistance mechanisms are involved, reduced susceptibility to biocides may follow from
the development of antibiotic resistance, as well as vice versa. Reciprocal, albeit asymmetric, adaptation
to benzalkonium chloride and chloramphenicol by E. coli reported by Langsrud et al. [76] provides
a good example, as does an investigation whereby fluoroquinolone- or tetracycline-resistant E. coli or
Salmonella strains inoculated onto cloths were killed less efficiently by phenolic biocides than were
antibiotic-susceptible strains [121]. Evidence for efflux activity was presented.

Multi-drug efflux mechanisms often are plasmid-borne among Gram-positive bacteria [26], and
mobile efflux pumps are seen among Gram-negative organisms too. Where efflux genes on mobile
elements are accompanied by specific antibiotic resistance genes [122], cross-resistance and co-resistance
may be acquired together. Clinical isolates of E. coli with reduced QAC and antibiotic susceptibilities
had integrons encoding both the QacEA1 efflux pump and trimethoprim/sulphonamide resistance, and
in addition over-expressed the AcrAB-TolC efflux pump [103]. The Qac efflux pumps are widespread
among staphylococci and a range of Gram-negative bacteria, being typically plasmid-borne and often
occurring in conjunction with specific antibiotic resistance genes [12,39,74]. Although Qac-type pumps
will expel a number of lipophilic cationic compounds including QAC and other biocides, evidence for
their significance in biocide insusceptibility is conflicting [74,123], and their association with antibiotic
resistance may owe more to genetic linkage with resistance genes than to efflux-mediated cross-resistance.

In a study specifically examining biofilm-forming capability, E. coli isolates from dairy equipment
that had reduced susceptibility to benzalkonium chloride and/ or ciprofloxacin proved to have superior
biofilm capacity, whilst training more susceptible isolates with the antimicrobial agents led to decreased
susceptibility, of varying stability, in parallel with improved biofilm formation and evidence of increased
efflux activity [67]. Improved biofilm capability plus efflux has also been seen with triclosan-adapted
E. coli [68], and Salmonella Typhimurium in biofilm were substantially more resistant to killing than
were planktonic stationary-phase cells [60].

Using a bacterial community approach to examining co-selection, bioreactors were seeded with river
sediment communities and subjected over four years to varying nutrient and benzalkonium chloride
concentrations. When exposed to the QAC, community diversity reduced and community-wide MIC
values for benzalkonium chloride, ciprofloxacin, tetracycline and penicillin G all increased [100].
The frequency of efflux genes increased in biocide-exposed populations and an efflux inhibitor reduced
the antibiotic MIC values, but interestingly not that of the QAC. Thus, population restructuring, genetic
transfer, efflux and other resistance mechanisms were all potentially involved in this model microcosm
of long-term sediment contamination by QAC.

4.2. Heavy Metals and Other Agents Added to Animal Feed

Co-selection mechanisms impacting antibiotic susceptibility have been identified for heavy metals
that are similar to those for biocides, namely cross-resistance via extracellular adaptations (biofilms
especially), cell envelope changes, efflux and global regulatory responses, plus co-resistance via gene
linkage [6]. Important respects in which heavy metals differ from biocides include their mode of use in
agriculture and aquaculture, where they are used either continuously or for an extended period of time
and usually at sub-lethal concentrations, and their marked tendency to persist in manure and the
environment [6]. Indeed, the extended relationship between pathogens and copper in agricultural waste,



Antibiotics 2015, 4 582

which may then be mixed with the soil microbiota, has prompted suggestions that this may be
an especially advantageous scenario for the development and transfer of multiple resistance determinants
in pathogenic bacteria [6,47]. By contrast, some heavy metals (particularly mercury and lead) have been
associated with counter-selection leading to reduced antibiotic susceptibility, probably via a variety of
mechanisms [6,94].

Many metal-antibiotic insusceptibility correlations have been observed in samples retrieved from
heavy metal-contaminated environments, and there are identified cross-resistance mechanisms that can
effect such changes including efflux (Listeria monocytogenes, Pseudomonas aeruginosa and E. coli) and
co-regulation, via robA in E. coli and czcS in Pseudomonas aeruginosa [52]. In soil long-contaminated
by historical industrial use of copper and without recent agricultural activity, both culture and
non-cultural viability assays of soil bacteria showed decreased copper and antibiotic susceptibilities,
compared with local matched control samples [47].

Despite much data on correlations, evidence for causal links remains scant [6]. An exception is
provided by Stepanauskas et al. [99] who reported that river water microcosms subjected to heavy metal
(nickel or cadmium) stresses yielded significantly increased frequencies of bacteria resistant to antibiotics,
and vice-versa. Similarly, copper amendment of soil to concentrations near the European Union limit
for sewage-treated soils was followed by a shift towards reduced copper susceptibility in cultured
organisms from the soil microbiota and an allied decrease in multiple antibiotic susceptibilities, close to
clinical breakpoints in many instances [124]. In the latter study, there was an associated change towards
Gram-negative isolates, and many such metal-antibiotic susceptibility correlations may reflect a shift in
bacterial community structure and diversity towards naturally-resistant organisms, with limited implications
for animal and human pathogens. However, there is evidence of co-resistance in other cases [6]. A relevant
example is the recently-reported linkage between czrC, associated with reduced zinc and cadmium
susceptibility, and the SCCmec genomic island characterising human and livestock-associated MRSA
strains [125]. The copy number of tetracycline- and sulphonamide-resistance genes (fet4, sull) in DNA
extracts from weaner pigs was significantly increased in animals heavily supplemented with zinc [126],
although to what extent that reflected selection of insusceptible organisms vs. a community shift is unclear.

Homeostasis of metabolically-important metals may rely on chromosomally-encoded uptake, efflux,
chaperoning and detoxification mechanisms, such as is the case with copper [92,127]. However, there is
fair evidence that heavy metals in contaminated sediments and water may commonly exceed selective
concentrations [6] and resistance to toxic external concentrations of heavy metals appears commonly to
require additional plasmid-borne genes [26,52,92,128,129]. Under these circumstances co-resistance
may be accompanied by enhanced genetic mobility. An example of plasmid-associated co-resistance
with contemporary relevance is the tcrB gene associated with reduced copper susceptibility [50], which
shares homology with the homeostatic efflux-associated copB of Enterococcus hirae [129].
In Enterococcus faecium, tcrB is plasmid-borne and shows linkage with erm(B) and vanA, encoding
resistance to erythromycin and vancomycin, respectively [50,129]. The carriage of vanA is believed to
have been promoted by the glycopeptide growth promoter avoparcin, which was banned in the 1990s
amid concerns about cross-resistance with human vancomycin-resistant enterococci [13,130].

There is some evidence that controlled exposure of bacterial pathogens to essential oils can alter
antibiotic susceptibilities, but field studies are lacking [131-133]. Compared with heavy metals,



Antibiotics 2015, 4 583

phytochemical and organic acid feed additives are short-lived following ingestion and, given their
limited application currently, their significance for microbial resistance on farms is likely to be minimal.

5. Observations on Specific Livestock-Associated Bacterial Groups
5.1. Escherichia coli

Field surveys, although limited in scope, have not revealed strong evidence for links between biocide
and antibiotic susceptibilities among E. coli. Avian-pathogenic (APEC) strains from egg laying flocks
were examined for MIC and MBC of five biocide components: two aldehydes, a QAC and hydrogen
peroxide [134]. Despite prevalent resistance to several antibiotics, no subset of strains with reduced
biocide susceptibility was evident in this study. McMurray et al. [117] reported that examination of
31 antibiotic multi-resistant clinical strains did not reveal common overexpression of AcrAB-TolC.
By contrast, 570 isolates from meat in the USA where QAC are commonly used as sanitisers in the food
chain, frequently demonstrated elevated MIC values for the four tested QAC [135]. There were also
significant associations reported in this study between the presence of some plasmid-borne QAC resistance
genes [sugE(p), qacEAI] and phenotypic antibiotic resistance, consistent with co-resistance. However,
the specificity of these associations for QAC-exposed E. coli was not tested against control strains.

Field strains resistant to ciprofloxacin, including those with upregulated efflux (acrAB) or global
responses (marAB, soxRS) showed no difference compared with ciprofloxacin-sensitive strains in
susceptibility to three commercial compound disinfectants in MIC and competition assays, nor conversely
did disinfectant-passaged strains show a significantly increased frequency of mutation to reduced
sensitivity on 4x MIC ciprofloxacin media [136]. However, the authors reported a decrease in cyclohexane
sensitivity, consistent with the MAR phenomenon, among a minority of disinfectant-passaged strains
(particularly a phenolic disinfectant) and among these, ciprofloxacin, ampicillin and tetracycline sensitivity
typically was reduced. Regardless of changes to cyclohexane or antibiotic sensitivity, disinfectant exposure
did not significantly alter the studied strains’ MIC values in respect of the disinfectants themselves.

Other laboratory investigations have also emphasised the variable nature of biocide adaptation and of
allied effects in respect of antibiotics. Field strains of verocytotoxigenic E. coli could be trained to
increase MIC values for single-agent biocides (triclosan and benzalkonium chloride) but no stable MIC
changes could be achieved for chlorhexidine or commercial biocide mixes, and no increase in antibiotic
sensitivities were seen [110]. Adaptation of a laboratory strain to sub-lethal concentrations of food-grade
biocides was associated with marked variability, according to biocide, in the degree and stability of
reduced biocide susceptibility, changes to biofilm formation, cell membrane hydrophobicity and
antibiotic sensitivities [58]. The induction of reduced triclosan susceptibility, and associated increases
in antibiotic, chlorhexidine and benzalkonium chloride MIC, occurred to differing degrees and at
different rates depending on serogroup [137]. A marked reduction in triclosan susceptibility induced in
an O157:H19 strain was associated with mixed effects, including growth inhibition, increased biofilm
formation and a non-constitutive triclosan-inducible change in outer membrane proteins [68]. This last
study also found that efflux inhibition profoundly increased the sensitivity to triclosan, but only at a high
dose of the inhibitor (PABN), when other toxic effects may have influenced the outcome.
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Against a background of prevalent multi-drug antibiotic resistance and moderately low copper
sensitivity, administration of copper to weaner pigs in feed at a growth-promotion concentration was
associated with significantly increasing susceptibility to most tested antibiotics among faecal E. coli [87].
The study also found that copper susceptibility was not decreased, and neither was the frequency of the
plasmid-borne copper resistance gene pcoD increased. It is possible that baseline levels of antibiotic and
copper resistance were sufficiently high in this study population that the copper supplementation was
insufficient to select for reduced copper susceptibility or associated antibiotic resistance genes.
In a prospective study of faecal E. coli among 180 weaners, in-feed copper supplementation at
a growth-promoting concentration was associated with variable effects on MIC values of antibiotics over
time, with the only significant change compared with control being a reduction of MIC for neomycin
and chlortetracycline after six weeks [51]; No significant effects were observed for high concentrations
(2000-3000 ppm) of added zinc.

Multivariable modelling of observed copper and zinc concentrations in pig slurry and antibiotic MIC
values suggested positive associations between MIC of a minority of antibiotics and one or other of
the metals [94]. Negative associations with antibiotic MIC were seen in respect of lead and mercury.
Linkage between pcoD and the tetracycline resistance determinant fefB, but not fetA, was observed by
Agga et al [87], emphasising the often arbitrary nature of co-resistance links. A possible effect on the
mobility of antibiotic resistance genes in E. coli was observed by Bednorz et al. [61], who reported an
increased diversity of genotypes and plasmid profiles, and increased multi-drug antibiotic resistance,
among pigs supplemented with high levels (2500 mg/kg feed) of zinc.

5.2. Salmonella enterica

Among Danish broiler house isolates from the decade up to 2001, MIC values were elevated for
certain serovar-biocide combinations but there was no relationship to likely previous field exposure nor
was there any temporal change in MIC among strains persistent in an individual broiler house [138].
In this study the MAR phenotype was seen very rarely among those strains with elevated MIC, and
triclosan-selected variants showing MAR-type reduced sensitivity to cyclohexane did not show elevated
MIC to the original tested biocide products. Over 500 isolates from Danish pig slaughterhouses showed
MIC values well below in-use concentrations of a QAC, an acid/hydrogen peroxide mix and triclosan,
and post-cleaning and disinfection samples recovered Salmonella only from drains [139]. There was
little evidence of associations between increased biocide MIC and antibiotic resistance. Field strains
from pigs and poultry in Thailand commonly exhibited the MAR phenotype, but this was not associated
with reduced susceptibility to benzalkonium chloride or chlorhexidine among 257 strains [140].
Moretre et al. [56] have noted that there is little evidence of resistance by field salmonellae to working
concentrations of disinfectants.

Multiple antibiotic resistance was significantly more common among a subset (fewer than 4%) of
428 livestock and human isolates showing modest reductions in triclosan susceptibility [141]. All of the
subset in this report showed elevated expression of acrB and most also had increased efflux of
a fluorescent dye, but mutations in fabl were not seen. Similarly, Randall et al. [142] reported associated
lower susceptibilities to AcrAB-TolC efflux substrates (cyclohexane, ampicillin, tetracycline, ciprofloxacin,
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a QAC and triclosan), but not to non-transported kanamycin, among isolates from poultry, human and
environmental sources.

Several laboratory studies have also supported a substantial role for efflux-associated reduced biocide
susceptibility and cross-resistance. Serovars Enteritidis, Typhimurium and Virchow with stable
laboratory-induced adaptation (2x to 64x the original MIC) to triclosan or benzalkonium chloride
reverted to susceptibility when treated with an efflux pump inhibitor [118]. However, concurrent changes
in cell surface charge and hydrophobicity among the mutants suggest other enabling mechanisms were
also present.

For Salmonella Typhimurium, adaptation to benzalkonium chloride was associated with constitutive
overexpression of AcrAB-TolC and, when that was experimentally inactivated by mutation and biocide
training repeated, with similar expression of AcrEF-TolC [143]. When the same serovar was subjected
to severe biocide challenges (five hours at in-use concentrations) survivors showed consistent reduced
growth rates and low-level decreased sensitivity to ciprofloxacin, tetracycline and chloramphenicol,
although not to the challenge biocide [119]. The authors reported a MAR phenotype with decreased
OmpF and increased AcrEF-TolC-mediated efflux. By contrast, survivors of moderate (five hours in
broth at 2x to 4x MIC) challenges showed the same or reduced growth rates as the initial inoculum, and
the same survival percentage when re-challenged, suggesting that adaptation under these conditions was
largely a reversible physiological process.

Other investigations have emphasised the variability in findings, between strains, biocides and
experimental methods. Karatzas ef al. [111] reported that sequential daily exposure of S. Typhimurium
to sub-inhibitory concentrations of commercial compound biocides did not yield elevations in MIC to
the biocides but, depending on the biocide, stable elevations in some antibiotic resistances were seen,
accompanied in some cases by reductions in MIC to the other disinfectants, in growth parameters, and
in invasiveness of a cell monolayer. By contrast, Randall et al. [144] described single, extended
(seven-day) exposure of S. Typhimurium to aldehyde, oxidising, phenolic and QAC-based commercial
compound biocides at 2x MIC concentrations, yielding strains with reduced susceptibility at frequencies
suggesting single-step mutation events. In this study, loss of susceptibility to the biocides was not
associated with decreased growth, or with reduced colonisation and shedding from chicks. Additionally,
changes in MIC values, proteome expression and biocide kill time varied by strain and by biocide, with
kill time for the phenolic biocide actually being shortened among mutants [144].

Some of the mutants in the above report by Karatzas et al. [111] showed elevated acrB expression,
consistent with the MAR phenotype. Of the tested biocides, oxidising and phenolic/tar acid mixes were
associated with less reduction of antibiotic sensitivities than QAC and QAC/aldehyde-based products.
Follow-up testing of one representative strain for each of three biocide products (QAC/aldehyde, oxidising,
phenolic) revealed outer membrane protein changes, decreased motility and invasiveness for all, whereas
expression of AcrAB-TolC and changes in lipopolysaccharides varied between biocides [78]. In the
contrasting extended single exposure study [144], the MAR phenotype was not observed, but native
efflux capability in the form of a functional AcrAB-TolC pump was required for strains with reduced
susceptibility to any tested biocide except for the oxidising one. As a final comparison, small-scale
in vivo competition and transmission trials were performed using oral dosing of chicks with wild-type
S. Typhimurium and derivatives with the MAR phenotype induced after exposure to oxidising or
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aldehyde biocides [145]. These showed the MAR mutants to have a fitness disadvantage compared with
the parent strain, and to not be preferentially selected by fluoroquinolone treatment.

The variable and sometimes counter-selective effects of biocide exposure were also illustrated by
BiroSovéa and MikulaSova [146]. They reported that S. Typhimurium, when selected on solid media at
between 0.125% and 2x MIC concentration for reduced triclosan susceptibility, showed variable
phenotypes in respect of ciprofloxacin, chloramphenicol and tetracycline resistance, depending to some
extent on the intensity and frequency of the selection steps. Furthermore, the same study also reported
that ciprofloxacin-resistant strains with the MAR phenotype showed no decrease in triclosan susceptibility
(and sometimes a decrease in ciprofloxacin resistance) when passaged on 0.5x MIC triclosan media, by
contrast to non-MAR equivalent strains where ciprofloxacin resistance was maintained and triclosan
susceptibility decreased.

In tests comparing Salmonella cells in differing states, six of seven commercial compound biocides
at half their in-use concentrations and against planktonic cells were fully lethal for members of
a collection of 189 Salmonella strains, whilst the remaining biocide was inconsistently lethal for one
strain in the collection [62]. Surface-dried cells were less susceptible but generally were still effectively
killed at in-use concentrations, whereas cells in biofilm were resistant to killing by several of the products
even at full concentration and with extended contact times. Moretre et al. [56] has noted that Salmonella
in biofilms are unpredictably insusceptible to biocides. Attempts by Condell et al. [62] to adapt strains
to the compound products were not successful, but stable increases of up to 4x MIC were seen when
using individual components (triclosan, benzalkonium chloride, chlorhexidine); these strains did not
show reduced susceptibility to the other agents, but did in some cases show decreased sensitivity to
some antibiotics.

Carcass and food decontaminant biocides have been examined specifically in relation to Salmonella.
Exposure of pan-susceptible and multi-drug resistant serovars Typhimurium and Newport (plus E. coli
O157:H7) to biocides under recommended conditions after being inoculated onto meat showed
variations in kill rate that correlated strongly with the particular products and weakly with bacterial
species and serovar, but not with the antibiotic resistance phenotype of the strains [147]. Examining the
lethality (decimal reduction times) for various serovars of three biocides, Capita [148] reported
significant positive associations between antibiotic resistance and resistance to killing by acidified
sodium chlorite or trisodium phosphate. Such associations were present in only some of the serovars
examined, and no association could be discerned in the case of citric acid. In another study, training
multi-drug resistant strains of diverse serovars with trisodium phosphate, sodium nitrate and sodium
hypochlorite resulted in modest elevations in MIC values to the training agent [149]. There were also
variable effects on antibiotic sensitivity, exceeding clinical resistance breakpoints for a minority (around
10%) of strain-antibiotic combinations (including aminoglycosides, by contrast to efflux mutants
discussed previously) and in variable patterns, suggesting that mechanisms were non-specific in respect
of antibiotic structures or targets.

Examining heavy metal susceptibility, Medardus et al. [45] reported that among 349 Salmonella
isolates from nine pig units in the USA, an elevated zinc MIC was associated with the occurrence of the
czeD-encoded zine efflux pump but not with the concentration of faecal zinc. By contrast faecal copper
concentration was associated with an elevated copper MIC, but not with the occurrence of a copper
efflux gene pcoA. The same study reported that serovars were associated both with copper and zinc
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susceptibility and with patterns of antibiotic resistance; such resistances were not independently
associated with copper or zinc susceptibility once serovar was accounted for.

A Portuguese study of monophasic S. Typhimurium variants, mostly of human and pig origin, found
that the sil operon, encoding an efflux mechanism for copper and silver, was common among the
principal clonal groups, and it exhibited an associated phenotypic resistance to the metals, which was
restricted to anaerobic conditions in the case of copper [150]. Antibiotic resistance genes in this commonly
multi-drug-resistant pathovar were co-located with si/, on the chromosome (European clonal group) or
a non-transferable plasmid (Spanish and Southern European clonal groups). The authors found that in
plasmid-borne cases, many antibiotic resistance genes were located within class I integrons.

5.3. Livestock-Associated Meticillin-Resistant Staphylococcus aureus (LA-MRSA)

S. aureus 1s an upper respiratory tract coloniser that is distributed very widely among mammals but
which generally shows host-species-specific subtypes [30]. Isolates of clonal complex 398 (CC398) are
closely associated with pigs and some other livestock in a number of countries [151], and within the last
decade CC398 strains carrying the SCCmec genomic island characteristic of MRSA have come to
prominence as persistent colonisers of pig herds [30]. These LA-MRSA strains can colonise humans in
contact with animals but, unlike community- and healthcare-acquired MRSA, they do not readily spread
between people.

A specific association between reduced zinc sensitivity and CC398 MRSA [152] was shown to be a
consequence of the frequent presence of czrC, encoding a putative metal transporter, in SCCmec (type
V) of both pig and human isolates [125]. Among weaner pigs, administration of pharmacological
in-feed doses of either zinc or tetracycline increased counts on nasal swabs of naturally-occurring
czrC-positive, tetracycline-resistant MRSA [153,154]. A larger and slightly longer-term study following
weaners with pharmacological vs. basal in-feed zinc concentrations on a unit with endemic
czrC-positive MRSA, found a significant association between the prevalence of MRS A-positive animals
and zinc level at four and five weeks of age, but in both groups MRSA-positive animals were similarly
infrequent by seven weeks of age [155]. A further report by the same group [156] described significant
and independent associations between zinc oxide supplementation or frequent disinfection of pens and
nasal MRSA in nursery age pigs, on 26 units. Carriage of gac genes was universal among MRSA, and
reduced susceptibility to benzalkonium chloride was observed amongst a minority of strains. In the same
study, czrC was detected in about two-thirds of tested isolates, in association with a lower susceptibility
to zinc compared with czrC-negative isolates.

Other chromosomal resistance determinants for heavy metals (mercury and cadmium) have been
associated with meticillin resistance in human MRSA strains [157—-159]. Moreover, clusters of heavy
metal and antibiotic resistance genes have also been found to be plasmid-borne among MRSA strains
from humans (ST398, type V SCCmec with czrC) and pigs (ST398, type IV SCCmec without czrC) [160].
Genes associated with resistance to macrolides, lincosamides, streptogramin B and tetracyclines
[erm(T), tet(L)] plus, variably, aminoglycosides and trimethoprim (aadD and dfrK) were co-located with
copA, cadDX and mco, encoding copper and cadmium transporters and a copper oxidase. The authors of
this study also reported transmissible phenotypic co-resistance to the relevant agents.
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5.4. Listeria spp.

Resistance to antibiotics, other than intrinsic resistance to many cephalosporins, is uncommon in
Listeria monocytogenes, the principal species of public health concern [161]. There were no unusual
antibiotic resistances identified among 29 strains from a meat processing plant, three of which showed
long-term persistence and reduced susceptibility to benzalkonium chloride [162]. Similarly, antibiotic
susceptibility was high among 114 food isolates, 8% of which showed modestly elevated MIC values
for benzalkonium chloride [163]. Reduced susceptibility to benzalkonium chloride in field strains has
been shown to be plasmid-borne and not linked to antibiotic resistance in one study [164] but associated
with efflux and small changes in susceptibility to kanamycin in another [165]. In both these studies,
efflux-related reduced susceptibility to this QAC plus, variously, ciprofloxacin or kanamycin has been
observed in strains subjected to selection with one or other of these agents. Analysis of gene expression
in these studies suggested that the efflux system(s) induced by an antimicrobial agent may differ between
strains, thus producing differing patterns of co-selection.

Laboratory exposure of L. monocytogenes to sub-lethal concentrations of triclosan produced
aminoglycoside-resistant mutants that showed no change in triclosan MIC but which exhibited, variously,
other phenotypic changes including small colony morphology and increased oxygen sensitivity [90,166].
The same effect was not seen in these studies when QAC or oxidising compounds were substituted for
triclosan, but decreased sensitivity to aminoglycosides has been reported elsewhere, alongside reduced
susceptibility to benzalkonium chloride following exposure to this agent [165]. The recent publication
of the genomes of five L. monocytogenes strains with reduced susceptibility to benzalkonium chloride [167]
may assist elucidation of the mechanisms involved in co-selection.

5.5. Campylobacter spp.

A survey of 42 isolates from human, animal and environmental sources did not show any associations
between the (varied) MIC values to single biocides and sensitivities to erythromycin and ciprofloxacin [168].
In another survey, of 443 field strains, modest increases in multiple antibiotic resistances correlated with
lowered susceptibilities to efflux substrates (ethidium bromide, acridine orange, triclosan) in a small
minority of isolates [169].

A laboratory study training five isolates with five biocides (QACs, chlorhexidine, triclosan and
trisodium phosphate) yielded modest, reversible increases in MIC values in 20% of cases, plus reduced
MIC in others [44]. The study also reported variable allied decreases in susceptibility to the other tested
biocides and antibiotics; investigations suggested that alterations in cell envelope plus efflux mechanisms
were involved.

5.6. Enterococcus spp.

Enterococcus faecium and Enterococcus faecalis are leading causes of hospital-acquired infections,
commonly with multiple drug resistances [170]. Schwaiger ef al. [171] examined both these species
from human bacteraemias and faeces plus the latter species additionally from a variety of livestock, meat
and dairy sources, in respect of susceptibility to a QAC (DDAC) and to 22 antibiotics. Most isolates
with reduced susceptibility to DDAC (compared with wild-type) were from dairy sources, but resistance
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to “in use” concentrations were not observed in field isolates or laboratory-trained strains. Associations
between reduced DDAC susceptibility and resistance to a few antibiotics were observed among human
faecal E. faecium strains only.

Co-transmission of the copper efflux-associated #crB and erythromycin resistance erm(B) genes has
been reported between a sediment-derived livestock species (Enterococcus hirae) and E. faecalis in
conjugation experiments [172]. From 569 Danish livestock-derived bacterial isolates tested for
susceptibilities to antibiotics, biocides and heavy metals, the only distinct “less susceptible” group of
organisms seen were Enterococcus spp. in respect of copper sulphate [53]. Furthermore, among
pig-derived E. faecium and E. faecalis, reduced susceptibility to copper and a number of antibiotics was
correlated with the intensity of copper supplementation and of antibiotic use in the source countries, and
tcrB was specifically present in the copper-insusceptible isolates [173]. However, as antibiotic and
copper use were themselves closely correlated, the extent of actual co-selection could not be determined.
Genomic analysis of E. faecalis from copper-supplemented Danish pigs revealed the presence of
a chromosomal cluster of copper-insusceptibility genes, including the tcrYAZB operon, in three of
six isolates [174]. Tetracycline- and vancomycin-resistance genes (tetM, vanA) were present in all and
one of these three “copper-insusceptible” isolates, respectively, whilst only tetM was encoded among
the “copper-susceptible” strains, in one of the three isolates. The frequency of individual antibiotic
resistances among Enterococcus spp. from Australian pigs reflected prevalent antibiotic use within the
industry, whilst reduced susceptibility to zinc (but not to copper) was common among E. faecalis and
resistance to vancomycin was present in commensal non-pathogenic species [175].

Among E. faecium from Danish farms, fcrB was more frequently detected from the more intensively
copper-supplemented livestock species, whilst linkage with erythromycin and vancomycin resistance
was seen only among (heavily copper-exposed) pig isolates [129]. Copper fed to feedlot cattle at
a growth promotion concentration (10x basal requirement) was associated with modestly but significantly
increased frequencies of detection of fcrB-positive and macrolide-resistant erm(B) enterococci with
lowered copper susceptibilities, whilst resistances to other screened antibiotics, including vancomycin,
were unaffected [176]. A prospective study of weaner and grower pigs given a heterogeneous inoculum
of tcrB-positive and -negative E. faecium reported that exposure at a commercial (versus basal) in-feed
concentration of copper was associated with a higher detection frequency of zcrB and of the linked
erm(B) and vanA genes [50].

5.7. Summary of Data on Specific Bacterial Groups

In general, field surveys have provided weak evidence at best of causal associations between reduced
susceptibilities to biocides, heavy metals and antibiotics in these bacterial groups, although data in this
area is far from comprehensive. There is experimental evidence that multi-drug efflux is necessary,
if not sufficient, in many cases of reduced antibiotic susceptibility associated with exposure to biocides.
Furthermore, such efflux-dependence of modestly elevated antibiotic MIC values has also been seen in
some field survey isolates although it is not possible to establish clear links with biocide use in these
cases. Selection for cross-resistant strains, with perhaps efflux and envelope adaptations, appears
plausible for Enterobacteriaceae, at least, under field conditions given the survival of cells even under
severe challenge in the laboratory. Biofilms have the potential to enhance this substantially.
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One overarching theme is the marked variability in results seen between experimental studies, even
examining highly similar organisms and biocidal agents. This suggests that several mechanisms may be
involved, to a greater or lesser extent, when co-selection occurs. Furthermore, what mix of susceptibilities
ultimately emerges is probably rather sensitive to initial conditions of antimicrobial agent, species, strain
and exposure.

For heavy metals, associations have been identified between reduced zinc or copper susceptibility,
serovar and antibiotic resistance among pig Salmonella isolates, including monophasic Salmonella
Typhimurium. These are established foodborne pathogens. Furthermore, there is reasonable evidence of
a co-resistance phenomenon involving copper, macrolides and perhaps vancomycin among enterococci
of pigs. However, the relevance of this to disease-causing strains in humans remains undetermined.

LA-MRSA shows some evidence of co-resistance consequent on selection by zinc, but this selective
pressure appears to be modest in the face of age-related reductions in prevalence of the organism among
pigs. How the effect of zinc compares with selection by antibiotics of this multi-resistant organism is
unclear, given that LA-MRSA ST398 isolates are frequently resistant to the commonly-used tetracyclines.
There is some evidence that QAC biocides might also select for MRSA carriage in nursery-age pigs.
Whether selection, by zinc or QAC, at this age may affect the risk of LA-MRSA contamination of
foodstuffs is currently unclear. By contrast in L. monocytogenes, a species notable for little antibiotic
resistance, reduced biocide susceptibility in environmental field strains doesn’t appear typically to be
associated with changes in antibiotic sensitivity.

6. Field Observations vs. Laboratory Findings

There is a considerable amount of experimental evidence, as discussed in Sections 4 and 5, for
co-selection of antibiotic resistance by exposure of common primary and opportunistic bacterial
pathogens, to biocides principally, and also to heavy metals. However, this is not matched by compelling
evidence of similar effects in farm and other environments regularly exposed to such agents.
Nonetheless, biocide susceptibility is commonly measured in terms of MIC and several experimental
studies have shown that exposure to biocides, particularly compound products, may result in elevated
antibiotic MIC (including the MAR phenotype among Salmonella) without significant change in MIC
of the biocide. Thus, there may be some effects of biocides on antibiotic sensitivity among field strains
where the association is not evident from testing of MIC values. Further testing, of kill times and of
effects of biocides against organisms in stressed states, on surfaces, in biofilms, etc., might reveal more
associations than are currently evident. Evidence [150] that the si/ operon improves copper handling by
monophasic S. Typhimurium only under anaerobic conditions, such as are encountered in the gut, also
indicates that test conditions may substantially affect which associations are seen between heavy metals
and antibiotics.

Nonetheless, there are some reasons to be sceptical about the occurrence in real-world environments
of phenomena described in laboratory studies. Controlled, extended laboratory exposure of bacterial
strains to sub-lethal concentrations of antimicrobial substances is not likely to be a good model for
interactions between biocides and organisms in the environment. In-use conditions usually involve
transient high-level application, often of a synergistic compound preparation, followed by variable
exposure of survivors to residual concentrations. Some biocides are persistent, whilst others biodegrade
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rapidly, and the effectiveness of others is highly-dependent on dilution, pH or interfering organic
substances [38].

This variation in effective exposures, given the differences seen even between similar laboratory
studies of controlled exposure, is likely to yield unpredictable patterns of altered susceptibility that may
also include increased sensitivity to some agents. Certainly, some biocides and heavy metals can have a
counter-selective effect on antibiotic resistance genes and/or phenotypes [6,94,177,178]. Furthermore,
certain effects observed in the laboratory may not be as adaptive as they initially appear. For example,
the induction of efflux by triclosan binding to the repressor of the SmeDEF multi-drug transporter of
S. maltophilia only occurs once triclosan is present at toxic levels [64,179].

Even once significantly reduced susceptibilities to biocide, metal or antibiotic have been generated,
the fitness costs discussed previously will militate against survival of many adapted strains in the context
of shifting and re-establishing bacterial communities such as is likely in farm environments. Nonetheless
some adaptations, such as biofilming capacity, may prove immediately advantageous for survival and
there are agents (particularly heavy metals) and circumstances, such as prevalent antibiotic use, where
a selective pressure may be maintained for a strain following adaptation for reduced susceptibility.
However, the particular circumstances where an appropriate selective pressure is applied at the right
time to maintain or intensify a particular reduction in antibiotic sensitivity that has been generated by
biocide use may not be especially common. Indeed, instead of co-selection, biocides and antibiotics can
have additive or synergistic antimicrobial effects when applied together [180,181].

In cases of heavy metal contamination, the antimicrobial selective pressures are likely to be sub-lethal
and exerted for a long time, extending to many years in the case of contaminated soil or sediment. It is
of interest that investigations into heavily copper-supplemented pigs and heavily contaminated water or
soil have provided some of the most convincing data on associations between reduced susceptibility to
antibiotic and non-antibiotic (i.e., metal) antimicrobials, in a wide range of bacteria.

7. Conclusions

The long history of biocide use in healthcare, agriculture, industry and elsewhere has not yielded any
consistent evidence of a generalised problem of reduced susceptibility to such agents. Furthermore,
the comparatively brief history of antibiotic use and the rapid emergence of single and multiple antibiotic
resistance among exposed bacteria has provided compelling evidence of a causal association between
antibiotic consumption and the occurrence of antibiotic resistance. This drives efforts to control medical
and veterinary use of antibiotics. Increasing hygiene measures and, in stock rearing, substitution of
prophylactic and growth-promoting antibiotics with heavy metal salts has been part of the response to
greater constraints on antibiotic use.

Concerns have been raised in recent years that known and suspected links between biocide or heavy
metal use and antibiotic resistances may prove significant in perpetuating those resistances.
The legitimacy of these concerns has been bolstered by evidence from antibiotic and biocide research
that co-selection may yield multiple resistances and that even low-level reduced antibiotic sensitivity
can foster the development of high-level resistance given a suitable selective pressure. The heavy metals
are one group of agents that, by deliberate application or by contamination, are typically present at
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non-lethal concentrations and for prolonged periods compared with biocides. In this respect their
interactions with bacteria more closely resemble those of antibiotics than of disinfectants or antiseptics.

There is much evidence from laboratory studies that exposure of bacteria to members of one class of
antimicrobial agent can affect susceptibilities to other classes. However, data from hospital and other
healthcare environments has provided conflicting evidence as to the likely clinical significance of
co-selection of antibiotic resistant pathogens by biocides. Data for similar effects on the diverse
microbiota on farms and in the food chain is yet more limited than for healthcare-associated pathogens.
Again, laboratory studies indicate that such links exist for the important zoonotic pathogens but survey
data suggests that, for now, counter-selective processes largely limit the effects of co-selective pressures.
For heavy metals, in addition to identified genetic linkages with antibiotic resistance determinants,
evidence exists from animal and environmental studies for links between the use of such agents in the
pig and poultry industries and increased genetic mobility and co-selection. However, the immediate
significance of susceptibility associations in respect of foodborne pathogens is uncertain.

Acknowledgments

Funding for the review was provided by the UK Department of Environment, Food and Rural
Affairs (Defra).

Conflicts of Interest
The authors declare no conflict of interest.
References

1.  SCENIHR. 4ssessment of the Antibiotic Resistance Effects of Biocides; Scientific Committee on
Emerging and Newly Identified Health Risks, European Commission: Brussels, Belgium, 2009;
pp. 1-87.

. Tumah, H.N. Bacterial biocide resistance. J. Chemother. 2009, 21, 5-15.

3. Sheldon, A.T. Antiseptic “resistance”: Real or perceived threat? Clin. Infect. Dis. 2005, 40,
1650-1656.

4.  Fraser, C.M., Bergeron, J.A., Mays, A., Aiello, S.E., Eds. Part VI: Pharmacology. In Merck
Veterinary Manual; Merck & Co.: Rahway, NJ, USA, 1991; p. 1472.

5. Duffus, J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem.
2002, 74, 793-807.

6. Seiler, C.; Berendonk, T.U. Heavy metal driven co-selection of antibiotic resistance in soil and water
bodies impacted by agriculture and aquaculture. Fromt. Microbiol. 2012, 3, doi:10.3389/
fmicb.2012.00399.

7. Barillo, D.J.; Marx, D.E. Silver in medicine: A brief history BC 335 to present. Burns J. Int. Soc.

Burn Inj. 2014, 40 (Suppl. S1), S3—S8.
8.  Silver, S. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds.
FEMS Microbiol. Rev. 2003, 27, 341-353.



Antibiotics 2015, 4 593

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R.; Beyth, N.; Houri-Haddad, Y.;
Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: Nano-antimicrobial materials.
Evid. Based Complement. Altern. Med. 2015, 2015, 246012, doi:10.1155/2015/246012.
Norwegian Scientific Committee for Food Safety. Zinc and Copper in Pig and Poultry
Production—Fate and Effects in the Food Chain and the Environment; Norwegian Food Safety
Authority: Oslo, Norway, 2014; p. 128.

Hugo, W.B. A brief history of heat, chemical and radiation preservation and disinfection.
Int. Biodeterior. Biodegrad. 1995, 36, 197-217.

Morente, E.O.; Fernandez-Fuentes, M.A.; Burgos, M.J.G.; Abriouel, H.; Pulido, R.P.; Galvez, A.
Biocide tolerance in bacteria. Int. J. Food Microbiol. 2013, 162, 13-25.

Cogliani, C.; Goossens, H.; Greko, C. Restricting antimicrobial use in food animals: Lessons from
Europe. Microbe 2011, 6, 274-279.

Fernandez-Rubio, C.; Ordonez, C.; Abad-Gonzalez, J.; Garcia-Gallego, A.; Honrubia, M.P.;
Mallo, J.J.; Balana-Fouce, R. Butyric acid-based feed additives help protect broiler chickens from
Salmonella Enteritidis infection. Poult. Sci. 2009, 88, 943-948.

Franz, C.; Baser, K.; Windisch, W. Essential oils and aromatic plants in animal feeding—A
European perspective. A review. Flavour Fragr. J. 2010, 25, 327-340.

Leeson, S.; Namkung, H.; Antongiovanni, M.; Lee, E.H. Effect of butyric acid on the performance
and carcass yield of broiler chickens. Poult. Sci. 2005, 84, 1418—1422.

Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-
ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, d0i:10.1186/s40104-015-0004-5.
Dance, D.A.B.; Pearson, A.D.; Seal, D.V.; Lowes, J.A. A hospital outbreak caused by a
chlorhexidine and antibiotic-resistant Proteus mirabilis. J. Hosp. Infect. 1987, 10, 10-16.
Griffiths, P.A.; Babb, J.R.; Bradley, C.R.; Fraise, A.P. Glutaraldehyde-resistant Mycobacterium
chelonae from endoscope washer disinfectors. J. Appl. Microbiol. 1997, 82, 519-526.

Sasatsu, M.; Shimizu, K.; Noguchi, N.; Kono, M. Triclosan-resistant Staphylococcus aureus.
Lancet 1993, 341, doi:10.1016/0140-6736(93)90526-M.

Alexander, D.M.; Jeawon, R.H.; Persad, S. Disinfectant resistance in antibiotic-resistant
organisms. S. Afr. J. Sci. 1991, 87, 614—617.

Stickler, D.J.; Thomas, B. Antiseptic and antibiotic resistance in Gram-negative bacteria causing
urinary tract infection. J. Clin. Pathol. 1980, 33, 288-296.

Fraise, A.P. Biocide abuse and antimicrobial resistance—A cause for concern?
J. Antimicrob. Chemother. 2002, 49, 11-12.

Russell, A.D. Do biocides select for antibiotic resistance? .J. Pharm. Pharmacol. 2000, 52,
227-233.

Bloomfield, S.F. Significance of biocide usage and antimicrobial resistance in domiciliary
environments. J. Appl. Microbiol. 2002, 92, 144S—157S.

Gilbert, P.; McBain, A.J. Potential impact of increased use of biocides in consumer products on
prevalence of antibiotic resistance. Clin. Microbiol. Rev. 2003, 16, 189-208.

Antunes, P.; Mourao, J.; Pestana, N.; Peixe, L. Leakage of emerging clinically relevant
multidrug-resistant Salmonella clones from pig farms. J. Antimicrob. Chemother. 2011, 66,
2028-2032.



Antibiotics 2015, 4 594

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41

42.

43.

44.

45.

Davies, R.H.; Dalziel, R.; Gibbens, J.C.; Wilesmith, J.W.; Ryan, J.M.B.; Evans, S.J.; Byrne, C.;
Paiba, G.A.; Pascoe, S.J.S.; Teale, C.J. National survey for Sa/monella in pigs, cattle and sheep at
slaughter in Great Britain (1999-2000). J. Appl. Microbiol. 2004, 96, 750-760.

EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on monitoring and assessment
of the public health risk of “Sa/monella Typhimurium-like” strains. EFSA4 J. 2010, 8, 1826—1874.
Cuny, C.; Friedrich, A.; Kozytska, S.; Layer, F.; Niibel, U.; Ohlsen, K.; Strommenger, B.;
Walther, B.; Wieler, L.; Witte, W. Emergence of methicillin-resistant Staphylococcus aureus
(MRSA) in different animal species. Int. J. Med. Microbiol. 2010, 300, 109-117.

Blaak, H.; van Hoek, A.H.; Hamidjaja, R.A.; van der Plaats, R.Q.J.; de Heer, K.L,;
de Roda Husman, A.M.; Schets, F.M. Distribution, numbers, and diversity of ESBL-producing F.
coli in the poultry farm environment. PLoS ONE 20185, 10, e0135402.

Chopra, I.; Hesse, L.; O’Neill, A.J. Exploiting current understanding of antibiotic action for
discovery of new drugs. J. Appl. Microbiol. 2002, 92, 4S—15S.

Cerf, O.; Carpentier, B.; Sanders, P. Tests for determining in-use concentrations of antibiotics and
disinfectants are based on entirely different concepts: “Resistance” has different meanings. Int. J.
Food Microbiol. 2010, 136, 247-254.

Poole, K. Mechanisms of bacterial biocide and antibiotic resistance. J. Appl. Microbiol. 2002, 92,
55S-648.

Kohanski, M.A.; DePristo, M.A.; Collins, J.J. Sublethal antibiotic treatment leads to multidrug
resistance via radical-induced mutagenesis. Mol. Cell 2010, 37, 311-320.

Maillard, J.Y. Bacterial target sites for biocide action. J. Appl. Microbiol. 2002, 92, 16S-27S.
McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance.
Clin. Microbiol. Rev. 1999, 12, 147-179.

Russell, A.D. Biocide use and antibiotic resistance: The relevance of laboratory findings to clinical
and environmental situations. Lancet Infect. Dis. 2003, 3, 794—803.

Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance
to antibacterial agents: The role of quaternary ammonium compounds-a critical review. Int. J.
Antimicrob. Agents 2012, 39, 381-389.

Davin-Regli, A.; Pagés, .M. Cross-resistance between biocides and antimicrobials: An emerging
question. Rev. Sci. Technol. Off. Int. Epizoot. 2012, 31, 89—104.

. Carey, D.E.; McNamara, P.J. The impact of triclosan on the spread of antibiotic resistance in the
environment. Front. Microbiol. 2015, 5, doi:10.3389/fmicb.2014.00780.

Rensch, U.; Klein, G.; Kehrenberg, C. Analysis of triclosan-selected Salmonella enterica mutants
of eight serovars revealed increased aminoglycoside susceptibility and reduced growth rates.
PLoS ONE 2013, 8, €78310.

Suller, M.T.E.; Russell, A.D. Triclosan and antibiotic resistance in Staphylococcus aureus.
J. Antimicrob. Chemother. 2000, 46, 11-18.

Mavri, A.; Mozina, S.S. Development of antimicrobial resistance in Campylobacter jejuni and
Campylobacter coli adapted to biocides. Int. J. Food Microbiol. 2013, 160, 304-312.

Medardus, J.J.; Molla, B.Z.; Nicol, M.; Morrow, W.M.; Rajala-Schultz, P.J.; Kazwala, R.;
Gebreyes, W.A. In-feed use of heavy metal micronutrients in US swine production systems and its
role in persistence of multidrug-resistant Salmonella. Appl. Environ. Microbiol. 2014, 80, 2317-2325.



Antibiotics 2015, 4 595

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of
heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311,
205-219.

Berg, J.; Thorsen, M.K.; Holm, P.E.; Jensen, J.; Nybroe, O.; Brandt, K.K. Cu exposure under field
conditions coselects for antibiotic resistance as determined by a novel cultivation-independent
bacterial community tolerance assay. Environ. Sci. Technol. 2010, 44, 8724—8728.

Hao, X.; Luethje, F.L.; Qin, Y.; McDevitt, S.F.; Lutay, N.; Hobman, J.L.; Asiani, K.; Soncini, F.C.;
German, N.; Zhang, S.; et al. Survival in amoeba-a major selection pressure on the presence of
bacterial copper and zinc resistance determinants? Identification of a “copper pathogenicity island”.
Appl. Microbiol. Biotechnol. 2015, 99, 5817-5824.

Yazdankhah, S.; Rudi, K.; Bernhoft, A. Zinc and copper in animal feed—Development of
resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb. Ecol.
Health Dis. 2014, 25, doi:10.3402/mehd.v25.25862.

Hasman, H.; Kempf, 1.; Chidaine, B.; Cariolet, R.; Ersboll, A.K.; Houe, H.; Hansen, H.C.B.;
Aarestrup, F.M. Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected
by supplementation of pig feed with copper sulfate. Appl. Environ. Microbiol. 2006, 72, 5784-5789.
Shelton, N.W.; Jacob, M.E.; Tokach, M.D.; Nelssen, J.L.; Goodband, R.D.; Dritz, S.S.;
de Rouchey, J.M.; Amachawadi, R.G.; Shi, X.; Nagaraja, T.G. Effects of copper sulfate, zinc oxide,
and neoterramycin on weanling pig growth and antibiotic resistance rate for fecal Escherichia coli.
In Kansas State University Swine Day 2009. Report of Progress 1020; Goodband, B., Tokach, M.,
Dritz, S., de Rouchey, J., Eds.; Kansas State University: Manhattan, KS, USA, 2009; pp. 73-79.
Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, J.V. Co-selection of antibiotic and
metal resistance. Trends Microbiol. 2006, 14, 176—182.

Aarestrup, F.M.; Hasman, H. Susceptibility of different bacterial species isolated from food
animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection.
Vet. Microbiol. 2004, 100, 83—89.

Silbergeld, E.K.; Nachman, K. The environmental and public health risks associated with arsenical
use in animal feeds. Ann. N. Y. Acad. Sci. 2008, 1140, 346-357.

European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society
of Clinical Microbiology and Infectious Diseases (ESCMID). Terminology relating to methods for
the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000,
6, 503-508.

Moretrg, T.; Heir, E.; Nesse, L.L.; Vestby, L.K.; Langsrud, S. Control of Salmonella in food related
environments by chemical disinfection. Food Res. Int. 2012, 45, 532-544.

Suller, M.T.E.; Russell, A.D. Antibiotic and biocide resistance in methicillin-resistant
Staphylococcus aureus and vancomycin-resistant enterococcus. J. Hosp. Infect. 1999, 43, 281-291.
Capita, R.; Riesco-Pelaez, F.; Alonso-Hernando, A.; Alonso-Calleja, C. Exposure of Escherichia coli
ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm,
resistance to antimicrobials, and ultrastructure. Appl. Environ. Microbiol. 2014, 80, 1268—1280.

Lear, J.C.; Maillard, J.Y.; Dettmar, P.W.; Goddard, P.A.; Russell, A.D. Chloroxylenol- and
triclosan-tolerant bacteria from industrial sources—Susceptibility to antibiotics and other biocides.
Int. Biodeterior. Biodegrad. 2006, 57, 51-56.



Antibiotics 2015, 4 596

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

72.

73.

74.

Tabak, M.; Scher, K.; Hartog, E.; Romling, U.; Matthews, K.R.; Chikindas, M.L.; Yaron, S.
Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms.
FEMS Microbiol. Lett. 2007, 267, 200-206.

Bednorz, C.; Oelgeschlaeger, K.; Kinnemann, B.; Hartmann, S.; Neumann, K.; Pieper, R.; Bethe, A.;
Semmler, T.; Tedin, K.; Schierack, P.; ef al. The broader context of antibiotic resistance: Zinc feed
supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo.
Int. J. Med. Microbiol. 2013, 303, 396—-403.

Condell, O.; Iversen, C.; Cooney, S.; Power, K.A.; Walsh, C.; Burgess, C.; Fanning, S. Efficacy of
biocides used in the modern food industry to control Salmonella enterica, and links between biocide
tolerance and resistance to clinically relevant antimicrobial compounds. Appl. Environ. Microbiol.
2012, 78, 3087-3097.

Russell, A.D. Mechanisms of bacterial resistance to biocides. Int. Biodeterior. Biodegrad. 1995,
36, 247-265.

Oggioni, M.R.; Furi, L.; Coelho, J.R.; Maillard, J.Y.; Martinez, J.L. Recent advances in the
potential interconnection between antimicrobial resistance to biocides and antibiotics. Expert Rev.
Anti Infect. Ther. 2013, 11, 363-366.

Gilbert, P.; Allison, D.G.; McBain, A.J. Biofilms in vitro and in vivo: Do singular mechanisms
imply cross-resistance? J. Appl. Microbiol. 2002, 92, 98S—110S.

McBain, A.J.; Gilbert, P. Biocide tolerance and the harbingers of doom. Int. Biodeterior.
Biodegrad. 2001, 47, 55-61.

Pagedar, A.; Singh, J.; Batish, V.K. Adaptation to benzalkonium chloride and ciprofloxacin affects
biofilm formation potential, efflux pump and haemolysin activity of Escherichia coli of dairy
origin. J. Dairy Res. 2012, 79, 383-389.

Sheridan, A.; Lenahan, M.; Condell, O.; Bonilla-Santiago, R.; Sergeant, K.; Renaut, J.; Duffy, G.;
Fanning, S.; Nally, J.E.; Burgess, C.M. Proteomic and phenotypic analysis of triclosan tolerant
verocytotoxigenic Escherichia coli O157:H19. J. Proteomics 2013, 80, 78-90.

Poole, K. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med. 2007, 39, 162—176.
Hegstad, K.; Langsrud, S.; Lunestad, B.T.; Scheie, A.A.; Sunde, M.; Yazdankhah, S.P. Does the
wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial
resistance and thus threaten our health? Microb. Drug Resist. 2010, 16, 91-104.

Huet, A.A.; Raygada, J.L.; Mendiratta, K.; Seo, S.M.; Kaatz, G.W. Multidrug efflux pump
overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides
and dyes. Microbiol. SGM 2008, 154, 3144-3153.

Putman, M.; van Veen, H-W.; Konings, W.N. Molecular properties of bacterial multidrug
transporters. Microbiol. Mol. Biol. Rev. 2000, 64, 672—693.

Oethinger, M.; Kern, W.V.; Jellen-Ritter, A.S.; McMurry, L.M.; Levy, S.B. Ineffectiveness of
topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in
Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob. Agents Chemother. 2000,
44, 10-13.

Jaglic, Z.; Cervinkova, D. Genetic basis of resistance to quaternary ammonium compounds—The
gac genes and their role: A review. Vet. Med. 2012, 57, 275-281.



Antibiotics 2015, 4 597

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Gilbert, P.; McBain, A.J.; Bloomfield, S.F. Biocide abuse and antimicrobial resistance: Being clear
about the issues. J. Antimicrob. Chemother. 2002, 50, 137-139.

Langsrud, S.; Sundheim, G.; Holck, A.L. Cross-resistance to antibiotics of Escherichia coli adapted
to benzalkonium chloride or exposed to stress-inducers. J. Appl. Microbiol. 2004, 96, 201-208.
Trias, J.; Benz, R. Permeability of the cell wall of Mycobacterium smegmatis. Mol. Microbiol.
1994, /4, 283-290.

Karatzas, K.A.G.; Randall, L.P.; Webber, M.; Piddock, L.J.V.; Humphrey, T.J.; Woodward, M.J.;
Coldham, N.G. Phenotypic and proteomic characterization of multiply antibiotic-resistant variants
of Salmonella enterica serovar Typhimurium selected following exposure to disinfectants.
Appl. Environ. Microbiol. 2008, 74, 1508-1516.

Grkovic, S.; Brown, M.H.; Skurray, R.A. Regulation of bacterial drug export systems.
Microbiol. Mol. Biol. Rev. 2002, 66, 671-701.

Oethinger, M.; Podglajen, 1.; Kern, W.V.; Levy, S.B. Overexpression of the mard or soxS
regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob. Agents
Chemother. 1998, 42, 2089-2094.

Hao, Z.; Lou, H.; Zhu, R.; Zhu, J.; Zhang, D.; Zhao, B.S.; Zeng, S.; Chen, X.; Chan, J.; He, C.;
et al. The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nat.
Chem. Biol. 2014, 10, 21-28.

Lee, H.H.; Molla, M.N.; Cantor, C.R.; Collins, J.J. Bacterial charity work leads to population-wide
resistance. Nature 2010, 467, 82—85.

Threlfall, E.J. Epidemic Salmonella typhimurium DT 104—A truly international multiresistant
clone. J. Antimicrob. Chemother. 2000, 46, 7—-10.

Ciric, L.; Mullany, P.; Roberts, A.P. Antibiotic and antiseptic resistance genes are linked on a novel
mobile genetic element: Tn6087. J. Antimicrob. Chemother. 2011, 66, 2235-2239.

Carattoli, A. Importance of integrons in the diffusion of resistance. Vet. Res. 2001, 32, doi:10.1051/
vetres:2001122.

Paulsen, I.T.; Littlejohn, T.G.; Radstrom, P.; Sundstrom, L.; Skold, O.; Swedberg, G.; Skurray, R.A.
The 3'-conserved segment of integrons contains a gene associated with multidrug resistance to
antiseptics and disinfectants. Antimicrob. Agents Chemother. 1993, 37, 761-768.

Agga, G.E.; Scott, H.M.; Amachawadi, R.G.; Nagaraja, T.G.; Vinasco, J.; Bai, J.; Norby, B.;
Renter, D.G.; Dritz, S.S.; Nelssen, J.L.; et al. Effects of chlortetracycline and copper
supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs. Prev. Vet.
Med. 2014, 114, 231-246.

Gullberg, E.; Albrecht, L.M.; Karlsson, C.; Sandegren, L.; Andersson, D.I. Selection of a multidrug
resistance plasmid by sublethal levels of antibiotics and heavy metals. MBIO 2014, 35,
doi:10.1128/mBi0.01918-14.

Randall, L.P.; Cooles, S.W.; Piddock, L.J.V.; Woodward, M.J. Effect of triclosan or a phenolic
farm disinfectant on the selection of antibiotic-resistant Sa/monella enterica. J. Antimicrob. Chemother.
2004, 54, 621-627.

Kastbjerg, V.G.; Hein-Kristensen, L.; Gram, L. Triclosan-induced aminoglycoside-tolerant
Listeria monocytogenes isolates can appear as small-colony variants. Antimicrob. Agents Chemother.
2014, 58,3124-3132.



Antibiotics 2015, 4 598

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

Guo, M.T.; Yuan, Q.B.; Yang, J. Distinguishing effects of ultraviolet exposure and chlorination on
the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ. Sci. Technol.
2015, 49, 5771-5778.

Rensing, C.; Grass, G. Escherichia coli mechanisms of copper homeostasis in a changing
environment. FEMS Microbiol. Rev. 2003, 27, 197-213.

Beard, S.J.; Ciccognani, D.T.; Hughes, M.N.; Poole, R.K. Metal ion-catalysed hydrolysis of
ampicillin in microbiological growth media. FEMS Microbiol. Lett. 1992, 96, 207-211.

Holzel, C.S.; Miiller, C.; Harms, K.S.; Mikolajewski, S.; Schéfer, S.; Schwaiger, K.; Bauer, J.
Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance. Environ. Res. 2012,
113,21-27.

Mukherjee, G.; Ghosh, T. Metal ion interaction with penicillins—Part VII: Mixed-ligand complex
formation of cobalt (II), nickel (II), copper (II), and zinc (II) with ampicillin and nucleic bases.
J. Inorg. Biochem. 1995, 59, 827-833.

Rutala, W.A.; Stiegel, M.M.; Sarubbi, F.A.; Weber, D.J. Susceptibility of antibiotic-susceptible
and antibiotic-resistant hospital bacteria to disinfectants. Infect. Control Hosp. Epidemiol. 1997,
18,417-421.

McLaren, 1.; Wales, A.; Breslin, M.; Davies, R. Evaluation of commonly-used farm disinfectants
in wet and dry models of Sa/monella farm contamination. Avian Pathol. 2011, 40, 33—42.
Holman, D.B.; Chénier, M.R. Temporal changes and the effect of subtherapeutic concentrations of
antibiotics in the gut microbiota of swine. FEMS Microbiol. Ecol. 2014, 90, 599—608.
Stepanauskas, R.; Glenn, T.C.; Jagoe, C.H.; Tuckfield, R.C.; Lindell, A.H.; King, C.J.; McArthur, J.V.
Coselection for microbial resistance to metals and antibiotics in freshwater microcosms.
Environ. Microbiol. 2006, 8, 1510-1514.

Tandukar, M.; Oh, S.; Tezel, U.; Konstantinidis, K. T.; Pavlostathis, S.G. Long-term exposure to
benzalkonium chloride disinfectants results in change of microbial community structure and
increased antimicrobial resistance. Environ. Sci. Technol. 2013, 47, 9730-9738.

Yazdankhah, S.P.; Scheie, A.A.; Hoiby, E.A.; Lunestad, B.T.; Heir, E.; Fotland, T.Q.; Naterstad, K.;
Kruse, H. Triclosan and antimicrobial resistance in bacteria: An overview. Microb. Drug Resist.
2006, 12, 83-90.

Buffet-Bataillon, S.; Branger, B.; Cormier, M.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Effect
of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical
E. coli isolates on antibiotic susceptibilities and clinical outcomes. J. Hosp. Infect. 2011, 79, 141-146.
Buffet-Bataillon, S.; le Jeune, A.; le Gall-David, S.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A.
Molecular mechanisms of higher MICs of antibiotics and quaternary ammonium compounds for
Escherichia coli isolated from bacteraemia. J. Antimicrob. Chemother. 2012, 67, 2837-2842.
Willinghan, E.M.; Sander, J.E.; Thayer, S.G.; Wilson, J.L. Investigation of bacterial resistance to
hatchery disinfectants. Avian Dis. 1996, 40, 510-515.

Martin, H.; Maris, P. Resistance of 310 Gram-positive strains isolated from milking cow udders.
Vet. Res. 1995, 26, 43-56.

Lear, J.C.; Maillard, J.Y.; Dettmar, P.W.; Goddard, P.A.; Russell, A.D. Chloroxylenol- and
triclosan-tolerant bacteria from industrial sources. J. Ind. Microbiol. Biotechnol. 2002, 29, 238-242.



Antibiotics 2015, 4 599

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

Braoudaki, M.; Hilton, A.C. Adaptive resistance to biocides in Salmonella enterica and
Escherichia coli O157 and cross-resistance to antimicrobial agents. J. Clin. Microbiol. 2004, 42,
73-78.

Ledder, R.G.; Gilbert, P.; Willis, C.; McBain, A.J. Effects of chronic triclosan exposure upon the
antimicrobial susceptibility of 40 ex-situ environmental and human isolates. J. Appl. Microbiol.
2006, 100, 1132—-1140.

McBain, A.J.; Ledder, R.G.; Sreenivasan, P.; Gilbert, P. Selection for high-level resistance by
chronic triclosan exposure is not universal. J. Antimicrob. Chemother. 2004, 53, 772—777.
Sheridan, A.; Lenahan, M.; Dufty, G.; Fanning, S.; Burgess, C. The potential for biocide tolerance
in Escherichia coli and its impact on the response to food processing stresses. Food Control 2012,
26, 98-106.

Karatzas, K.A.G.; Webber, M.A.; Jorgensen, F.;, Woodward, M.J.; Piddock, L.J.V;
Humphrey, T.J. Prolonged treatment of Salmonella enterica serovar Typhimurium with
commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced
invasiveness. J. Antimicrob. Chemother. 2007, 60, 947-955.

Alonso-Hernando, A.; Capita, R.; Prieto, M.; Alonso-Calleja, C. Comparison of antibiotic
resistance patterns in Listeria monocytogenes and Salmonella enterica strains pre-exposed and
exposed to poultry decontaminants. Food Control 2009, 20, 1108—1111.

Soumet, C.; Fourreau, E.; Legrandois, P.; Maris, P. Resistance to phenicol compounds following
adaptation to quaternary ammonium compounds in Escherichia coli. Vet. Microbiol. 2012, 158,
147-152.

EFSA Panel on Biological Hazards (BIOHAZ). Assessment of the possible effect of the four
antimicrobial treatment substances on the emergence of antimicrobial resistanc. EFSA J. 2008, 6,
do0i:10.2903/j.efsa.2008.659.

Potenski, C.J.; Gandhi, M.; Matthews, K.R. Exposure of Salmonella Enteritidis to chlorine or food
preservatives increases susceptibility to antibiotics Corrigendum: The correct title is “Exposure of
Salmonella Enteritidis to chlorine or food preservatives decreases susceptibility to antibiotics”.
FEMS Microbiol. Lett. 2003, 220, 181-186.

Pumbwe, L.; Skilbeck, C.A.; Wexler, H.M. Induction of multiple antibiotic resistance in
Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used
analgesics, antiseptics and cleaning agents. J. Antimicrob. Chemother. 2007, 60, 1288—1297.
McMurry, L.M.; Oethinger, M.; Levy, S.B. Overexpression of marA, soxS, or acrAB produces
resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol. Lett.
1998, 166, 305-309.

Braoudaki, M.; Hilton, A.C. Mechanisms of resistance in Salmonella enterica adapted to
erythromycin, benzalkonium chloride and triclosan. Int. J. Antimicrob. Agents 2005, 25, 31-37.
Whitehead, R.N.; Overton, T.W.; Kemp, C.L.; Webber, M.A. Exposure of Salmonella enterica
serovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a
single step. PLoS ONE 2011, 6, e22833.

Fernandez-Fuentes, M.A.; Morente, E.O.; Abriouel, H.; Pulido, R.P.; Galvez, A. Antimicrobial
resistance determinants in antibiotic and biocide-resistant gram-negative bacteria from organic
foods. Food Control 2014, 37, 9—14.



Antibiotics 2015, 4 600

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

Thorrold, C.A.; Letsoalo, M.E.; Duse, A.G.; Marais, E. Efflux pump activity in fluoroquinolone
and tetracycline resistant Salmonella and E. coli implicated in reduced susceptibility to household
antimicrobial cleaning agents. Int. J. Food Microbiol. 2007, 113, 315-320.

Yamamoto, T.; Tamura, Y.; Yokota, T. Antiseptic and antibiotic resistance plasmid in
Staphylococcus aureus that possesses ability to confer chlorhexidine and acrinol resistance.
Antimicrob. Agents Chemother. 1988, 32, 932-935.

Cervinkova, D.; Babak, V.; Marosevic, D.; Kubikova, 1.; Jaglic, Z. The role of the gacA gene in
mediating resistance to quaternary ammonium compounds. Microb. Drug Resist. 2012, 19, 160-167.
Berg, J.; Tom-Petersen, A.; Nybroe, O. Copper amendment of agricultural soil selects for bacterial
antibiotic resistance in the field. Lett. Appl. Microbiol. 2005, 40, 146—-151.

Cavaco, L.M.; Hasman, H.; Stegger, M.; Andersen, P.S.; Skov, R.; Fluit, A.C.; Ito, T.; Aarestrup, F.M.
Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in methicillin-resistant
Staphylococcus aureus CC398 isolates. Antimicrob. Agents Chemother. 2010, 54, 3605-3608.
Vahjen, W.; Pietruszynska, D.; Starke, I.C.; Zentek, J. High dietary zinc supplementation increases
the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs.
Gut Pathog. 2015, 7, doi:10.1186/s13099-015-0071-3.

Solioz, M.; Stoyanov, J.V. Copper homeostasis in Enterococcus hirae. FEMS Microbiol. Rev.
2003, 27, 183-195.

Cardak, M.; Altug, G. Species distribution and heavy metal resistance of Enterobacteriaceae
members isolated from Istanbul Strait. Fresenius Environ. Bull. 2014, 23, 2620-2626.

Hasman, H.; Aarestrup, F.M. tcrB a gene conferring transferable copper resistance in Enterococcus
faecium: Occurrence, transferability, and linkage to macrolide and glycopeptide resistance.
Antimicrob. Agents Chemother. 2002, 46, 1410-1416.

Klare, I.; Heier, H.; Claus, H.; Reissbrodt, R.; Witte, W. van4-mediated high-level glycopeptide
resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol. Lett. 1995, 125,
165-172.

Becerril, R.; Nerin, C.; Gomez-Lus, R. Evaluation of bacterial resistance to essential oils and
antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathog. Dis. 2012,
9, 699-705.

Fadli, M.; Chevalier, J.; Hassani, L.; Mezrioui, N.E.; Pages, J.M. Natural extracts stimulate
membrane-associated mechanisms of resistance in Gram-negative bacteria. Lett. Appl. Microbiol.
2014, 58, 472-477.

McMahon, M.A.S.; Blair, 1.S.; Moore, J.E.; McDowell, D.A. Habituation to sub-lethal
concentrations of tea tree oil (Melaleuca alternifolia) is associated with reduced susceptibility to
antibiotics in human pathogens. J. Antimicrob. Chemother. 2007, 59, 125—-127.

Oosterik, L.H.; Peeters, L.; Mutuku, I.; Goddeeris, B.M.; Butaye, P. Susceptibility of Avian
Pathogenic Escherichia coli from laying hens in Belgium to antibiotics and disinfectants and
integron prevalence. Avian Dis. 2014, 58, 271-278.

Zou, L.; Meng, J.; McDermott, P.F.; Wang, F.; Yang, Q.; Cao, G.; Hoffmann, M.; Zhao, S.
Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA.
J. Antimicrob. Chemother. 2014, 69, 2644-2649.



Antibiotics 2015, 4 601

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

Randall, L.P.; Clouting, C.S.; Gradel, K.O.; Clifton-Hadley, F.A.; Davies, R.D.; Woodward, M.J.
Farm disinfectants select for cyclohexane resistance, a marker of multiple antibiotic resistance, in
Escherichia coli. J. Appl. Microbiol. 2005, 98, 556-563.

Braoudaki, M.; Hilton, A.C. Low level of cross-resistance between triclosan and antibiotics in
Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol. Lett. 2004,
235, 305-309.

Gradel, K.O.; Randall, L.; Sayers, A.R.; Davies, R.H. Possible associations between Salmonella
persistence in poultry houses and resistance to commonly used disinfectants and a putative role of
mar. Vet. Microbiol. 2005, 107, 127-138.

Gantzhorn, M.R.; Pedersen, K.; Olsen, J.E.; Thomsen, L.E. Biocide and antibiotic susceptibility of
Salmonella isolates obtained before and after cleaning at six Danish pig slaughterhouses. /nt. J.
Food Microbiol. 2014, 181, 53-59.

Chuanchuen, R.; Pathanasophon, P.; Khemtong, S.; Wannaprasat, W.; Padungtod, P.
Susceptibilities to antimicrobials and disinfectants in Salmonella isolates obtained from poultry
and swine in Thailand. J. Vet. Med. Sci. 2008, 70, 595-601.

Copitch, J.L.; Whitehead, R.N.; Webber, M.A. Prevalence of decreased susceptibility to triclosan
in Salmonella enterica isolates from animals and humans and association with multiple drug
resistance. Int. J. Antimicrob. Agents 2010, 36, 247-251.

Randall, L.P.; Cooles, S.W.; Sayers, A.R.; Woodward, M.J. Association between cyclohexane
resistance in Sal/monella of different serovars and increased resistance to multiple antibiotics,
disinfectants and dyes. J. Med. Microbiol. 2001, 50, 919-924.

Guo, W.; Cui, S.; Xu, X.; Wang, H. Resistant mechanism study of benzalkonium chloride selected
Salmonella Typhimurium mutants. Microb. Drug Resist. 2014, 20, 11-16.

Randall, L.P.; Cooles, S.W.; Coldham, N.G.; Penuela, E.G.; Mott, A.C.; Woodward, M.J.;
Piddock, L.J.V.; Webber, M.A. Commonly used farm disinfectants can select for mutant
Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics
without compromising virulence. J. Antimicrob. Chemother. 2007, 60, 1273—1280.

Randall, L.P.; Bagnall, M.C.; Karatzas, K.A.; Coldham, N.C.; Piddock, L.J.V.; Woodward, M.J.
Fitness and dissemination of disinfectant-selected multiple-antibiotic-resistant (MAR) strains of
Salmonella enterica serovar Typhimurium in chickens. J. Antimicrob. Chemother. 2008, 61,
156-162.

BiroSova, L.; MikulaSova, M. Development of triclosan and antibiotic resistance in Sa/monella
enterica serovar Typhimurium. J. Med. Microbiol. 2009, 58, 436—441.

Geornaras, I.; Yang, H.; Moschonas, G.; Nunnelly, M.C.; Belk, K.E.; Nightingale, K.K_;
Woerner, D.R.; Smith, G.C.; Sofos, J.N. Efficacy of chemical interventions against Escherichia coli
0157:H7 and multidrug-resistant and antibiotic-susceptible Salmonella on inoculated beef trimmings.
J. Food Prot. 2012, 75, 1960-1967.

Capita, R. Variation in Sal/monella resistance to poultry chemical decontaminants, based on
serotype, phage type, and antibiotic resistance patterns. J. Food Prot. 2007, 70, 1835-1843.
Molina-Gonzalez, D.; Alonso-Calleja, C.; Alonso-Hernando, A.; Capita, R. Effect of sub-lethal
concentrations of biocides on the susceptibility to antibiotics of multi-drug resistant
Salmonella enterica strains. Food Control 2014, 40, 329-334.,



Antibiotics 2015, 4 602

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

Mourao, J.; Novais, C.; Machado, J.; Peixe, L.; Antunes, P. Metal tolerance in emerging clinically
relevant multidrug-resistant Salmonella enterica serotype 4,[5],12:i:—Clones circulating in
Europe. Int. J. Antimicrob. Agents 2015, 45, 610-616.

Hasman, H.; Moodley, A.; Guardabassi, L.; Stegger, M.; Skov, R.L.; Aarestrup, F.M. Spa type
distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet. Microbiol.
2010, 741, 326-331.

Aarestrup, F.M.; Cavaco, L.; Hasman, H. Decreased susceptibility to zinc chloride is associated
with methicillin resistant Staphylococcus aureus CC398 in Danish swine. Vet. Microbiol. 2010,
142,455-457.

Moodley, A.; Nielsen, S.S.; Guardabassi, L. Author’s response: Critique of paper on “Effects of
tetracycline and zinc on selection of methicillin-resistant Staphylococcus aureus (MRSA)
sequence type 398 in pigs”. Vet. Microbiol. 2014, 173, 401-402.

Moodley, A.; Nielsen, S.S.; Guardabassi, L. Effects of tetracycline and zinc on selection of
methicillin-resistant Staphylococcus aureus (MRSA) sequence type 398 in pigs. Vet. Microbiol.
2011, 752, 420-423.

Slifierz, M.J.; Friendship, R.; Weese, J.S. Zinc oxide therapy increases prevalence and persistence
of methicillin-resistant Staphylococcus aureus in pigs: A randomized controlled trial.
Zoonoses Public Health 2015, 62, 301-308.

Slifierz, M.J.; Friendship, R.M.; Weese, J.S. Methicillin-resistant Staphylococcus aureus in
commercial swine herds is associated with disinfectant and zinc usage. Appl. Environ. Microbiol.
2015, 81, 2690-2695.

Millar, M.R.; Griffin, N.; Keyworth, N. Pattern of antibiotic and heavy-metal ion resistance in
recent hospital isolates of Staphylococcus aureus. Epidemiol. Infect. 1987, 99, 343-347.

Poston, S.M.; Li Saw Hee, F.L. Genetic characterisation of resistance to metal ions in
methicillin-resistant Staphylococcus aureus: Elimination of resistance to cadmium, mercury and
tetracycline with loss of methicillin resistance. J. Med. Microbiol. 1991, 34, 193-201.

Townsend, D.E.; Grubb, W.B.; Ashdown, N. Genetics of drug resistance in methicillin-resistant
Staphylococcus aureus from Australian hospitals. J. Hosp. Infect. 1983, 4, 331-337.
Gomez-Sanz, E.; Kadlec, K.; FeBler, A.T.; Zarazaga, M.; Torres, C.; Schwarz, S. Novel
erm(T)-carrying multiresistance plasmids from porcine and human isolates of methicillin-resistant
Staphylococcus aureus ST398 that also harbor cadmium and copper resistance determinants.
Antimicrob. Agents Chemother. 2013, 57, 3275-3282.

Bae, D.; Mezal, E.H.; Smiley, R.D.; Cheng, C.M.; Khan, A.A. The sub-species characterization
and antimicrobial resistance of Listeria monocytogenes isolated from domestic and imported food
products from 2004 to 2011. Food Res. Int. 2014, 64, 656—663.

Ortiz, S.; Lopez, P.; Lopez, V.; Martinez-Suarez, J.V. Antibiotic susceptibility in benzalkonium
chloride-resistant and -susceptible Listeria monocytogenes strains. Foodborne Pathog. Dis. 2014,
11,517-519.

Aarestrup, F.M.; Kndchel, S.; Hasman, H. Antimicrobial susceptibility of Listeria monocytogenes
from food products. Foodborne Pathog. Dis. 2007, 4, 216-221.

Rakic-Martinez, M.; Drevets, D.A.; Dutta, V.; Katic, V.; Kathariou, S. Listeria monocytogenes
strains selected on ciprofloxacin or the disinfectant benzalkonium chloride exhibit reduced



Antibiotics 2015, 4 603

susceptibility to ciprofloxacin, gentamicin, benzalkonium chloride, and other toxic compounds.
Appl. Environ. Microbiol. 2011, 77, 8714-8721.

165. Romanova, N.A.; Wolffs, P.F.G.; Brovko, L.Y.; Griffiths, M.W. Role of efflux pumps in adaptation
and resistance of Listeria monocytogenes to benzalkonium chloride. Appl. Environ. Microbiol.
2006, 72, 3498-3503.

166. Christensen, E.G.; Gram, L.; Kastbjerg, V.G. Sublethal triclosan exposure decreases susceptibility
to gentamicin and other aminoglycosides in Listeria monocytogenes. Antimicrob. Agents Chemother.
2011, 55, 4064-4071.

167. Loépez-Alonso, V.; Ortiz, S.; Martinez-Suérez, J.V. Genome sequences of five disinfectant-resistant
Listeria monocytogenes strains from two Iberian pork-processing plants. Genome Announc. 2015,
3,e00077-15.

168. Mavri, A.; Kurin¢i¢, M.; Mozina, S.S. The prevalence of antibiotic and biocide resistance among
Campylobacter coli and Campylobacter jejuni from different sources. Food Technol. Biotechnol.
2012, 50, 371-376.

169. Randall, L.P.; Ridley, A.M.; Cooles, S.W.; Sharma, M.; Sayers, A.R.; Pumbwe, L.; Newell, D.G.;
Piddock, L.J.V.; Woodward, M.J. Prevalence of multiple antibiotic resistance in 443 Campylobacter
spp. isolated from humans and animals. J. Antimicrob. Chemother. 2003, 52, 507-510.

170. Sundsfjord, A.; Willems, R. Enterococcus research: Recent developments and clinical challenges.
Clin. Microbiol. Infect. 2010, 16, 525-526.

171.Schwaiger, K.; Harms, K.S.; Bischoff, M.; Preikschat, P.; Moélle, G.; Bauer-Unkauf, I.; Lindorfer, S.;

Thalhammer, S.; Bauer, J.; Holzel, C.S. Insusceptibility to disinfectants in bacteria from animals,
food and humans—Is there a link to antimicrobial resistance? Front. Microbiol. 2014, 5,
doi:10.3389/fmicb.2014.00088.

172. Pasquaroli, S.; di Cesare, A.; Vignaroli, C.; Conti, G.; Citterio, B.; Biavasco, F. Erythromycin- and
copper-resistant Enterococcus hirae from marine sediment and co-transfer of erm(B) and tcrB to
human Enterococcus faecalis. Diagn. Microbiol. Infect. Dis. 2014, 80, 26-28.

173. Aarestrup, F.M.; Hasman, H.; Jensen, L.B.; Moreno, M.; Herrero, [.A.; Dominguez, L.; Finn, M.;
Franklin, A. Antimicrobial resistance among enterococci from pigs in three European countries.
Appl. Environ. Microbiol. 2002, 68, 4127-4129.

174. Zhang, S.; Wang, D.; Wang, Y.; Hasman, H.; Aarestrup, F.M.; Alwathnani, H.A.; Zhu, Y.-G.;
Rensing, C. Genome sequences of copper resistant and sensitive Enterococcus faecalis strains
isolated from copper-fed pigs in Denmark. Stand. Genomic Sci. 2015, 10, doi:10.1186/s40793-
015-0021-1.

175. Fard, R.M.N.; Heuzenroeder, M.W.; Barton, M.D. Antimicrobial and heavy metal resistance in
commensal enterococci isolated from pigs. Vet. Microbiol. 2011, 148, 276-282.

176. Amachawadi, R.G.; Scott, H.M.; Aperce, C.; Vinasco, J.; Drouillard, J.S.; Nagaraja, T.G. Effects
of in-feed copper and tylosin supplementations on copper and antimicrobial resistance in faecal
enterococci of feedlot cattle. J. Appl. Microbiol. 2015, 118, 1287-1297.

177. Biswal, B.K.; Khairallah, R.; Bibi, K.; Mazza, A.; Gehr, R.; Masson, L.; Frigon, D. Impact of UV
and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes
in uropathogenic Escherichia coli in wastewater effluents. Appl. Environ. Microbiol. 2014, 80,
3656-3666.



Antibiotics 2015, 4 604

178.

179.

180.

181.

Tuckfield, R.C.; McArthur, J.V. Spatial analysis of antibiotic resistance along metal contaminated
streams. Microb. Ecol. 2007, 55, 595-607.

Hernéndez, A.; Ruiz, F.M.; Romero, A.; Martinez, J.L. The binding of triclosan to SmeT, the
repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in
Stenotrophomonas maltophilia. PLOS Pathog. 2011, 7, €1002103.

Suling, W.J.; O’Leary, W.M. Effect of surfactants on antibiotic resistance. Antimicrob. Agents
Chemother. 1975, 8, 334-343.

Zanini, S.F.; Silva-Angulo, A.B.; Rosenthal, A.; Aliaga, D.R.; Martinez, A. Influence of the
treatment of Listeria monocytogenes and Salmonella enterica serovar Typhimurium with citral on
the efficacy of various antibiotics. Foodborne Pathog. Dis. 2014, 11,265-271.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).



