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Abstract: Nuclear magnetic resonance (NMR) spectroscopy is highly unbiased and reproducible,
which provides us a powerful tool to analyze mixtures consisting of small molecules. However,
the compound identification in NMR spectra of mixtures is highly challenging because of chemical
shift variations of the same compound in different mixtures and peak overlapping among molecules.
Here, we present a pseudo-Siamese convolutional neural network method (pSCNN) to identify
compounds in mixtures for NMR spectroscopy. A data augmentation method was implemented for
the superposition of several NMR spectra sampled from a spectral database with random noises. The
augmented dataset was split and used to train, validate and test the pSCNN model. Two experimental
NMR datasets (flavor mixtures and additional flavor mixture) were acquired to benchmark its
performance in real applications. The results show that the proposed method can achieve good
performances in the augmented test set (ACC = 99.80%, TPR = 99.70% and FPR = 0.10%), the
flavor mixtures dataset (ACC = 97.62%, TPR = 96.44% and FPR = 2.29%) and the additional flavor
mixture dataset (ACC = 91.67%, TPR = 100.00% and FPR = 10.53%). We have demonstrated that
the translational invariance of convolutional neural networks can solve the chemical shift variation
problem in NMR spectra. In summary, pSCNN is an off-the-shelf method to identify compounds in
mixtures for NMR spectroscopy because of its accuracy in compound identification and robustness
to chemical shift variation.

Keywords: deep learning; identification; NMR; mixture analysis

1. Introduction

The main technologies for analyzing mixtures consisting of small molecules include
nuclear magnetic resonance (NMR) and mass spectrometry (MS). Each has its advantages
and disadvantages [1] concerning sensitivity and reproducibility. NMR is reproducible
and nondestructive, but its sensitivity is relatively poor, whereas MS is highly sensitive,
it shows low reproducibility [2]. Recently, technologies such as low temperature probes
and high-field NMR spectrometers have achieved large improvements in the sensitivity
of NMR [3]. By probing local magnetic fields surrounding specific atomic nuclei, NMR
can measure signals with the electronic structures and functional groups information from
molecules. Therefore, NMR is particularly useful for identifying the structures of small
molecules [4,5]. Furthermore, the advantages of nondestructive, unbiased and easy sample
preparation make NMR spectroscopy widely used in many fields, including chemistry [6],
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metabolomics [7–9], drug discovery [10–12], food [13,14], natural products [15,16], fla-
vors [17], environments [18], forensic [19], cultural heritage [20], etc. It is mainly used
for three tasks: identification, verification and quantification [21]. For the identification
and verification tasks, it is necessary to evaluate the similarities between NMR spectra.
Similarity methods for NMR spectra can be divided into two categories (chemical shift
similarity and spectral similarity), according to their inputs [22]. The inputs of chemical
shift similarity-based methods are peak tables, which are commonly used for searching
NMR spectral databases [23–25]. The inputs of spectral similarity-based methods are full
NMR spectra, which are used to calculate the vector-based similarity or distance [26].
The traditional similarity methods may fail in real applications because of chemical shift
variations [27]. To avoid the chemical shift variation problem in NMR spectroscopy, the
commonly used strategies are binning [28–30], shift alignment [31–33] and shift-insensitive
similarities [34,35]. They are successfully used for the identification of pure substances and
the verification of complex samples. In many cases, mixtures of small molecules are com-
mon in chemistry, and they can be analyzed by NMR spectroscopy directly without further
separation and purification [36,37]. Due to the signal overlap and interferences in NMR
spectra, the previously mentioned similarity methods may fail in analyzing the mixtures.
Therefore, the identification of components in mixtures is highly challenging. One category
of methods acquires 2D NMR spectra (e.g., TOCSY) and decomposes them using deconvo-
lution methods to obtain the 1D NMR spectra of components for identification [38–42]. The
other category of methods uses statistics, chemometrics and pattern recognition algorithms
to identify components directly from NMR signals [43–47]. Furthermore, the combining MS,
NMR and algorithm delivers good results for the reliable identification of the constituents
in complex mixtures [48].

Deep learning is a category of flexible machine learning methods based on neural
networks with multiple hidden layers to learn multilevel representation automatically for
specific tasks [49]. It has three distinct advantages over the traditional learning methods.
First, their network architectures are flexible enough to handle various kinds of raw in-
puts directly. For instance, there are convolutional neural networks (CNN) for computer
vision [50], recurrent neural networks (RNN) [51], attention networks [52] for natural lan-
guage processing and graph neural networks (GNN) for graph data structures [53]. Second,
the multiple hidden layers can automatically transform the raw inputs into multilevel
representations using a general purpose learning procedure [54]. Third, the deep learning
methods have high expressive power and model capacity because of the depth efficiency,
which can take full advantage of big data [55]. Due to these advantages, deep learning-
based methods have achieved a state-of-the-art performance in numerous related fields of
NMR spectroscopy [56,57], ranging from spectral reconstruction [58–60], denoising [61],
peak picking [62,63], chemical shift prediction [64–68] and molecular recognition (the
SMART method proposed by Zhang et al. in 2017) [69] to molecule identification [70–72]. It
has shown unprecedented capabilities in solving difficult problems in NMR spectroscopy.

In this study, a pseudo-Siamese convolutional neural network (pSCNN) for NMR
spectroscopy was developed to solve the chemical shift variation and the signal overlap
problems in the component identification of mixtures inspired by Siamese neural net-
works [73,74] and the DeepCID method [75]. Each input of pSCNN is a spectral pair
consisting of two full 1H NMR spectra: one is the spectrum of a pure compound from
a spectral database, and the other is the spectrum of a mixture. The spectrum of a pure
compound and the spectrum of a mixture are fed into two independent subnetworks con-
sisting of convolutional layers, respectively. The translation-invariant representations can
be learned for subsequent comparisons. The learned representations of the pure compound
and the mixture are concatenated and fed into dense layers to predict their inclusion rela-
tionship (whether the mixture includes the pure compound or not). A data augmentation
procedure was implemented to generate both positive and negative inputs for training,
validating and testing the pSCNN model. The hyperparameters were optimized to obtain
reasonable architecture and better performances. The compound identification procedure
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was developed by predicting the inputs of each pure compound in the spectral database
and the mixture with the model. The NMR spectra of known flavor mixtures and additional
flavor mixture were acquired by an NMR spectrometer to benchmark the performance of
the proposed method. Finally, the translational invariance of CNN was demonstrated to
be suitable for solving the chemical shift variation problem when identifying compounds
in a mixture with NMR spectroscopy. The main novelties of pSCNN compared to the
SMART method are: (1) the two subnetworks of pSCNN have the same architecture, but
their weights are trained separately, whereas the subnetworks of SMART have the same
weights, and (2) the pSCNN method acquires 1D NMR spectra, while SMART needs 2D
NMR spectra. The acquisition of 2D NMR spectra is time-consuming and highly expensive.
To the best of our knowledge, this is the first work on the comparison of 1D NMR by the
pseudo-Siamese convolutional neural network.

2. Method

The schematic diagram of the proposed pSCNN method is shown in Figure 1. Its
source code is available at https://www.github.com/yuxuanliao/pSCNN (accessed on
4 May 2022). It mainly consists of two parts: a pseudo-Siamese convolutional neural
network and model-based component identification. The data augmentation procedure
is essentially the superposition several NMR spectra sampled from a spectral database at
random ratios with random noises. Both positive and negative spectral pairs are generated
and partitioned into training, validation and test sets. The pSCNN takes an NMR spectral
pair as its input, extracts high-level representations using CNN layers and predicts the
probability of a pure compound in a mixture using dense layers. For each compound in
the database, the model-based component identification predicts the probability of it in a
mixture. The possible components of the mixture can be obtained by filtering the predicted
probabilities using a threshold value. In the subsequent subsections, we will elucidate the
principle of each part of this method as clearly as possible.
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Figure 1. Schematic diagram of the proposed pSCNN method. (a) The network architecture of the
pSCNN model. pSCNN consists of two subnetworks. Each subnetwork consists of six convolu-
tional layers. The extracted features are concatenated and fed into two dense layers for prediction.
(b) pSCNN model-based component identification. The inclusion relationship between each com-
pound in the database and a mixture is predicted by the pSCNN model.

https://www.github.com/yuxuanliao/pSCNN
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2.1. Data Augmentation

The data augmentation and samples split are shown in Figure S1. Due to the good
additivity in the NMR spectra between the mixture and its components, a data augmen-
tation method has been developed, which can be used to generate enough spectra for
training, validating and testing the pSCNN model. Essentially, data augmentation is the
superposition of several flavor standards randomly sampled from the database at random
ratios. Since spectra acquired by an NMR spectrometer contain noises, some random noises
should be generated and added into the augmented spectra. Here, several NMR spectra
were randomly selected from the spectral database, and the spectrum of a specific compo-
nent was chosen as the pure spectrum in the spectral pair. The spectrum of this specific
component was superposed with the other sampled ones at random ratios in a given range
(e.g., 0.2–1.0) to generate positive ones. Negative ones were generated in the same way
without the spectrum of this specific compound. Noises were added into the spectra of both
positive and negative ones. The NMR spectral pair of each augmented sample was obtained
by combining the augmented spectrum with the spectrum of the specific compound. A
total of 22,000 augmented NMR spectral pairs were generated. The augmented dataset was
split into the training set (18,000 spectral pairs), validation set (2000 spectral pairs) and test
set (2000 spectral pairs) randomly. In summary, the augmented dataset was generated for
training the pSCNN model, optimizing the hyperparameters of pSCNN and evaluating its
accuracy, sensitivity and specificity.

2.2. Convolutional Neural Network

CNN is a popular category of deep learning methods in computer vision. Recently, it
has also been widely used in chemistry [76], especially analytical chemistry [77]. It basically
consists of an input layer, convolutional layers, pooling layers, dense layers and an output
layer. Convolutional layers directly learn the multiple-level and translation-invariant
representations from the raw inputs. Pooling layers reduce the dimensionalities of the data
and improve the computational efficiency by combining several adjacent features. Dense
layers perform nonlinear combinations of higher-level representations to achieve specific
classification or regression tasks. The output layer is often a special dense layer, with its
output size equaling the number of labels that each input has.

The core of the convolutional layer is convolution kernels, which are filters of a set
of trainable parameters. Each convolution kernel scans the input with a given stride to
extract features as its output. A feature map is generated by detecting a similar feature at
different locations with the same convolution kernel. The most significant advantages of
the convolutional layer are sparse connectivity and parameter sharing. Sparse connectivity
is a learning process from local to global, which gradually enhances the understanding of
global information with less parameters. Parameter sharing means that the same convo-
lution kernel scans the feature map with a given stride, which can reduce the number of
parameters significantly. The one-dimensional convolution layer is defined as follows:

outNi ,Coutj
= f (biasCoutj

+ weightCoutj
⊗ inputNi ) (1)

where ⊗ is the cross-correlation operation, Coutj is the number of channels, Ni is the batch
size, f () is the activation function and the rectified linear unit (ReLU, f (x) = max(0, x)) is
used as the activation function in this study.

Pooling layers are often used to reduce the dimensions of feature maps by computing
the maximal value or mean value of a small cluster. As a result, the number of parameters
to be learned and the amount of computations are reduced significantly. It can also improve
the translation invariance. Here, the max pooling layer was used in the pooling layers of
the pSCNN model.

Each dense layer is connected to all the outputs of its previous layer. It mainly performs
a nonlinear combination of higher-level features from convolutional layers to achieve a
specific prediction task. Meanwhile, there is a dropout layer following each dense layer to
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avoid overfitting and improve the generalization ability. The output layer is also a dense
layer, with the output size equaling one. Since the output is the probability of a component
in the mixture, Sigmoid is used as the activation function in the output layer.

2.3. Pseudo-Siamese Convolutional Neural Network

Compared with a traditional neural network with one input, a Siamese neural network
uses two subnetworks with the same architecture and weights to extract two comparable
feature vectors from two different inputs. For identifying compounds in mixture-based
NMR spectroscopy, two feature vectors are extracted from the NMR spectrum of a mixture
and the NMR spectrum of a given compound, respectively. Then, these feature vectors are
compared by dense layers to determine their inclusion relationship. Since the NMR spectra
are from the mixture and the pure compound, it is not appropriate to use subnetworks with
the same weights for extracting their feature vectors. In this study, two subnetworks have
the same architecture, but their weights are trained separately. This type of neural networks
is often called pseudo-Siamese neural networks, because the subnetworks do not share
weights. Furthermore, the feature extraction subnetworks employ convolutional layers, so
this neural network is called a pseudo-Siamese convolutional neural network. The learned
feature vectors are concatenated and fed into the dense layers to identify whether the two
inputs have an inclusion relationship, thus achieving compound identification in the NMR
spectra of mixtures.

2.4. Architecture of pSCNN for NMR

The detailed neural network architecture of pSCNN is shown in Figure 2. The input of
pSCNN is an NMR spectral pair, which consists of one NMR spectrum of the mixture and
one of the pure compound. The corresponding label of an NMR spectral pair is 0 or 1:1
if the mixture contains the pure compound and 0 otherwise. After feeding a spectral pair
into pSCNN, their features are extracted by two subnetworks with the same architecture,
respectively. Each subnetwork consists of 6 convolutional layers, each followed by a max
pooling layer. The number of kernels for the convolutional layers is 32, and the kernel size
is 5 × 1. The activation function of the convolutional layers is ReLU. They can learn the
translation-invariant features from NMR spectra effectively, and the extracted features of
two subnetworks are concatenated, flattened and fed into dense layers for comparison. The
number of hidden units for the first dense layer is 100, and its activation function is also a
ReLU. A dropout layer with the dropout rate equaling 0.2 is introduced to the dense layer
for circumventing the overfitting problem. The output layer, the last dense layer, contains
one hidden unit and uses the Sigmoid function as the activation function to form the final
output. Binary cross entropy is chosen as the loss function, since it is suitable for binary
classification problems. The Adam [78] optimizer is chosen as the optimizer because of its
computational efficiency and little memory requirement.

2.5. Compound Identification with pSCNN

Given an NMR spectral database (D) and the NMR spectrum of a mixture (x), compo-
nents in the mixture can be identified by the pSCNN model. The details of this identification
method are described in the following procedure. Assuming that there are N NMR spectra
of the standards in the NMR spectral database, the mixture spectrum is combined with
these N spectra to form N spectral pairs (D1, x), · · · , (DN , x). For each spectral pair, its
probability is predicted by the pSCNN model. After predicting all N spectral pairs, the
probabilities of all compounds in the database are obtained. The probabilities of these
compounds are filtered by setting a threshold value (e.g., 0.5). The components with a
predicted probability greater than this threshold are regarded as candidates in the mixture.
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2.6. Evaluation Metrics

To evaluate the performance of pSCNN on the mixture analysis, the metrics used in
this study are accuracy (ACC), true positive rate (TPR, sensitivity) and false positive rate
(FPR). The mathematical formulas for ACC, TPR and FPR are as follows:

ACC =
TP + TN

TP + TN + FP + FN
(2)

TPR =
TP

TP + FN
(3)

FPR =
FP

TN + FP
(4)

where TP, TN, FP and FN are the number of true positives, true negatives, false positives
and false negatives, respectively. Samples were labeled as positive or negative in binary
classification. If both the prediction value and actual value are positive, the sample is TP. If
both the prediction value and actual value are negative, the sample is TN. The sample is FP
if the prediction value is positive and the actual value is negative or FN if the prediction
value is negative and the actual value is positive.

3. Experiments
3.1. Flavor Standards

Deuterated dimethyl sulfoxide (DMSO-d6, >99.8 atom% D, contains 0.03% (v/v) TMS)
was purchased from Ningbo Cuiying Chemical Technology Co., Ltd., Ningbo, China. A
total of 24 flavor standards were purchased from Guangzhou Huafang tobacco flavor Co.,
Ltd., Guangzhou, China. The information of each flavor standard is listed in Table S1. The
sample solution was produced by dissolving 250 µL of each flavor standard in 500 µL of
DMSO-d6. Then, 600 µL of each sample solution were taken for NMR measurement. All 1H
NMR spectra were acquired at 298 K on a Bruker AVANCE III 400 MHz NMR spectrometer
(Bruker BioSpin, Rheinstetten, Germany). DMSO-d6 was used for the NMR field lock. TMS
was used as the internal standard. The pulse program was chosen as zg30, and the number
of scans was 16.
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3.2. Known Flavor Mixtures

Two, three, four or five flavor standards were mixed randomly to form 15 mixtures
with known components. The information of each flavor mixture is listed in Table S2. Each
flavor mixture was prepared by taking 100 µL of each flavor standard and mixing them.
The above prepared flavor mixture was added to 500 µL of DMSO-d6, then vortex-mixed
for 1 min at room temperature and, finally, transferred 600 µL to an NMR tube for NMR
measurements. The experimental conditions of the known flavor mixtures were set as those
of the flavor standards.

3.3. Additional Flavor Mixture

The additional flavor mixture was provided by third-party personnel in the Technology
Center of China Tobacco Hunan Industrial Co., Ltd., Changsha, China. The components of
the additional flavor mixture were unknown when analyzing it with the pSCNN model.
After submitting the predicted result to the Technology Center of China Tobacco Hunan
Industrial Co., Ltd., we were informed of the corresponding components in this mixture.
The information of the additional flavor mixture is listed in Table S3. The sample solution
was prepared by dissolving 250 µL of the additional flavor mixture in 500 µL of DMSO-d6.
Then, 600 µL of the sample solution was transferred into an NMR tube. As previously
described, the same experimental conditions were used for NMR measurement.

4. Results and Discussion
4.1. Implementation and Computing Resources

In this study, the neural network and related modules were implemented in Python
(version 3.8.13), Tensorflow GPU package (version 2.5.0) and scikit-learn (version 1.0.0).
The NMR spectra were read into Python using the nmrglue package (version 0.8.dev0).
The computing tasks were submitted to the Inspur TS10000 high-performance computing
(HPC) cluster of Central South University using the Slurm workload manager (version
20.02.3). This HPC cluster has 1022 central processing unit (CPU) nodes, 10 fat nodes and
26 graphics processing unit (GPU) nodes. For the training of pSCNN models, it was a
GPU node with 2 × Intel(R) Xeon(R) Gold 6248R processors, 2 × Nvidia Tesla V100s, 384G
DDR4 memory and a CentOS 7.5 operating system.

4.2. Validation of Data Augmentation

The augmented and experimental NMR spectra were compared to validate the ra-
tionality of the data augmentation. Here, the F10 mixture consisting of Sulcatone, L-
Menthone, Citronellal and Leaf acetate was used as an example. An augmented spectrum
was generated by the data augmentation method in Section 2.1 with the components of
the F10 mixture and random ratios. Figure 3a,b show the augmented spectrum and the
experimental spectrum of F10, respectively. The augmented spectrum is basically consistent
with the experimental spectra from the local zoomed-in views, except for the chemical
shift variations in the experimental spectra. Thus, it has shown that the data augmen-
tation method can generate reasonable NMR spectra of mixtures from the NMR spectra
of components.
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4.3. Hyperparameters Optimization and Training

The optimization of the hyperparameters is crucial for establishing a high-performance
model. For the pSCNN model used in this study, the key hyperparameters are the epoch,
the learning rate and the number of convolutional layers, which should be optimized.
Firstly, the epoch was set to 200, and the model was trained. The loss–epoch and accuracy–
epoch curves are shown in Figure 4a. It can be seen that the model is basically stable after
100 epochs. Therefore, the epoch was set to 100. For the learning rate, the training is slow
when too small, and the model does not converge when too large. Here, we investigated
the learning rates in the range of 10−2 to 10−5. Combining the results in Table 1 and
Figure 4b, it can be concluded that the model fails to converge with the learning rates in
a range from 10−2 to 10−3. If the learning rate is set between 10−4 and 10−5, the model
can be successfully trained. For the number of convolutional layers, we tested inside the
range of 5–10. As can be seen in Table 1 and Figure 4b, the accuracy of the validation
set increases and then decreases as the number of convolutional layers increases. The
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best performance was achieved when the number of layers was equal to 6. Therefore, the
optimized epoch, learning rate and number of convolutional layers were 100, 10−4 and 6,
respectively. The final model was chosen as M3, which could achieve an accuracy of 0.9990
on the validation set.
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Table 1. The accuracy of different pSCNN models on the validation set.

Name of Models Epoch The Number of Convolutional Layers * Learning Rate ACC

M1 100 6 10−2 0.4900
M2 100 6 10−3 0.4935
M3 100 6 10−4 0.9990
M4 100 6 10−5 0.9935
M5 100 5 10−4 0.9975
M6 100 7 10−4 0.9975
M7 100 8 10−4 0.9935
M8 100 9 10−4 0.9925
M9 100 10 10−4 0.9860

* A max pooling layer whose stride is set to 2 follows a convolutional layer.

4.4. Performance Evaluation

The training set and the validation set have already been used to update the parameters
and adjust the hyperparameters, respectively. The performance evaluation metrics obtained
on them are often overoptimistic. To test the true performance of the model on unknown
samples, an independent test set is usually used for a performance evaluation. Here, the
test set in the augmented dataset was used to evaluate the performance of the pSCNN
model on unseen samples. Each spectral pair in the test set was fed into pSCNN, and their
features were extracted and transformed into the learned representations to predict the
possibility of the pure compound in the mixture. There were 2000 spectral pairs in the test
set. As shown in Figure 5, its ACC, TPR and FPR are 99.80%, 99.70% and 0.10% respectively,
which guarantee the performance of the pSCNN model on unseen samples.
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4.5. Results of Mixture Analysis

Due to its excellent performance on the test set, the pSCNN model was used to identify
the flavor standards in the known flavor mixtures and the additional flavor mixture. For
the known flavor mixtures, the components in each mixture are known. Therefore, they
were used to verify the identification performance of pSCNN on real NMR spectra. The
NMR spectrum of each mixture in the known flavor mixtures dataset was combined with
the NMR spectra of flavor standards to form its spectral pairs. These spectral pairs were
fed into the pSCNN model to predict the probabilities of the flavor standards in this flavor
mixture. The results of the known flavor mixtures are shown in Figure 5 and Table 2. The
detailed results of all mixtures in the flavor mixtures dataset are listed in Table S4. It can be
seen that the ACC, TPR and FPR are 97.62%, 96.44% and 2.29%, respectively. Therefore,
the performance of pSCNN for component identification in the mixtures was verified by
analyzing the known flavor mixtures dataset.

Table 2. The results of the pSCNN model on the experimental NMR datasets.

Datasets ACC TPR FPR

flavor mixtures dataset 97.62% 96.44% 2.29%
additional flavor mixture dataset 91.67% 100.00% 10.53%

It was further applied to analyze the unknown flavor mixtures in the additional flavor
mixture dataset. Since the components of U1 were unknown when analyzing it with the
pSCNN model, it can test the accuracy, sensitivity and specificity of pSCNN for real-world
applications. It was predicted in the same way as for the mixtures in the known flavor
mixtures. For the additional flavor mixture, the model-based prediction probabilities for
the U1 mixture were ranked from high to low as β-Ionone, γ-Decalactone, γ-Nonanoic
lactone, Citral, Leaf alcohol, Isovaleric acid and 2-Methylbutyric acid. After submitting
the predicted candidates to the Technology Center of China Tobacco Hunan Industrial
Co., Ltd., they sent us the real formulation of U1. The formulation of U1 is listed in Table
S5. It can be seen that the predicted results of pSCNN match well with the formulation
provided by the Technology Centre of China Tobacco Hunan Industrial Co., Ltd. The



Molecules 2022, 27, 3653 11 of 16

statistical results are also shown in Figure 5 and Table 2. The detailed results of the mixture
in the additional flavor mixture dataset are listed in Table S5. The ACC, TPR and FPR on
the additional flavor mixture dataset are 91.67%, 100.00% and 10.53%, respectively. The
FPR in the additional flavor mixture (10.53%) is high, and the reasons are that Isovaleric
acid and 2-Methylbutyric acid are structural isomers, and γ-Decalactone and γ-Nonanoic
lactone are homologs, because their molecular structures differ by only one CH2 group.
Actually, FPR is not an issue; this is because the false positives in the candidate components
can be filtered out by further analysis. This shows that pSCNN is an efficient method for
identifying compounds in real unknown mixtures.

4.6. Translation Invariance for NMR Peaks

In NMR spectra, the chemical shifts of the same compound may vary in different
samples because of influences from interactions between components, instruments or the
environment. Convolutional neural networks have a translational invariance advantage
due to the learned high-level representations from raw signals by their convolutional
layers and pooling layers. Therefore, it would be interesting to investigate the relation-
ship between chemical shift variations in NMR spectra and translation invariance of the
convolutional neural networks.

First, the experimental NMR spectra are used to determine the interval of the chemical
shift variations. The chemical shift of active hydrogen is highly correlated with the concen-
tration of the compound because of the hydrogen-bonding interaction, so the chemical shift
variations of active hydrogen in different NMR spectra are not taken into account. The chem-
ical shift variations of the deuterated solvent (DMSO-d6 2.50 ppm and HDO 3.33 ppm [79])
are also not considered, as the solvent signal is not the signal of interest. By observing
the NMR spectra of all mixtures and their corresponding components, the chemical shift
variation of each spectral pair was calculated by the deviation between the chemical shift
of the peaks of the mixture and the chemical shift of the peaks for its component. As shown
in Figure 6a, the mean value and the standard deviation of the chemical shift variation
are −0.0016 and 0.0077, respectively. The obtained interval was (−0.013, 0.010) according
to the mean value ±1.5 × standard deviation. This interval contains the chemical shift
variations of 90.52% of the characteristic peaks in the spectral pairs.

To generate NMR spectra with different chemical shift variations, the NMR spectra of
the mixtures were obtained by the data augmentation method, and their corresponding
components were retrieved from the spectral database. The number of components in
these mixtures are 2, 3, 4 and 5. Two spectral pairs were generated under each number of
component; thus, eight spectral pairs were generated. The information of the augmented
spectral pairs is listed in Table S6. A total of 28 spectral pairs were obtained by combining
each mixture with its components. For each spectral pair, chemical shifts of the NMR
spectrum of its mixture were varied gradually within ±0.052 ppm ranges, and the chemical
shifts of the NMR spectra of its components were unchanged. A varied spectral pair was
obtained after each chemical shift variation, and 35 varied spectral pairs were obtained for
each spectral pair. Thus, 980 spectral pairs with different chemical shift variations were
obtained to verify the translation invariance of the pSCNN model. The overall scheme
for verifying the translation invariance is shown in Figure S1. For the spectral pair of
a specific mixture and a specific component, its varied spectral pairs were fed into the
pSCNN model to predict the probabilities of the component in the mixture under different
chemical shift variations. The probabilities of the spectral pairs with different chemical shift
variations are listed in Table S7. The results of representative spectral pairs are shown in
Figure 6b–d, respectively. It can be seen that the minimum interval with probabilities higher
than 0.5 (−0.015, 0.015) exceeded the obtained interval (−0.013, 0.010). The results showed
that pSCNN can be directly used to compare the two NMR spectra without chemical
shift alignment.
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5. Conclusions

In this study, an end-to-end method for compound identification in mixtures was
developed based on a pseudo-Siamese convolutional neural network and 1H NMR spec-
troscopy. Two subnetworks consisting of convolutional layers were chosen to learn the
representations from the spectra of pure compounds and the representations from the
spectra of mixtures, respectively. The pure compound representation and the mixture
representation were concatenated and fed into the dense layers to predict the probability
of the compound in the mixture. The data augmentation method was used to generate
22,000 dual inputs from the NMR spectral database of flavor standards, which was ran-
domly divided into the training set, validation set and test set. The performance of pSCNN
was evaluated on the test set in terms of the ACC (99.80%), TPR (99.70%) and FPR (0.10%).
Furthermore, the proposed method was applied in the flavor mixtures dataset and the
additional flavor mixture dataset to benchmark its performance in real mixtures. The
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performance metrics were ACC = 97.62%, TPR = 96.44% and FPR = 2.29% for the flavor
mixtures dataset and ACC = 91.67%, TPR = 100.00% and FPR = 10.53% for the additional
flavor mixture dataset. The results show that this method is able to identify components
in mixtures accurately. Even in the chemical shift variations up to 0.015 ppm, the trained
model can still identify the components in a mixture, which should be attributed to the
translation invariance introduced by the convolutional layers and pooling layers in pSCNN.
In conclusion, deep learning methods, especially pSCNN, are highly promising approaches
to identify compounds in the mixture based on NMR spectroscopy. Due to the flexibility of
CNN, the concept of pSCNN can be easily extended to NMR spectral library searching, the
verification of complex samples and compound identification with multidimensional NMR
spectroscopy. Further, high-field NMR spectrometers and low temperature probes can
increase the sensitivity, which may help to analyze more challenging samples and improve
the accuracy of the prediction results.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules27123653/s1: Figure S1: Figure of the data augmentation
and samples split. Figure S2: Flowchart of the overall scheme for verifying the translation invariance.
Table S1: Table of information of 24 flavor standards. Table S2: Table of information of the flavor
mixtures. Table S3: Table of information of the additional flavor mixture. Table S4: Table of the
detailed results of all mixtures in the flavor mixtures dataset. Table S5: Table of detailed results of the
mixture in the additional flavor mixture dataset. Table S6: Table of information of the augmented
mixtures. Table S7: Table of probabilities of spectral pairs with different chemical shift variations.
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