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Abstract: Graphene can be used as a drug carrier of doxorubicin (DOX) to reduce the side effects
of doxorubicin. However, there is limited research on the surface chemical modifications and
biological effects of graphene oxide (GO). Therefore, it is necessary to explore the DOX affinity of
different oxygen-containing functional groups in the graphene system. We constructed graphene
system models and studied the structure and distribution of epoxy and hydroxyl groups on the
carbon surface. Based on molecular dynamics simulations and density functional theory (DFT), we
investigated the interaction between DOX and either pristine graphene or GO with different ratios of
oxygen-containing groups. The hydroxyl groups exhibited a stronger affinity for DOX than the epoxy
groups. Therefore, the DOX loading capacity of graphene systems can be adjusted by increasing the
ratio of hydroxyl to epoxy groups on the carbon surface.

Keywords: graphene; doxorubicin; density functional theory; drug delivery; reduced density gradient

1. Introduction

Graphene and its derivatives have great research value and application prospects in
various fields because of their unique structures [1,2]. In particular, graphene is increas-
ingly being used in biomedicine because of its excellent drug delivery properties [3,4].
However, the high hydrophobicity of raw graphene prevents solubility and dispersion,
and the cytotoxicity makes hemolysis likely, limiting drug delivery applications [5,6]. A
derivative of graphene, graphene oxide (GO), has a large number of hydrophilic groups,
such as hydroxyl and carboxyl groups, on the surface and edges, which confer stability
and wettability in aqueous solutions and polar solvents. Furthermore, GO disperses well
in water, an essential property of drug carriers [7,8]. GO can be modified to increase its
stability and safety and is suitable for clinical applications [9–11]. Dai et al. demonstrated
that functionalized nanographene tablets with good biocompatibility and no significant
cytotoxicity can be loaded with aromatic anticancer drugs. Yang et al. demonstrated
that GO can be a highly effective aromatic anticancer drug carrier by preparing a novel
GO-doxorubicin (DOX) hydrochloride nanohybrid material [12,13]. However, GO-based
nanoscale drug carriers have not been fully studied, and it is necessary to improve the drug
loading efficiency of GO through functionalization and surface modification.

DOX, a common clinical anticancer drug, inhibits the DNA replication of cancer
cells [14]. DOX has remarkable therapeutic effects on various tumors [15–17]. However,
because of its strong cytotoxicity and damaging effects on normal cells, it is often used
clinically in combination with drug carriers [18].
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GO contains both sp3- and sp2-hybridized carbon atoms, with the sp3-hybridized
carbon atoms mainly involved in oxygen-containing functional groups. Therefore, different
interaction mechanisms are involved in the adsorption process between DOX and GO.
Tonel et al. reported that the most stable conformation is achieved when DOX is parallel to
pristine graphene [2]. Vovusha et al. showed that adsorption between DOX and the sp2
region of GO is stronger than that at the sp3 region [5]. Therefore, in order to use graphene
systems as drug carriers, specialized surface and functional modifications are essential.
These prior studies have provided a theoretical basis for exploring the interactions between
DOX and carbon nanostructures.

Understanding the interaction between the graphene system and DOX, especially the
role of the functional groups in the adsorption process, is key. A previous study confirmed
that functional groups play important roles in the adsorption of DOX to carbon nanotube
drug carriers [14,19]. The hydrogen bonds between DOX and the hydroxyl groups of the
carbon nanotubes significantly affect the adsorption and immobilization processes [9]. It
has been reported that variations in surface chemistry may result in changes in biochemical
toxicity and solubility [20]. Density functional theory (DFT) can be used to understand
the adsorption mechanism of anticancer drugs and inform the regulation of the ratio of
oxygen-containing functional groups. Different oxygen-containing functional groups in GO
have different affinities for DOX; therefore, the loading of anticancer drugs can be regulated
by modifying these groups. Understanding the interaction between oxygen-containing
groups and anticancer drugs is essential for realizing the clinical applications of GO as a
drug carrier.

Research on molecular interactions and the ratio of epoxy to hydroxyl groups on
the surface of GO is limited. Therefore, we constructed graphene system models and
studied the structure and distribution of epoxy and hydroxyl groups on the carbon surface.
DFT was used to investigate the mechanism of the interaction between DOX and pristine
graphene, GO with different ratios of oxygen-containing groups. DFT and charge density
difference analyses were also conducted. By exploring the affinities between DOX and
different oxygen-containing functional groups and adjusting the ratio of epoxy to hydroxyl
groups, we aimed to provide a theoretical basis for increasing the DOX loading capacity of
graphene systems.

2. Materials and Methods
2.1. Model Building
2.1.1. DOX

The chemical structure of DOX is shown in Figure 1. DOX belongs to the anthra-
cycline class. It has two parts: a four-ring aromatic hydroxyanthraquinone ring and an
aminoglycoside ring. DOX contains functional groups such as carbonyl, hydroxyl, and
amino groups.
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2.1.2. Pristine Graphene

The pristine graphene surface is composed of 308 carbon atoms, with a surface area of
25.926 Å × 28.495 Å, and the length of the C-C bonds is 1.42 Å (Figure 2). The surface was
modeled using periodic boundary conditions and A vacuum plate of 35 Å thickness was
added to avoid atomic interactions between adjacent layers.
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Figure 2. Representation of pristine graphene surface. (a) Graphite surface structure; (b) graphene
structure with vacuum layer added.

2.1.3. GO

Due to the non-stoichiometric chemical composition of GO, it is difficult to establish a
GO model. The GO surface contains many hydroxyl and epoxy groups, while the edges con-
tain a small number of carbonyl and carboxyl groups; therefore, this study only considered
C8O2(OH)2 units containing epoxy and hydroxyl groups [21]. C8O2(OH)2 is considered a
stable unit of fully oxidized GO structures [22]. However, the exact arrangement of epoxy
groups and hydroxyl groups in C8O2(OH)2 has not been reported. The two hydroxyl
groups are above the carbon plane; the epoxy groups can either both be below the carbon
plane or opposite each other (one on each side of the plane) [23,24].

Here, two different C8O2(OH)2 unit structures were established. In one, both epoxy
groups are below the carbon plane, and both hydroxyl groups are above the carbon plane
(Figure 3a,b). In this unit, by adsorbing DOX onto both sides, the difference in the affinity
of the hydroxyl and epoxy groups for DOX was explored. In the other structure, both
hydroxyl groups were above the carbon plane, while the epoxy groups were opposite each
other (Figure 3c). In order to achieve sufficient interaction between DOX and C8O2(OH)2
units, the GO model used in this study contained three C8O2(OH)2 units, oriented to form
an equilateral triangle.

2.2. Molecular Dynamics Simulation

To establish a more accurate adsorption model, we use molecular dynamics simula-
tions to simulate the adsorption trajectory and search for rough global optimal adsorption
structures, then use this structure as a starting point for DFT optimization. All DFT cal-
culations were performed using CP2K. The Nosé thermostat was used to maintain the
temperature at 300 K. A constant volume was maintained, and 2000 steps were calculated
for sampling.

2.3. Structure Optimization

The structure with the least energy is selected from the molecular dynamics simu-
lation for optimization. DFT calculations were based on a mixed Gaussian and plane
wave (GPW) approach, Perdew-Burke-Ernzerhof (PBE) exchange-related functionals, and
the corresponding pseudo potentials [25–27]. A 500 Ry plane wave density cutoff and
periodic boundary conditions were used [28]. Empirical dispersion corrections were imple-
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mented using the Grimme D3 method [29]. The stopping criterion for geometric optimiza-
tion and energy calculation are set as follows: (a) the maximum interatomic force is less
than 4.5 × 10−4 Bohr/Hartree; (b) the force between root mean square atoms is less than
3 × 10−4 Bohr/Hartree; (c) the maximum displacement is less than 3 × 10−3 Bohr; (d) the
root mean square atomic displacement is less than 1.5 × 10−3 Bohr.
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2.4. Adsorption Energy

The strength of DOX adsorption to the graphene surface can be directly reflected by
the adsorption energy, which is obtained according to the following equation:

Eads = EGS+DOX − (EGS + EDOX) (1)

where EGS+DOX, EGS, and EDOX represent the energies of the complex, graphene, and DOX,
respectively. A negative value of Eads indicates that the adsorption system is stable.

2.5. Reduced Density Gradient (RDG) Analysis

RDG analysis is an extremely useful weak interaction analysis method [30]. It can be
performed using the Multiwfn program for electronic wavefunction analysis [31]. Only
the calculated wave function file needs to be entered to analyze and visualize multiple
types of noncovalent interactions in real space. The RDG can be calculated using the
following equation:

RDG(r) =
1

2(3π2)
1/3
|∇ρ(r)|
ρ(r)4/3 ρ(r), (2)

where ρ(r) represents electron density, and |∇ρ(r)| represents the norm of the electron
density gradient vector.

2.6. Charge Density Difference Analysis

To visually observe the change in electron density when DOX is adsorbed onto the
graphene system surface, a charge density difference analysis was conducted, using the
following equation:

∆ρ = ρGS+DOX − ρGS − ρDOX (3)

where ρGS+DOX, ρGS, and ρDOX represent the electron densities of the complex, graphene
system, and DOX, respectively.

3. Results and Discussion
3.1. Structure and Energy Analysis

We selected a number of relatively stable adsorption structures from the structures
sampled using the molecular dynamics simulation and then optimized them to obtain
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the most stable structure for analysis. Table 1 shows the adsorption energies of the stable
structures. The adsorption energy was negative, so adsorption between DOX and the
graphene system was thermodynamically favorable.

Table 1. Adsorption energy of the stable structure (eV).

Models EGS+EDOX EGS+DOX EGS Eads

G-DOX * −57,483.232 −57,480.219 −47,764.498 −3.013
GO-OH-DOX −62,918.418 −62,915.918 −53,199.578 −2.501
GO-O-DOX −62,918.477 −62,915.652 −53,199.578 −2.825

GO-OH-O-DOX −62,916.538 −62,913.910 −53,198.480 −2.628
* G, graphene.

In this study, the adsorption energies of the DOX and graphene systems were slightly
higher than those observed in a previous study. By using a molecular dynamics simula-
tion as the sampling method, we found that the orientation of DOX changed so that the
anthraquinone and aminoglycoside rings faced the graphene. Thus, DOX had more sites
of interaction with the carbon surface, which is the main reason for the higher adsorption
energies observed. Conversely, in the study by Vovusha et al., only one of the two rings
faced the graphene [5]. The adsorption of GO surface and doxorubicin molecules were
also affected by water in the physiological environment, which may compete with DOX
for the active sites on GO surface and to some extent weaken the interaction between GO
and DOX. As a result, the binding strength between GO and DOX in the physiological
environment is weaker than the result obtained by our calculation which were performed
in a vacuum.

The maximum adsorption energy was observed between DOX and pristine graphene,
which indicates that the adsorption of DOX onto pristine graphene was the most favorable
(Figure 4). The π-conjugated structure of graphene formed a π–π stacking interaction
with the quinone portion of DOX, producing a hydrophobic effect. The distance between
graphene and DOX was about 3.2 Å. CH-π and OH-π interactions between DOX and
pristine graphene were also observed.
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In the GO-OH-DOX complex (Figure 5), the two carbonyl groups in the anthraquinone
ring of DOX formed hydrogen bonds with the hydroxyl groups and hydrogen atoms on
the GO-OH surface. The bond lengths were, respectively, 2.05 Å and 2.21 Å. The -O- of
DOX also formed a hydrogen bond (1.87 Å) with the hydrogen in the hydroxyl group. In
the GO-O-DOX complex (Figure 6), there were only a few weak hydrogen bonds; the bond
between a carbonyl group in the anthraquinone ring of DOX and an H atom on the GO
surface was 2.05 Å long. The aminoglycoside ring of DOX also formed CH-π and OH-π
interactions with the sp2 region of the GO surface. Two hydrogen bonds were formed
between DOX and GO in the GO-OH-O-DOX complex (Figure 7). The length of the bond
between a carbonyl group in the anthraquinone ring on DOX and an H atom on the GO
surface was 2.01 Å long. The H atom in the hydroxyl group of DOX formed a hydrogen
bond of 2.62 Å with the oxygen in the hydroxyl group on the GO surface. NH2-π and OH-π
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interactions between the aminoglycoside ring of DOX and the sp2 region of the GO surface
were also observed.
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The interactions between DOX and the graphene system can have a significant effect
on the hydrogen bonds within the DOX molecules. Table 2 shows the lengths of the
hydrogen bonds within the DOX and graphene system molecules. The hydrogen bonds
within the DOX molecules were slightly shortened, and when DOX was adsorbed onto the
GO-OH-O- surface, the O4-H bond broke, and an N-H bond was formed.

Table 2. Hydrogen bond length of DOX and graphene system molecules (Å). The annotation of O1 to
O4 have shown in Figure 1.

Models O1·········· ·H O2··· ···H O3··· ···H O4······ ···H N··· ···H

DOX 1.812 1.986 1.738 2.305 -
G-DOX 1.501 1.906 1.648 2.426 -

GO-OH-DOX 1.598 1.869 1.753 2.370 -
GO-O-DOX 1.515 1.826 1.682 2.373 -

GO-OH-O-DOX 1.551 2.039 1.626 - 1.903

The adsorption energy between GO and DOX was smaller than that between pristine
graphene and DOX. This was mainly because of the strong π–π stacking interaction between
pristine graphene and DOX. Our results were consistent with previous studies of the
interaction between aromatic compounds and pristine graphene [32,33]. However, due
to the introduction of oxygen-containing functional groups, some of the sp2-hybridized
carbon atoms become sp3 hybrids. Therefore, the π-π conjugated structure of GO was
weakened, as was the π-π stacking effect between DOX and GO. The adsorption energy of
the GO-DOX complex was greater than that of the GO-O-DOX complex. The affinity for
DOX differed between the hydroxyl and epoxy groups, possibly because the electronegative
oxygen atoms of DOX more easily formed hydrogen bonds with the highly Lewis acidic
hydrogen atoms on the hydroxyl-rich GO surface. Conversely, the epoxy-rich GO surface
provided fewer acidic hydrogen atoms and, subsequently, formed weaker hydrogen bonds,
resulting in less affinity for DOX.

3.2. RDG Analysis

The CH-π and OH-π interactions between the anthraquinone ring in DOX and pristine
graphene can be clearly observed in the color-filled RDG isosurface plots (Figure 8). The
intermittent green fragment between DOX and GO corresponds to a weak π-π stacking
interaction between DOX and GO [13]. When comparing the GO-OH-DOX, GO-O-DOX,
and GO-OH-O-DOX complexes, the green fragments in GO-O-DOX are relatively complete
and have a large area, indicating that the π−π stacking interaction between the GO-O
surface and DOX was stronger in GO-O-DOX than in the other complexes. However,
the hydrogen bond between the GO-O surface and DOX was weaker in the GO-O-DOX
complex, and the adsorption energy was the lowest. Therefore, it can be concluded that the
adsorption between GO and DOX was mainly due to hydrogen bonding.

3.3. Charge Density Difference

To observe the charge transfer between graphene and DOX, we performed a charge
density difference analysis (Figure 9). There was a large charge transfer between the
graphene system surface and the DOX anthraquinone ring; a charge transfer also occurred
at other sites where DOX interacted with the graphene system. We also performed a
Bader charge analysis and found that when DOX was adsorbed onto pristine graphene, the
pristine graphene transferred 0.04 electrons to DOX. When DOX was adsorbed onto GO,
0.05 electrons were transferred from DOX to GO-O and GO-OH-O surface, respectively.
Additionally, 0.07 electrons are transferred from DOX to the GO-OH surface.
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4. Conclusions

Using DFT, we analyzed the interaction between DOX and either pristine graphene
or GO loaded with different ratios of oxygen-containing functional groups. We observed
that different oxygen-containing functional groups had different affinities for DOX. The
order of the different graphene systems was as follows, in terms of adsorption energy:
G-DOX > GO-OH-DOX > GO-OH-O-DOX > GO-O-DOX. Therefore, increasing the ratio
of hydroxyl to epoxy groups can increase the DOX loading capacity of GO. This provides
a theoretical basis for optimizing the surfaces of graphene substrate materials used to
load DOX.
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