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Section and 
Topic  

Item 
# 

Checklist item  
Location 
where item 
is reported  

TITLE   

Title  1 Identify the report as a systematic review. Titlepage 

ABSTRACT   

Abstract  2 See the PRISMA 2020 for Abstracts checklist. Supl. Page 5 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of existing knowledge. Introduction 

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the review addresses. Methods 

METHODS   

Eligibility criteria  5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. Methods 

Information 
sources  

6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the 
date when each source was last searched or consulted. 

Methods  

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. Methods 

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record 
and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process. 

Methods 

Data collection 
process  

9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked 
independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the 
process. 

Methods 

Data items  10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study 
were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect. 

Methods 

10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any 
assumptions made about any missing or unclear information. 

Methods 

Study risk of bias 
assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each 
study and whether they worked independently, and if applicable, details of automation tools used in the process. 

Methods 

Effect measures  12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results. no 

Synthesis 
methods 

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and 
comparing against the planned groups for each synthesis (item #5)). 

Methods 

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data 
conversions. 

Methods 

13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. Methods 

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), 
method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 

NA 

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). NA 

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. NA 

Reporting bias 14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). Methods  
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Section and 
Topic  

Item 
# 

Checklist item  
Location 
where item 
is reported  

assessment 

Certainty 
assessment 

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. NA 

RESULTS   

Study selection  16a Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the 
review, ideally using a flow diagram. 

Results 

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. Results 

Study 
characteristics  

17 Cite each included study and present its characteristics. Table 2 

Risk of bias in 
studies  

18 Present assessments of risk of bias for each included study. Methods 

Results of 
individual studies  

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision 
(e.g. confidence/credible interval), ideally using structured tables or plots. 

Table 1 

Results of 
syntheses 

20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. NA 

20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. 
confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. 

NA 

20c Present results of all investigations of possible causes of heterogeneity among study results. Results 

20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. NA 

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. NA 

Certainty of 
evidence  

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. NA 

DISCUSSION   

Discussion  23a Provide a general interpretation of the results in the context of other evidence. Discussion 

23b Discuss any limitations of the evidence included in the review. Discussion 

23c Discuss any limitations of the review processes used. Discussion 

23d Discuss implications of the results for practice, policy, and future research. Discussion 

OTHER INFORMATION  

Registration and 
protocol 

24a Provide registration information for the review, including register name and registration number, or state that the review was not registered. Methods 

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared. Methods 

24c Describe and explain any amendments to information provided at registration or in the protocol. Methods 

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. Funding info 

Competing 
interests 

26 Declare any competing interests of review authors. COI 
statement 

Availability of 27 Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included Suppl. Table 
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Section and 
Topic  

Item 
# 

Checklist item  
Location 
where item 
is reported  

data, code and 
other materials 

studies; data used for all analyses; analytic code; any other materials used in the review. 

  

ABSTRACT 
Section and Topic  

Item 
# 

Checklist item  
Reported 
(Yes/No)  

TITLE   

Title  1 Identify the report as a systematic review. yes 

BACKGROUND   

Objectives  2 Provide an explicit statement of the main objective(s) or question(s) the review addresses. yes 

METHODS   

Eligibility criteria  3 Specify the inclusion and exclusion criteria for the review.  

Information sources  4 Specify the information sources (e.g. databases, registers) used to identify studies and the date when each was last 
searched. 

yes 

Risk of bias 5 Specify the methods used to assess risk of bias in the included studies.  

Synthesis of results  6 Specify the methods used to present and synthesise results. yes 

RESULTS   

Included studies  7 Give the total number of included studies and participants and summarise relevant characteristics of studies. yes 

Synthesis of results  8 Present results for main outcomes, preferably indicating the number of included studies and participants for each. If meta-
analysis was done, report the summary estimate and confidence/credible interval. If comparing groups, indicate the 
direction of the effect (i.e. which group is favoured). 

yes 

DISCUSSION   

Limitations of evidence 9 Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk of bias, inconsistency and 
imprecision). 

yes 

Interpretation 10 Provide a general interpretation of the results and important implications. yes 

OTHER   

Funding 11 Specify the primary source of funding for the review. NA 

Registration 12 Provide the register name and registration number. yes 

From:  Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. 
BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit: http://www.prisma-statement.org/ 
  

http://www.prisma-statement.org/
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Supplemental table 2 | Search strings 

  Medline Elsevier Clarivate 

Platform PubMed Scopus Web of Science 

Date   13.03.2024 13.03.2024 13.03.2024 

Searches 
  

  

Search result 367 566 525 

Filter Classical Article, Clinical Study, Clinical Trial, Clinical Trial, Phase 
I, Clinical Trial, Phase II, Clinical Trial, Phase III, Clinical Trial, 
Phase IV, Multicenter Study, Observational Study, Randomized 
Controlled Trial, Humans, English. 

LIMIT-TO ( SUBJAREA ,  "NEUR" )  OR  LIMIT-
TO ( SUBJAREA ,  "COMP" ) )  AND  ( LIMIT-TO ( 
DOCTYPE ,  "ar" ) )  AND  ( LIMIT-TO ( 
LANGUAGE ,  "English" ) ) 

English (Languages) and Article 
(Document Types) 

Diseases (traumatic brain 
injury, subarachnoid 
hemorrhage, 
intracerebral 
hemorrhage, acute 
ischemic stroke, hypoxic 
brain injury)  

tbi traumatic brain injury[MeSH Terms] OR Traumatic brain injury 
OR head* OR cranial trauma OR closed head injury OR brain 
trauma OR acquired brain injury OR skull fracture OR intracranial 
injury  OR cerebral trauma OR neurotrauma OR tbi OR acute 
stroke[MeSH Terms] OR brain bleeding OR subarachnoid OR sah 
OR stroke OR subarachnoid hemorrhage[MeSH Terms] OR 
cerebral haemorrhage OR intracerebral haemorrhage[MeSH 
Terms] OR intracerebral bleed OR intracerebral haemorrhage OR  
intracerebral hemorrhage OR ich  OR cardiac arrest[MeSH 
Terms] OR cardiac arrest OR anoxic brain injury OR hypoxic 
encephalopathy OR hypoxic brain  OR cerebral infarction  OR 
ischemic brain damage OR acute cerebral ischemia OR ischemic 
encephalopathy OR cerebral infarction[MeSH Terms] OR acute 
ischemic stroke OR neuro* OR cerebral* OR brain* 

( TITLE-ABS-KEY ( ( traumatic  AND brain  AND injury )  
OR  head*  OR  ( cranial  AND trauma )  OR  ( closed  
AND head  AND injury )  OR  ( brain  AND trauma )  OR  ( 
acquired  AND brain  AND injury )  OR  ( skull  AND 
fracture )  OR  ( intracranial  AND injury )  OR  ( cerebral  
AND trauma )  OR  neurotrauma  OR  tbi  OR  ( brain  
AND bleeding )  OR  subarachnoid  OR  sah  OR  stroke  
OR  ( intracerebral  AND bleed )  OR  ( intracerebral  AND 
haemorrhage )  OR  ( intracerebral  AND hemorrhage )  
OR  ich  OR  ( cardiac  AND arrest )  OR  ( anoxic  AND 
brain  AND injury )  OR  ( hypoxic  AND encephalopathy )  
OR  ( hypoxic  AND brain )  OR  ( cerebral  AND infarction 
)  OR  ( ischemic  AND brain  AND damage )  OR  ( acute  
AND cerebral  AND ischemia )  OR  ( ischemic  AND 
encephalopathy )  OR  ( acute  AND ischemic  AND 
stroke )  OR  neuro*  OR  cerebral*  OR  brain*  OR  
intracerebral  OR  hemorrhage ) )  

ALL=(traumatic brain injury[MeSH 
Terms] OR brain trauma OR acquired 
brain injury OR neurotrauma OR head 
trauma OR (subarachnoid hemorrhage 
[MeSH Terms]) OR subarachnoid OR 
sah OR acute stroke[MeSH Terms] OR 
intracerebral haemorrhage[MeSH 
Terms] OR ich OR (cardiac 
arrest[MeSH Terms]) OR “Cardiac 
arrest” OR anoxic brain injury OR 
hypoxic encephalopathy OR (acute 
cerebral ischemia [MeSH Terms]) OR 
"acute cerebral ischemia" OR neuro* 
OR cerebral* OR brain (All Fields) ) 

Critical care Critical care [MeSH Terms] OR ICU OR Intensive care OR Critical 
care OR Intensive care[MeSH Terms]  

( TITLE-ABS-KEY ( ( critical  AND  care )  OR  icu  OR  ( 
intensive  AND  care ) ) )   

ALL=((Critical care [MeSH Terms] OR 
ICU OR (Intensive care) OR (Critical 
care) OR Intensive care[MeSH Terms]))  

Clustering "cluster analysis"[MeSH Terms] OR ("cluster"[All Fields] AND 
"analysis"[All Fields]) OR "cluster analysis"[All Fields] OR ("cluster 
analysis"[MeSH Terms] OR ("cluster"[All Fields] AND 
"analysis"[All Fields]) OR "cluster analysis"[All Fields] OR 
"clustering"[All Fields] OR "clusterings"[All Fields] OR "cluster"[All 
Fields] OR "cluster s"[All Fields] OR "clustered"[All Fields] OR 
"clusterization"[All Fields] OR "clusters"[All Fields]) OR "cluster 
analysis"[MeSH Terms]) OR "unsupervised" [All Fields]  

( TITLE-ABS-KEY ( ( cluster  AND  analysis )  OR  
clustering*  OR  unsupervised ) ) 

ALL=((cluster analysis OR clustering* 
OR (cluster analysis[MeSH Terms]) OR 
unsupervised)) 

Excluding COVID COVID [MeSH Terms] OR  COVID OR SARS-CoV-2 AND NOT  ( TITLE-ABS-KEY ( 
covid&nbsp;or&nbsp;  "sars-cov-2"  OR  covid-19)) 

ALL=(( COVID OR "SARS-CoV-2" OR 
COVID-19)) 
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Supplementary table 3 | Concise description of unsupervised clustering methods employed in 
neurocritical care studies. There is a wide range of methodological options for clustering data, with 
each method having various alternative approaches. Hence, the descriptions in this overview 
concentrate on their (main) application in the included studies. 

H
ie

ra
rc

h
ic

a
l 
 Organizes data in a hierarchical or a ‘tree’ of clusters from small to high similarity 

between the clusters. The two main types are agglomerative and divisive clustering. 
For agglomerative clustering, the clustering starts with all datapoints that combine to 
different clusters during each iteration, whereas divisive clustering starts with one 
cluster and iteratively divides into more clusters [1]. 

K
-m

e
a

n
s
 K-means computes the shortest distance from each data point to a centroid, 

representing the center of a cluster. Through an iterative process, the algorithm 
updates the centroids, adjusting their positions until each data point is closest to its 
assigned centroid, minimizing the overall distance within clusters.[2]. A detailed 
description of the methodology is given in Supplementary figure 1. 

M
O

C
A

IP
 The algorithm was developed to extract meaningful ICP-waveform features and 

uses also hierarchical clustering in two stages. Firstly, ICP-pulses are clustered and 
averaged (called dominant ICP-pulse). Subsequently, the dominant pulses are 
again clustered and compared to a reference library containing ICP-pulses in order 
to remove artefactual ICP-pulses [3]. 

G
B

T
M

 Clusters individuals according to similar trajectories within a population, such as 
trajectories determined by age or time. Assessing the significance of these 
trajectories involves examining noticeable differences between groups in 
comparison to other clinical variables [4].  

P
ro

b
a
b

ili
s
ti
c
 g

ra
p
h

 

m
o

d
e

l 
(B

a
y
e

s
ia

n
 

a
p

p
ro

a
c
h

) 
 

Åkerlund et al. performed analyses using probabilistic graph model Bayesian 

approaches. This method can handle a mix of data formats (discrete and 
continuous variables) and dealing with missing values [5]. In 2024, they expanded 
their approach by incorporating a Markov chain to account for the temporal aspect 
of the data[6].  
 
 

S
p

e
c
tr

a
l 

c
lu

s
te

ri
n
g
 Clustering occurs through the utilization of a similarity matrix, which assigns weights 

to individual data points in comparison to others. It applies the graph Laplacian 
matrices and eigenvectors for spectral embedding (i.e., data reduction), and finally, 
employs a clustering algorithm such as k-means to group the data points in the set 
number of clusters. Note, other than with k-means, this method allows the 
identification of clusters with different data structures [7]. 

U
n

s
u

p
e

rs
iv

e
d
 

H
id

d
e

n
 M

a
rk

o
v
 

M
o

d
e

ls
 

The method approaches data as composed of various hidden (for example hourly) 
'states'. It assumes that the observed data is influenced by an underlying process. 
To identify the underlying processes, probability functions are applied, and the 
optimization of these probabilities is carried out using an iterative process such as 
the EM-algorithm, as demonstrated by [8]. During the iterative optimization process, 
transition and prediction parameters are adjusted to maximize the likelihood of the 
different states. Note that each state transition depends only on the current state [9]. 

K
o

h
o

n
e
n

 S
O

M
 In essence, high-dimensional data is transformed through a process of iterative 

training, wherein each data point is mapped onto a two-dimensional grid of vectors 
(each vector matched the working dimension). This process involves identifying the 
datapoint with the closest matching vector, then the vector of the nearest and its 
neighbors’ updates direction, and gradually converging the grid to reveal clusters, 
ultimately providing a simplified, visual representation for identifying patterns in two 
dimensions [10]. 

EM = Expectation-Maximization; GBTM = Group-Based Trajectory Modeling; ICP = Intracranial Pressure; 
MOCAIP = Morphological Clustering and Analysis of Intracranial Pressure; SOM = Self-Organizing Maps. 
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Supplementary table 4 | Brief summary of feature Selection, clustering parameters, validation, 

and distance metrics (N= 18) 

N
e

ls
o

n
 e

t 
a

l,
 

2
0

0
4
 

[1
0

] 

Kohonen Self Organizing Maps (SOM) 

• Feature selection: input features defined by the authors. The features are eight MD- 

markers: glucose, lactate, pyruvate, and glutamate from both penumbral and non-

penumbral tissues. 

• Number of nodes: 900; the nodes define the dimension of the map into which the data 

is projected. 

• Deriving number of nodes: the map size was derived by first allocating the first third 

period of MD-data to a map with different map sizes. These maps were then trained on 

data from the last third of the MD-period. The performance was measured by a 

comparison of both results by evaluating if datapoints were allocated to the same 

patient in both situations. This is expressed as a percentage correct prediction. The 

optimal separation is the size for which the percentage of correct prediction not 

changed by increasing map size.    

• Validation: not explicitly reported. 

• Distance metrics: Euclidean distance. 

H
a

q
q

a
n

i 
e

t 
a

l.
, 

2
0

0
7

 [
1

1
] 

K-means, Hierarchical 

• Feature selection: ICAT-based differential protein expression analysis using patient 

serum compared to pooled reference serum. 

• Number of clusters: 16 proteins with a high pattern similarity to S100β or GCS. 

• Deriving number of clusters:  not explicitly reported. 

• Internal validation: assessing different distance metrices. 

• Distance metrics: Euclidean distance; Correlation distance-based method. 

S
o

ra
n

i 
e

t 
a

l.
, 
 

2
0

0
7

  
[1

2
] 

Hierarchical 

• Feature selection: input features were defined by the authors. The features were 

selected based on physiological variables captured through continuous monitoring in an 

ICU setting. 

• Number of clusters: 3 clusters.  

• Deriving number of clusters: the number of clusters was defined by the authors 

based on the hierarchical clustering results.   

• Validation:  not explicitly reported. 

• Distance metrics:  not explicitly reported. 

K
im

 e
t 
a

l.
, 

2
0

1
1

 [
1

3
] 

Morphological Clustering Analysis of ICP Pulse (MOCAIP) (includes hierarchical 

clustering) 

• Feature selection: the detection of ICP/CBFV pulses. Hierarchical clustering is used 

within the MOCAIP-algorithm to detect artifact-free pulses and ensure the quality of 

signal processing.  

• Number of clusters:  not explicitly reported. 

• Deriving number of clusters: the Silhouette criterion is used to determine the optimal 

number of clusters [3]. 

• Validation: not explicitly reported. 

• Distance metrics: Euclidean distance. 
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W
a

in
w

ri
g

h
t 
e

t 
a

l.
, 

 

2
0

1
2

  
[1

4
] 

Agglomerative hierarchical 

• Feature selection: inclusion of clinical data present in at least 65% of patients. 

• Number of clusters: not applicable. The study did not define a specific number of 

clusters but instead used clustering to observe groupings of variables between 

survivors and non-survivors. 

• Deriving number of clusters: not explicitly reported. 

• Validation: not explicitly reported. 

• Distance metrics: not explicitly reported. 

K
u

m
a

r 
e

t 
a

l.
, 

2
0

1
6

 [
1

5
] 

K-means 

• Dimensionality reduction: PCA was applied to reduce the dimensionality of the CSF 

inflammatory markers before starting the clustering analysis.  

• Number of clusters: 2 clusters. 

• Deriving number of clusters: clustering was initially performed with five clusters. 

However, two clusters contained only one individual each, and another cluster with only 

four individuals was combined with a larger cluster due to similar mean principal 

component scores. This resulted in two final clusters for days 0-3.  

• Validation: the cubic clustering criterion was applied to assess the quality of the cluster 

groups.  

• Distance metrics: Euclidean distance. 

J
h

a
 e

t 
a

l.
, 
 

2
0

1
8

 [
1

6
] 

Group-Based Trajectory Modeling (GBTM) 

• Feature selection: the input features were predefined by the authors, focusing on 

longitudinal ICP measurements over a 120-hour period post-TBI, along with 

adjustments for various risk factors such as age, sex, initial GCS, craniectomy, and 

primary hemorrhage pattern. 

• Number of clusters: six distinct ICP-trajectories 

• Deriving number of clusters: the number of clusters was determined using the 

Bayesian Information Criterion. The model selection process involved iteratively 

eliminating non-significant polynomial terms to achieve the simplest final model where 

each trajectory group was significant at α=0.05. 

• Validation: not explicitly reported. 

• Distance metrics: not applicable for this method, as GBTM is based on a probabilistic 

modeling approach rather than distance metrics. 

A
s
g

a
ri
 e

t 
a

l.
, 
 

2
0

1
9

 [
8

] 

Hidden Markov Models (HMM) 

• Feature selection: input features were defined by the authors and included hourly 

averaged values of ICP, CPP, RAP, and PRx. 

• Number of clusters: three states (poor, intermediate and good state). 

• Deriving number of clusters: pre-defined by the authors.      

• Internal validation: assessment of the physiological relevance of the derived states 

such as assessing whether the states were statistically different in terms of the 

physiological variables, and whether the time spent in these states correlated with 

patient outcomes.   

• Distance metrics: not applicable for this method, as HMM is a probabilistic model that 

does not rely on distance metrics. 
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E
id

e
n

 e
t 
a

l.
, 

2
0

1
9

 [
1

7
] 

Hierarchical 

• Feature selection: the input metabolites were selected based on the authors' criteria 

and supported by literature.  

• Number of clusters: 2 metabolic states. 

• Deriving number of clusters: the hierarchical tree’s first branch divided the data into 

two clusters, interpreted as two distinct metabolic states.  

• External validation: the findings were validated in a cohort of 12 patients.  

• Distance metrics: not explicitly reported. 

G
ra

d
is

e
k
 e

t 
a
l.
, 
 

2
0

2
1

 [
1

8
] 

Hierarchical 

• Feature selection/ dimensionality reduction:  The LASSO method was used to select 
proteins associated with TBI-related variables such as the worst mGCS score. From the 
initial 107 biomarkers, 21 proteins were selected by three LASSO models, and 6 
biomarkers (3 glial proteins and 3 cytokines) were ultimately identified as most relevant 
and used as input for the clustering analysis. 

• Number of clusters: 3 clusters. 

• Deriving number of clusters: not explicitly reported. 

• Validation: not explicitly reported. 

• Distance metrics: Euclidean distance. 

L
in

d
b

la
d

 e
t 
a

l.
, 

2
0

2
1

 [
1

9
] 

Hierarchical 

• Feature selection/ dimensionality reduction: the study calculated the CSF/serum 

ratio and included significant ratios for clustering. Specifically, proteins were included in 

the clustering analysis if the CSF/serum-ratio was significantly correlated with the 

albumin quotient, which is a marker of blood-brain barrier integrity. 

• Number of clusters: 3 clusters in CSF; not explicitly reported for serum, but it can be 

deduced from Figure 3 that the authors found 2 clusters. 

• Deriving number of clusters: selected hierarchical tree’s branch as the number of 

clusters.    

• Validation: validation was performed in a non-matched TBI cohort using serum 

samples only. 

• Distance metrics: not explicitly reported. 

M
e

g
jh

a
n

i 
e

t 
a

l.
 2

0
2

1
 

[2
0

] 

Morphological Clustering and Analysis of ICP (MOCAIP) (includes hierarchical 

clustering), K-means 

• Feature selection: hierarchical clustering is used within the MOCAIP-algorithm to 

detect artifact-free pulses [3]. 

• Number of clusters:  k-means identified 20 clusters; hierarchical clustering results 

were not explicitly reported. 

• Deriving number of clusters: not explicitly reported. 

• Validation:  not explicitly reported. 

• Distance metrics: dynamic time warping was used as the distance metric for k-means 

clustering; Euclidean distance for hierarchical clustering [3]. 
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N
a

ru
la

 e
t 
a

l.
, 
 

2
0

2
1

 [
2

1
] 

Spectral clustering, k-means 

• Feature selection: EEG-data was split into 2-second windows, followed by the 

calculation of a covariance matrix for each window. 

• Number of clusters: 2 clusters were identified, representing "burst" and "suppression". 

• Deriving number of clusters: the authors explicitly defined 2 clusters (burst and 

suppression). Clustering was applied to each 2-second data window using the similarity 

matrix to segregate into these 2 clusters. 

• Validation: the algorithm's performance was validated by comparing its results with 

ground truth annotations (manually labeled bursts and suppressions) and a supervised 

deep convolutional neural network.  

• Distance metrics: Riemannian distance metric was used for the similarity matrix based 

on covariance matrices. 

Å
k
e

rl
u

n
d

 e
t 
a

l.
, 

2
0

2
2

 [
5

] 

Probabilistic Graph Model (Bayesian Approach) 

• Feature selection/ dimensionality reduction: input features were defined by the 

authors. Based on clinical interest and known outcome predictors, particularly those 

with known or plausible relationships with outcome or deranged physiology.  

• Number of clusters: 6 clusters. 

• Deriving number of clusters: the number of clusters was determined using a stability-

based approach [22]. Models with 3 to 15 clusters were created, and the optimal 

number was identified by evaluating the CSI across multiple iterations. The optimal 

clustering was defined as the number of clusters with the highest median CSI after 

adjusting for the number of clusters.  

• Internal validation: internal stability was assessed by repeating the clustering process 

with different random initializations and evaluating the consistency of cluster 

assignments. 

• Distance metrics: not applicable. The method used a mixture of probabilistic graph 

models that account for the relationships between features without relying on traditional 

distance metrics. 

B
o

o
s
 e

t 
a

l,
 

2
0

2
2

 [
2

3
] 

K-means, Divisive/Agglomerative hierarchical 

• Feature selection: input features were defined by the authors, based on clinical and 

radiologic variables that had sufficient interrater reliability (k > 0.6). 

• Number of clusters: 2 clusters. 

• Deriving number of clusters: the optimal number of clusters (2 clusters) was 

determined using the Silhouette criterion and the gap statistic method for k-means. This 

number was used as the level in the hierarchical tree  

• Validation: the authors compared the results produced by the three clustering 

algorithms and with the presence of a clinical "triad" to validate the robustness of the 

clusters. 

• Distance metrics: Gower's method. 

R
a

ja
g

o
p

a
la

n
 e

t 
a

l.
, 

 

2
0

2
2

 [
2

4
] 

Agglomerative hierarchical 

• Feature selection: input features were defined by the authors. The study included 

variables such as HR, MAP, ICP, brain tissue oxygenation, and cerebral MD (glucose, 

lactate, and pyruvate).  

• Number of clusters: 4 clusters. 

• Deriving number of clusters: the number of clusters was derived using the Caliński-

Harabasz pseudo-F index. The index was calculated for groupings between 2 to 10 

clusters, with the optimal number being 4 clusters.  

• Internal validation: the stability of the clusters was assessed by comparing them with 

clusters derived using k-means clustering.  



 

12 
 

  

• Distance metrics: Euclidean distance. 
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K-means 

• Feature selection: the study calculated seven spectral features for the analysis: 

spectral centroid, spectral entropy, spectral flux, energy, energy entropy, zero crossing 

rate, and spectral roll-off. 

• Number of clusters:  2 clusters. 

• Deriving number of clusters: either hypoxic brain injury or no hypoxic brain injury. 

• Internal validation: the clusters were validated using the Calinski-Harabasz index and 

the Rand index.  

• Distance metrics:  Euclidean distance.  
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Probabilistic Graph Model (Bayesian Approach) with a Markov chain extension 

• Feature selection: mutual information was computed to determine the importance of 

each feature in differentiating clusters. The most important features that best explained 

the differences between the patient groups (clusters) were then selected. 

• Number of clusters: 6 clusters. 

• Deriving number of clusters: the optimal number of clusters was identified using the 

EM-algorithm in combination with the CSI.  

• Validation: internal stability was assessed by repeating the clustering process with 

different random initializations and evaluating the consistency of cluster assignments  

• Distance metrics:  not applicable for this method, as the method does not rely on a 

distance metrics. 

A brief summary of (I) study feature selection/dimensionality reduction methods. The feature selection can be 

defined by the authors, that means that the collected data is not prepared like computing or deriving  measures 

before including the data in the clustering analysis; (II) the number of clusters, which were either configured before 

analyzing or set based on the results; (III) how the number of clusters were determined;  (IV) which validation 

methods were applied both internal and/or external; (V) the distance metric, which is used to calculate the distance 

between data points and cluster centers. This is not required for every methodology.    

CBFV = Cerebral Blood Flow Velocity; CPP = Cerebral Perfusion Pressure; CSF = Cerebrospinal Fluid 

CSI = Cluster Similarity Index; CT = Computer Tomography; EM-algorithm = Expectation-Maximization Algorithm; 

GCS = Glasgow Coma Scale; GBTM = Group-Based Trajectory Modelling; HMM = Hidden Markov Models; HR = 

Heart Rate; ICAT-based = Isotope-Coded Affinity Tag ; ICP = Intracranial Pressure; ICU = Intensive Care Unit; 

LASSO = Least Absolute Shrinkage and Selection Operator ; MAP = Mean Arterial Blood Pressure MD = 

Microdialysis; MOCAIP =  Morphological Clustering and Analysis of Intracranial Pressure; PCA = Principal 

Component Analysis; PRx = Pressure Reactivity Index;  RAP = The correlation coefficient (R) between mean 

pulse amplitude (A) and mean intracranial pressure (P); SOM = Self-Organizing Maps. TBI = Traumatic Brain 

Injury. 
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Supplementary figure 1 | Example of k-means algorithm. First, the datapoints are projected into an 

n-dimensional space where n depends on the number of input variables. Centroids (clustering centers) 

are randomly assigned to the dataset [26]. Datapoints are colored white, as they have not been yet 

assigned to a cluster (sub-figure I). In the next step, the distance between each datapoint and the 

centroid is computed. In the current example the Euclidean distance formula is used, but there are 

alternative distance metrics such as cosine distance, dot product etc.[27].  Once each datapoint has 

been assigned to a cluster (either cluster 1 or 2 in the current example), the centroids update its 

position to the average value within that cluster (sub-figure III). Due to the relocation of the centroids, 

the shortest distance to the nearest centroid changed for some datapoints (sub-figure IV and V). 

Therefore, the shortest distance between each datapoint and the centroids is computed again, 

resulting in two datapoints moving from cluster 2 to cluster 1 (sub-figure V). This iteration process (II – 

V) continues until the distance from each datapoint to a centroid is shortest and the centroids are the 

center of each cluster. The result is that the datapoints within each cluster are more related to each 

other than the datapoints between the clusters. This allows the characteristics of the patients within 

each cluster to be compared. For example, Cluster 1 includes patients with a low mortality and young 

age and cluster 2 patients with a high mortality and higher age. Various alternative models and 

parameter settings have been studied. The Figure is adapted from [28]. The methodologies applied in 

the included studies are briefly described in Supplementary file 1, table 3. The selected parameter 

settings within the studies are reported in Supplementary file 1, table 4.   
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