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Abstract: The ghrelin system contains several components (e.g., ghrelin with growing number of al-
ternative peptides, growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase
(GOAT) and participates in regulation of a number of key processes of gastrointestinal (GI) tract
cancer progression, including cell proliferation, migration, invasion, apoptosis, inflammation, and
angiogenesis. However, its exact role in promoting or inhibiting cancer progression is still unclear.
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Molecular stud-
ies suggest an autocrine/paracrine mechanism for the secretion of ghrelin in colorectal carcinogenesis
and its contribution to its initial stages. However, the signalling pathways of CRC development
involving the ghrelin system are poorly understood. Potential mechanisms of colon carcinogenesis
involving components of the ghrelin system were previously described in an animal model and in
in vitro studies. However, the diagnostic–prognostic role of serum ghrelin concentrations, tissue
expression, or genetic changes of this system in various stages of CRC progression remains an open
case. Thus, the aim of this study is to discuss the role of the ghrelin system in colon carcinogenesis,
diagnostics and CRC prognostics, as well as the results of studies on the use of ghrelin and its
analogues in the therapy of CRC-related syndromes (e.g., cachexia and sarcopenia).

Keywords: ghrelin system; colorectal cancer; prognostic factors; colorectal cancer-associated obesity;
ghrelin; analogue therapy

1. Introduction

The components of the ghrelin system comprise a complex family of peptides, con-
trolling multiple pathophysiological processes. The system includes acylated ghrelin (AG),
des-acyl (or unacylated ghrelin, UnAG), and a growing number of alternative peptides
(e.g., obestatin, C-terminal ∆peptide, and In-1 ghrelin), growth hormone secretagogue
receptors (GHS-Rs), and ghrelin-O-acyltransferase (GOAT) [1–7] (Figure 1A). These diverse
transcripts and proteins are encoded by the human ghrelin gene (GHRL) located on the
short arm of chromosome 3 [2,6,8,9]. The main product of GHRL is a 28-amino acid (aa)
peptide, simply called ghrelin, which is a natural endogenous ligand for pituitary GHS-R,
and a potent stimulator of growth hormone (GH) release [10–13]. Subsequent studies
on the biology of ghrelin revealed it to be a multifunctional hormone, responsible for
hypothalamic regulation of energy homeostasis, as a meal initiator, and many other physio-
logical effects [1,9,14–16]. However, it should be emphasised that the old term “the hunger
hormone” does not adequately capture the wide range of roles that are now attributed to
ghrelin [17].

The GHS-R is an orphan G protein-coupled receptor, distinct from the receptor for
the GH-releasing hormone [18,19] and is now formally known as the ghrelin receptor with
high constitutive activity [20,21]. In humans, it is encoded by a conserved single-copy
gene (GHSR) located on chromosome 3 [22]. Expression of this gene generates two mRNA
species named GHS-R1a and GHS-R1b [21,23,24] (Figure 1B).

GHS-R strongly binds AG (poorly responsive to UnAG) and is generally well con-
served across species [21,25]. Ghrelin is activated through peptide acetylation, catalysed by
GOAT, a membrane-bound enzyme that attaches eight-carbon octanoate to a serine residue
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in ghrelin and thereby acylates inactive ghrelin to produce active ghrelin (AG) [7,26]. Only
this active form has the ability to bind GHS-R1a, and is responsible for its GH-releasing
capacity, and most likely other endocrine actions [7,10,27,28]. Ghrelin acetylation is a
necessary condition to cross the blood–brain barrier [29]. The acetylation process itself
takes place in the human liver [30]. AG makes up ~10% of total plasma ghrelin, and is
responsible for appetite-stimulation, hunger signalling and other metabolic effects [7,9]. In
turn, while UnAG does not evoke orexigenic effects, it is directly involved in muscle tissue
metabolism (reviewed in: [9]).
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Figure 1. Schematic diagram of the genes encoding human ghrelin (GHRL) (A) and the ghrelin 
receptor (GHSR) (B). The functionally relevant GHRL and GHRS gene-derived transcripts and the 
most important peptides are specified. Exons are marked as boxes, and introns as lines. [AG-
acylated ghrelin; GOAT-ghrelin-O-acyltransferase; SP-Signal peptide; UnAG-unacylated ghrelin]. 
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[16,33,34], and period circadian regulator 1 (PER1) and PER2 proteins [35]. 

Figure 1. Schematic diagram of the genes encoding human ghrelin (GHRL) (A) and the ghrelin
receptor (GHSR) (B). The functionally relevant GHRL and GHRS gene-derived transcripts and the
most important peptides are specified. Exons are marked as boxes, and introns as lines. [AG-acylated
ghrelin; GOAT-ghrelin-O-acyltransferase; SP-Signal peptide; UnAG-unacylated ghrelin].

While circulating ghrelin is secreted by the X/A-like enteroendocrine cells (EECs)
of the oxyntic (parietal) mucosa of the gastric fundus, tissue expression of ghrelin and
GHS-R1a was identified in most other central and peripheral tissues [19,31,32]. In stomach
oxyntic gland cells, ghrelin is subject to co-expression with other peptides, e.g., nesfatin-
1 [16,33,34], and period circadian regulator 1 (PER1) and PER2 proteins [35].

Circulating ghrelin concentration varies during the circadian cycle. Healthy individu-
als exhibit initial nocturnal elevation, declining towards the morning. Furthermore, ghrelin
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concentration increases before meals and decreases after consumption [10,36–38]. Ghrelin
acts in a secondary peripheral circadian clock (or non-suprachiasmatic nucleus), together
with melatonin, GH, insulin, adiponectin, playing an important role in the maintenance of
the circadian rhythm in the brain and peripheral organs [39]. Interestingly, per1 and per2
deletion causes cession of rhythmic ghrelin expression [35], which might lead to a range of
clinical consequences (reviewed in: [40]).

The ghrelin system serves a number of physiological functions in the gastrointestinal
(GI) tract, e.g., the regulation of motility, protection of mucosal tissue, secretion of gastro-
pancreatic peptides, microbiome homeostasis and inflammation in aging [15,25,41–44]. It
also plays an important role in the pathogenesis of a range of diseases, including functional
GI tract disorders [45,46], inflammatory bowel diseases (IBD), coeliac disease, infectious
diseases, and diabetic gastroenteropathy [47–50].

An increasing number of reports indicate the participation of ghrelin in the regulation
of a range of tumour-related processes, including tumour metastasis [51]. The components
of the ghrelin system are expressed in tissues and cell lines from GI tract cancers, including
human neuroendocrine tumours [4,52–54], GI stromal tumours (GIST) [55,56], oesophageal,
gastric, pancreatic and liver cancers [57,58], and colorectal cancer (CRC) [58–62].

Colorectal cancer is one of the most common human cancers, both in terms of in-
cidence and morbidity [63,64]. There is a number of hereditary/familiar and lifestyles
factors playing important roles in the pathogenesis and progression of this heterogeneous
tumour [65–69]. Nonetheless, the search for new biomarkers, crucial in early diagnostics
of this cancer, continues [70,71]. Potential mechanisms of colon carcinogenesis involving
components of the ghrelin system were previously described in an animal model and in
in vitro studies [51,58,72–74]. However, the diagnostic-prognostic role of serum ghrelin
concentrations, tissue expression, or genetic changes of this system in a various stages
of CRC progression remains an open case. Thus, the aim of this study is to discuss the
role of ghrelin signalling in colon carcinogenesis, diagnostics and CRC prognostics, and
the potential use of ghrelin and its analogues in therapy of CRC-related syndromes (e.g.,
cachexia and sarcopenia).

The first part of this review discusses the role of the ghrelin system in colon physiology.
Furthermore, the potential participation of the ghrelin system in CRC-associated obesity,
a common CRC risk factor, will be highlighted. The next part will concern the role of the
components of the ghrelin system in colon carcinogenesis based on a review of the findings
in patients with CRC, in animal models, as well as in in vitro studies.

2. Roles of the Ghrelin System in the Intestine
2.1. Cellular Sources of Ghrelin in the Normal Large Intestine

The presence of ghrelin-producing endocrine cells, as well as GHS-R, in the GI tract
wall, from the stomach to the colon, was described in rats and humans more than 20 years
ago. A notably lower number of ghrelin-positive cells can be observed in the large in-
testine, in contrast to oxyntic glands in the fundus of the stomach and upper intestinal
regions [19,75]. The abundance of ghrelin-positive cells in the stomach mucosa is evo-
lutionarily conserved between mammals and lower chordates [76]. In rat stomach, the
amount of UnAG is higher than that of AG [12,77]. While obestatin has been detected in rat
stomach endocrine cells and within the myenteric plexus [12], in the human gastric fundus
its amount is relatively low, compared to ghrelin [78].

Ghrelin was detected in basal cytoplasm of so-called X/A-like cells, making up around
20% of chromogranin A-immunoreactive EECs in human gastric fundus. The cells were
round or elliptical, closed-type, with strong electron-dense granules, 120 ± 30 nm in
size [49,75,79]. In rodents, X/A cells are analogous to human P/D1 cells, in which round,
electron-dense granules are slightly bigger, around 147 ± 30 nm in size. Further rat GI
tract studies demonstrated ghrelin expression in lumen-contacted opened-type cells, the
number of which increases between the stomach and the lower GI tract. Using electron
microscopy, UnAG were localised mainly in the perinuclear area, while AG was present
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in the periphery of the cytoplasm. In rat large intestine, two histologically distinct types
of ghrelin-producing cells were identified: opened-type, mainly regulated by luminal
signals, and closed-type, regulated by other hormones, neural stimulation or mechanical
distension [80,81].

Due to the development of intestinal hormone-producing cell visualisation techniques,
4 EEC lineages were identified in the mouse GI tract, including ghrelin/motilin (or M)
cells. In most cases, co-expression of ghrelin and motilin was observed, particularly in the
small intestine. However, no such co-expression was noted in the case of other investigated
intestinal hormones [82]. Other authors demonstrated that, beside M cells, ghrelin is also
present in other cells around the entire GI tract, e.g., EC, S, I, L cells (all cholecystokinin
(CCK)-producing cells), co-localizing with other hormones, e.g., 5-hydroxytryptamine
(HT-5), secretin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide 1
(GLP-1), neurotensin, and PYY [79,83]. In studies on human large intestine EEC populations
(normal sigmoid colon) the presence of ghrelin mRNA, or any ghrelin-positive cells was not
detected among the four most expressed hormones: 5-HT, peptide YY (PYY), GLP-1 and
somatostatin (SST) [84]. Ghrelin expression has also been shown to be present in human
pancreas, β-cells [85,86], α-cells [87], and epsilon cells [88].

Ghrelin-producing cells can already be detected in early stages of stomach, intestine,
pancreas and lung development in humans, rats, and dogs [49,89–91]. In the stomach, such
cells were present in the 11th week of pregnancy, most numerously during the second
trimester (~34%), and in infants (~28%) [90]. In the duodenum, similarly to the stomach,
chromogranin A- and ghrelin-positive cells were identified in the 10th and 11th week of
pregnancy, respectively. The first trimester of prenatal development was characterised by
the presence of the highest number of ghrelin-positive endocrine cells in the duodenum.
Their number was progressively decreasing, to increase again during the early postnatal
period, compared to the second trimester of development [91].

Subsequent studies have also shown a wide distribution of both ghrelin receptors
(GHS-R1a and GHS-R1b) in various normal human organs. In the context of the GI
tract, GHS-Rs expression was detected in the stomach, intestines and large glands (liver,
pancreas) [20,85,92,93]. Both human and rat stomach and colon showed expression of
GHS-Rs in neurons and their protrusions. Receptor expression was also detected in cells
associated with gastric glands, EECs, and/or mast cells. Smooth muscle and epithelial cells
were devoid of this immunoreactivity and only rats showed GHS-R expression on nerve
fibres associated with muscle layers [94].

In the human foetus, the expression of the active form of GSH-R1a was already
detected in the 10th week of gestation in endocrine cells of the stomach antrum and corpus,
as well as in the duodenal epithelial cells in the 11th week of gestation. GHS-R1b was
detected in the second trimester of gestation (16th week) in epithelial cells of duodenum
and in the longitudinal muscle layer of the antrum and corpus of the stomach [91].

Regarding normal human large intestinal tissue analysis using RT-PCR, expression of
ghrelin mRNA was lowered between the left and right colon, while the levels of GHS-R1b
showed an opposite relation. In turn, colon tissues did not demonstrate production of
GHS-R1a mRNA [93]. Furthermore, in research based on immunocytochemistry (IHC)
(with polyclonal antibodies against GHS-R1a), expression of this receptor was detected in
~22% CRC-neighbouring normal colorectal epithelial cells analysed on tissue microarray
(TMA) slides. However, the mentioned publication did not investigate the expression
of ghrelin and GHS-R1b [95]. Nonetheless, later studies confirmed ghrelin [59,61,96],
GHS-R1a [59,61] and GHS-R1b [59] immunoreactivity in normal colorectal tissue samples.
While most recent reports also demonstrated GHS-R expression, the polyclonal antibodies
on which they were based did not determine the GHS-R subtype. Cytoplasmic IHC
reaction to the “general” GHS-R mostly concerned cells of normal large intestine tissue [96],
confirming the previously reported cellular localisation of both GSH-R1a and GSH-1b
subtypes [59,61,95]. Ghrelin immunostaining was more differentiated than GHS-Rs, from a
mixed (nuclear-cytoplasmic) [59] to a solely cytoplasmic pattern [61,96]. In normal human
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large intestine, production of GOAT was also demonstrated, with its majority in the right
colon vs. the left colon [97].

Recent studies based on the qPCR method confirm that ghrelin and GHS-R1a are
present in a large proportion of normal tissues (in more than 80%) of healthy controls,
higher than that of In-1-ghrelin and GHS-R1b (about 40% of the samples). The least
abundant expression was demonstrated in the case of the GOAT protein (in less than
20% of samples). Unfortunately, the authors do not state from which exact fragments of
the intestine the normal tissues were taken, describing them generally as normal control
tissues from healthy donors (n = 14) [54]. Recently, the presence of GOAT mRNA was
also demonstrated in the human liver [30]. GOAT, similarly to other components of the
ghrelin system, is also commonly localised in the GI tract, involving not only the rodent
stomach, but also the pancreas, small intestine, and colon [98,99]. While in humans it
is mostly present in the intestine, GOAT mRNA expression was also observed in other
tissues/organs, such as liver, stomach, pancreas, skeletal muscle, heart, bones [97], and
plasma [100].

In summary, studies indicate that ghrelin/GHS-Rs expression is very common in
normal human organs and tissues. Expression of ghrelin occurs most abundantly in the
stomach, often in co-localization with other hormones. In the colon, ghrelin is produced by
two types of cells: opened- and closed-type cells. In turn, expression of GHS-Rs occurs in
both the stomach, intestines (including colon), and large GI tract glands (liver, pancreas).
Immunoreactivity to both receptor types (GHS-R1a and GHS-R1b) was also confirmed in
normal colorectal tissue samples.

2.2. Effects of Ghrelin on the GI Tract in Physiology

The actions of ghrelin and other peptides of their family result from their neurohor-
monal, paracrine, and autocrine activity [13,94,101]. Its broad regulatory and metabolic
effects are related to its production outside the hypothalamus, and the presence of its
receptors in numerous organs and human tissues. A number of factors, including nutrients,
play a major role in the modulation of ghrelin action at a central level [9].

In relation to the GI tract, the main activities of the ghrelin/GHS-Rs comprise gas-
tric acid secretion and motility, alteration of appetite and maintenance of energy bal-
ance [20,41,43,102,103]. Both ghrelin and motilin can stimulate stomach emptying [43].
Active ghrelin (AG), UnAG, and nesfatin-1 were described as the main regulators of food
intake and body weight [16,33].

The latest mouse model research suggests that the role of AG in increasing food intake
and body weight are reliant on direct activation of GHS-Rs expressed on somatotrophs,
while its glucoregulatory actions are independent of GHS-R expression by these cells [104].
Promotion of eating behaviour, stimulation of gastric motility and hydrochloric acid secre-
tion also occurs through the nitric oxide (NO) pathway. Ghrelin protects the gastric mucosa
through stimulation of blood flow and NO-mediated hyperaemia. Carbon monoxide (CO)
is also involved in ghrelin-induced gastroprotection (reviewed in: [105]).

Twenty years ago, it was already shown in rodents that ghrelin exerts significant
effects on GI tract function, both through the enteric nervous system (ENS) [94], as well
as vagus nerve-dependent mechanisms [106]. Soon after its discovery, it was recognised
as a prokinetic agent in the stomach, due to its homology to motilin [42,107]. Thus, it was
shown to exhibit gastroprokinetic and strong orexigenic activity, by acting on hypothalamic
neuropeptide Y (NPY) and the Y(1) receptor, which disappeared after vagotomy. Ghrelin
decreased gastric afferent transmission, in contrast to anorexigenic peptides, which usually
increase this activity [106]. The ENS and vagus nerve-dependent actions of this protein
may complement and reinforce each other and/or have distinct roles and functions [94]. In
humans, the mechanisms increasing gastric motility, in contrast to rodents, probably do not
depend on stimulation of enteric motor neuron activity [108].

It has been suggested that ghrelin (together with motilin) is involved in the generation
of migrating myoelectric (motor) complex (MMC) activity and, together with other peptides
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(e.g., gastrin, CCK, serotonin), in the generation of slow wave spikes, resulting in peristaltic
or segmental contractions in various sections of the small intestine and colon [40]. In
humans, secretion of endogenous ghrelin and UnAG, unlike motilin, is not associated with
MMC activity [109]. Administration of exogenous ghrelin, however, initiates gastric phase
III MMC activity in humans that is not mediated by motilin release. This is accompanied
by prolonged increased tension of the proximal part of the stomach [110].

Recent studies have shown that ghrelin produces a biphasic effect on food intake,
indirectly affecting energy expenditure and nutrient distribution. This effect requires
the integrity of Agouti/NPY peptide-producing neurons in the arcuate nucleus of the
hypothalamus. Furthermore, it has been described that various autonomic, hormonal, and
metabolic satiety signals transiently counteract ghrelin-induced food intake [111].

In addition to increasing gastric motility, ghrelin also affects gastric hydrochloric
acid secretion [41,102], with the mechanisms of this activity remaining a subject of dis-
cussion [15,25]. Intravenous administration of this peptide also stimulated gastrin secre-
tion [112], while its enteral intake increased CCK and pancreatic enzyme secretion [113].
In humans, ghrelin has also been shown to stimulate the release of SST and pancreatic
polypeptide (PP) [114].

In turn, the effect of the ghrelin system on insulin secretion by the pancreas is more
controversial. Some of the authors describe its inhibiting effect on glucose-stimulated
insulin release from human and rodent models of diabetes mellitus [115], while others
implicate it in basal or glucose-induced insulin release in humans [116]. In turn, other
reports describe identical fasting-induced serum levels of leptin and insulin in wild-type
and GHS-R-null mice [37]. There are also results indicating an increase of insulin levels in
experimental diabetes [117], both in diabetic rats and the CRL110065 beta cell line, caused
by both forms of ghrelin [86]. Similarly to AG, both UnAG and obestatin counteracted
streptozotocin-induced high glucose levels and improved plasma and pancreatic insulin
levels, which were lowered by this diabetogenic compound [117]. Stimulation of gastrin
and insulin secretion after intravenous administration of ghrelin in rats was observed
by Lee et al. [112] Furthermore, a blockade of pancreatic ghrelin secretion significantly
increased glucose-induced insulin release. This indicates that pancreatic islet-derived
ghrelin physiologically reduces insulin release in rodents by directly inhibiting β cells and
promoting SST secretion from δ cells (via paracrine and autocrine pathways) (reviewed
in: [101]).

In colon, a ghrelin-mediated prokinetic effect has been demonstrated in fish and
selected birds, but not in rodents and humans [94,118]. The possible reasons for the lack of
such an effect on human colon motility are still discussed [42]. It has also been observed that
colonic motility is activated by ghrelin only when it is administered centrally through an
injection into the medial hypothalamic nucleus [119]. Nonetheless, the resulting contraction
is less intense than that initiated by the lumbosacral plexus [120,121]. Moreover, activation
of GHS-Rs in the lumbosacral spinal cord has been shown to trigger coordinated propulsive
contractions that empty the colon [120]. Additionally, it has been observed that acylation of
ghrelin is necessary to promote such contractions, and UnAG counteracts this effect [121].

2.3. Regulation of Ghrelin Secretion in the GI Tract

The main physiological role of ghrelin is to promote an increase in food intake [16,25,106,122].
Circulating ghrelin shows a diurnal pattern with a preprandial rise, postprandial fall and
a maximum peak at 02:00. Furthermore, ghrelin secretion is reduced by positive energy
balance [36]. Consumption of drinks containing carbohydrates and protein results in a
significantly greater decrease in ghrelin concentrations compared to lipid drinks [123].
A lower number of ghrelin-positive cells was also observed during Helicobacter pylori
infection in the stomach, with a subsequent increase after eradication of the infection [124].
Moreover, diets and dietary-induced weight loss have been linked with an increase of
ghrelin serum levels [122]. Plasma GOAT shows a negative correlation with ghrelin and
a positive correlation with BMI. As GOAT is the only enzyme that acylates ghrelin, and
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ghrelin is the only substrate for GOAT in the human proteome; it ultimately contributes to
the development or maintenance of anorexia and obesity [7,100]. The release of ghrelin from
the stomach is also inhibited by L-cysteine, which acts as an H2S donor [105]. The ghrelin
opposite strand/antisense non-coding RNA (GHRLOS), through an overlapping genomic
arrangement with GHRL, is also involved in the regulation of ghrelin signalling [13,125].

Ghrelin-releasing endocrine cells are stimulated by the sympathetic nervous system
through β-adrenoceptors, or by vagus via muscarinic receptors. In turn, the sympathetic
nervous system is a ghrelin secretion inhibiting factor, acting via α-adrenoceptors [126].

Local ghrelin secretion is also regulated by different GI tract peptides/cytokines/
hormones. A stimulating effect is evoked by, e.g., adrenaline, noradrenaline, endothelin 1
and -3, secretin, nesfatin-1, endocannabinoids, and glucagon, while inhibition results from
the action of, e.g., SST, GRP, GLP-1, CKK, PYY, bombesin, insulin, leptin and interleukin 1β
(IL-1β) [33,34,106,127].

3. The Ghrelin System in CRC-Associated Obesity

Ghrelin is an important physiological regulator of lipid metabolism (both adipogenesis
and lipogenesis). In addition to obesity, insulin resistance, type 2 diabetes mellitus (T2D)
and metabolic syndrome (MetS) are also associated with a paradoxical decrease in circu-
lating ghrelin levels. However, these pathologies are associated with dramatic decreases
in UnAG concentrations, while plasma AG concentrations remain unchanged or increase
(reviewed in: [128]).

Many GI tract malignancies are associated with obesity (including CRC), defined
specifically by increased body mass index, most likely due to environmental rather than
genetic factors [129]. The pathogenesis of obesity is related to a specific metabolic condition
characterised by hyperinsulinemia or insulin resistance, as well as increased levels of leptin,
IGF-1, and/or serum free fatty acids levels [67,129,130].

Although the underlying molecular mechanisms are still poorly understood, the role
of obesity-related adipokines in pathogenesis of CRC-associated obesity is often high-
lighted [130,131]. Ghrelin was among the most frequently mentioned cytokines produced
by adipocytes, along with adiponectin, leptin, and resistin. Leptin appears to play an espe-
cially important role in ghrelin regulation [67,129,130]. The course of obesity is characterised
by changes in adipose tissue (AT)-secreted adipokine levels, including an increase in local
ghrelin secretion. All these changes gave rise to the hypothesis that unfavourable adipokine
profiles, with the reduction of those with an anti-inflammatory and anti-cancerous activity,
lead to an increase in mitogenic signals, a decrease in cell apoptosis and an increase in
pro-angiogenic signals, which are risk factors for the development of CRC [67,130]. The
role of the components of the ghrelin system produced by visceral AT is primarily sug-
gested in association with the regulation of GH/IGF-1 axis and its downstream signalling
pathways [130].

Unfortunately, no meta-analysis on the role of ghrelin as an obesity-related adipokine
in CRC has been performed so far, mostly due to the small number of reports on the
subject [131].

4. Genetic/Epigenetic Alterations of the Ghrelin System in CRC

Some interesting trials examined the association between common genetic variants
in the genes encoding ghrelin (GHRL) and its receptor (GHSR) and colorectal cancer
risk [132,133]. The first case-control study regarding single nucleotide polymorphisms
(SNPs) in the GHRL, and the GHSR, and CRC risk, was published in 2010. In two unrelated
populations (Czech Republic, Germany), two SNPs, namely SNPs rs27647 and rs35683,
were found to be associated with a lower CRC risk [132]. In contrast, in an Iranian popula-
tion study on ghrelin rs26802 genotyping, no significant difference was observed in terms
of genotype or allele frequencies between patients with CRC and controls [133]. Moreover,
two meta-analyses showed no statistically significant association between CRC and the
polymorphisms of the studied ghrelin system components [134,135].
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As for epigenetic changes in the ghrelin system, there is one report so far that has
showed significant hypermethylation of GHSR in CRC tissues compared to normal mucosa,
which was not accompanied by significant changes in GHRL methylation. GHSR hyper-
methylation was detectable as early as the adenoma stage, and persisted in later stages
regardless of clinical factors (e.g., age, sex, anatomical location, grading, MutL homolog 1
(MLH1) deficiency, etc.) [136].

It is important to note that GHRL is not a classical oncogene, such as genes crucial in
the development and metastasis of CRC (e.g., APC, PIK3CA, KRAS, TP53, SMAD4, and
BRAF) [65].

The oncogenic role of the ghrelin system in activating processes associated with
CRC carcinogenesis (e.g., cell proliferation, migration, invasion, and apoptosis), and the
signalling pathways that are responsible for tumour growth and progression, will be
discussed later in this paper.

5. The Ghrelin System in Clinical Studies—A Continuous Lack of Evidence of a
Significant Role in Development and Progression of Colorectal Cancer
5.1. Serum/Plasma Concentrations of Ghrelin in CRC

Diagnostic and prognostic assessment of serum ghrelin concentrations in CRC patients
has already been conducted by more than a dozen groups of investigators in different
populations, with the number of such studies steadily increasing. Part of the work was
carried out using a radioimmunoassay (RIA), while others were based on the enzyme
linked immunosorbent assay (ELISA) method. Their findings are controversial, as also
highlighted by other reviews [6,56,74].

Some investigators have shown reduced ghrelin levels in CRC patients compared to
control groups [137–140], or mild lesions [141], and colon cancer (CC) patients in relation
to rectal cancer (RC) [139]. These studies showed different correlations between ghrelin
levels and clinical data, tumour histology or location. Thus, differences were observed
between ghrelin levels and tumour location (lower in left colon), H. pylori infection (lower),
or tumour stage (decreasing with increasing stage) [137]. Similarly, Murphy et al., in the
first prospective report on the subject, observed an association between low ghrelin levels
assessed in blood samples taken 10 years prior to tumour development and an increased
risk of developing CRC [142]. Other papers that observed reduced ghrelin levels in CRC
compared to controls either showed no significant correlation with clinical data [138], an
inverse correlation between ghrelin levels and severity of epigastric bloating in CC [139],
or weak negative correlations between BMI and homeostatic model assessment–insulin
resistance (HOMA-IR) in patients with RC [140].

Two studies have shown a definite increase in serum levels of this peptide in patients
with CRC vs. control group [143,144]. There were also positive correlations of this concen-
tration increase with tumour staging and grading [143], as well as with tumour location in
CC, and age in patients with RC [144]. These studies suggested local production of ghrelin
by colon tumours [143].

In CRC patients with cachexia, either significantly higher mean ghrelin levels were
observed compared to the group without such a condition [59,145], or no quantitative
differences were recorded between both groups [146]. The discussion considers, among
other things, the individual BMI range of the patients studied. Waseem et al. found that
ghrelin levels correlate with the metabolic state of the patient rather than being a predictor
of advancing tumour stage [59].

In a recent study describing various GI tract tumours (including CRC), positive cor-
relations were found between levels of active ghrelin, IL-6 and energy metabolism, and
negative with food intake rate, which according to authors could suggest ghrelin resistance.
This study confirmed an increase in inflammatory cytokines with the progression of GI tract
cancers, suggesting their possible link with decreased fat-free mass (FFM) and increased
energy metabolism. However, increased levels of active ghrelin failed to compensate for
cachexia in the studied patients [147].
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As mentioned, a prospective study on a large group of patients (over 500 patients,
Finnish smokers) on the role of serum ghrelin concentrations as a risk factor for the devel-
opment of CRC was initiated by Murphy et al. [142] Low levels of this peptide 10 years
before CRC diagnosis were significantly correlated with an increased risk of developing CC
and RC. Interestingly, in people with longer cancer development times (more than 20 years
after the blood sample was taken), low levels of this hormone taken so early were instead
correlated with a significant reduction in the risk of developing cancer [142]. However, a
discussion was presented by Sundkvist et al., who achieved these results through their
own observations on a group of 60 patients with CRC from a similar human population
(Scandinavian population) which did not confirm an association between reduced ghrelin
levels and increased CRC risk in the years before diagnosis. They observed unchanged
ghrelin levels in CRC patients compared to controls, both in samples taken less than 5 years
and more than 10 years after tumour development [148].

To summarise, generalising the results and drawing conclusions in such research is
made difficult by several factors. Differing results may occur due to (1) differences in test
methodology (different types of ghrelin tested, ELISA vs. RIA); (2) heterogeneous patient
groups, including often small numbers of serum/plasma samples from CC and RC or lack
of control samples; and (3) coexistence of unspecified hormonal factors affecting ghrelin
production in this part of the GI tract at different stages of colon carcinogenesis.

Most of the tests were performed using ELISA, which increases specificity and results
in less cross-reactivity in ghrelin concentrations testing compared to RIA [148]. One group
of researchers evaluated patients after surgical excision of cancer [139], which is difficult to
compare with groups before such treatment (most studies). However, there are also works
in which ghrelin levels were assessed before and after CRC treatment, showing, similarly
to Zygulska et al., a decrease in hormone levels after tumour resection [144]. Evaluation of
ghrelin concentrations prior to surgical treatment of CRC, studied by this group, resulted
in additional clinical correlations not supported by other work [144]. Only one group
investigated the relationship between ghrelin levels and CRC patient survival, showing no
significant relationship [143].

In conclusion, studies of serum ghrelin concentrations in CRC demonstrate that this
hormone does not meet the conditions for a good serum biomarker of the risk of CRC
development and/or prognosis [142,148]. Regarding the demonstrated reduced ghrelin
levels in CRC, it is suggested that low ghrelin concentrations play a role in creating a
metabolic proinflammatory environment in the early stages of CRC development, resulting
in enhanced tumour growth. In contrast, it is also possible to envision a scenario in which
the reduced serum levels of ghrelin in CRC patients are a secondary occurrence, resulting
from the inhibitory effect of other tumour progression-associated factors/hormones on its
production [142].

A comparison of circulating ghrelin levels in different populations with CRC is pre-
sented in Table 1.

Table 1. Circulating Concentrations of Ghrelin in CRC Patients.

Characteristics of the Patient Material and Method Level of Ghrelin Correlations with Clinical
Parameters Refs.

n = 40 BC and CRC, including
n = 12 CRC cachectic and n = 14
noncachectic patients; no control

group; Israeli population

fasting blood samples;
RIA (pg/mL)

↑in all cachectic vs.
noncachectic patients

(i) in all patients BMI loss was a
significant independent

predictor of ghrelin levels; (ii)
stronger correlation with

cachexia in woman vs. man

[145]

n = 78 GC and CRC, including
n = 20 CRC (n = 7 CRC cachectic

and n = 13 noncachectic
patients); n = 24 C; Chinese

population

fasting blood samples;
RIA (pg/mL)

CRC vs. CNS;
cachectic CRC vs.

noncachectic patientsNS

no correlation between plasma
ghrelin and other hormones,

CRP, body composition
parameters, and tumour stage

[146]
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Table 1. Cont.

Characteristics of the Patient Material and Method Level of Ghrelin Correlations with Clinical
Parameters Refs.

n = 29 CRC; n = 50 C, Italian
population

fasting serum samples;
RIA (pg/mL) ↓vs. C

(i) lower levels in left colon
tumours and with H. pylori

infection; (ii) ↓from earlier to
later tumour stages

[137]

n = 110 CRC; Pakistan
population

fasting blood samples;
total plasma ghrelin;

RIA (pg/mL)

↑in cachectic patients
vs. C

no correlation with age, BMI,
grade/stage of CRC [59]

n = 126 CC; n = 36 C; Turkey
population

fasting serum samples;
RIA (pmol/L); ↓vs. C no correlation with clinical

parameters [138]

n = 20 CRC before and after
therapy; n = 20 benign group

before and after therapy; Turkey
population

serum levels; ELISA
(ng/mL)

↓in CRC vs. benign
group (both before

therapy); in CRC before
therapy vs. after

therapyNS

nt [141]

n = 95 CRC; n = 39 C; Greek
population

fasting plasma samples;
total plasma samples;

ELISA (pmol/L)
↑vs. C ↑, ♣, �; no correlation between

total plasma levels and survival [143]

n = 30 CC; n = 30 RC after
surgical treatment; no cachectic

patients; n = 30 C; Poland’s
population

fasting plasma samples;
ELISA (pg/mL)

↓in CC vs. RC and vs.
C

(−)correlation with severity of
epigastric bloating in CC [139]

n = 284 CC; n = 239 RC; n = 523
C; Scandinavian population

(Finnish smokers)

nested case-control
study; total serum

samples; prospective
study; RIA (pg/mL);

low level associated
with ↑CRC risk

occurring within 10 yrs
of blood draw; ↓CRC

risk in cancers
occurring >20 yrs after

blood draw

smoking (either intensity or
duration) did not alter the

observed associations
[142]

n = 33 CC; n = 27 RC; n = 60 C;
Scandinavian population

fasting plasma samples
within 5 yrs preceding
diagnosis of the cases;

prospective study;
ELISA (pg/mL)

CRC vs. C (<5 yrs)NS

CRC vs. C (>10 yrs)NS
plasma levels not associated

with CRC risk [148]

n = 24 CC; n = 26 RC; n = 69 C;
Chinese population

serum samples, ELISA
(pg/mL)

↑preoperative levels vs.
C;

the highest levels in RC;
↓after tumour resection

(i) perioperative levels:
(+)correlation with tumour

location in the CC, and age with
RC (higher in >60 yrs vs. <60

yrs); (ii) postoperative levels: ↑
in CC in the descending vs.

ascending colon; ↑in NRS2002
score ≥ 3 vs. score < 3 in RC

[144]

n = 19 CRC and other GI tract
cancers (oesophageal, GC);

Japan population

AG and UnAG,
(fmol/mL)

↑level of AG in stage IV
compared with stage III

in all GI tract cancers

(i) (+)correlation with IL-6 level
and energy metabolism; (ii)

(−)correlation with food intake
rate

[147]

n = 82 CRC; n = 88 C;
Iranian population

fasting plasma samples;
ELISA (pg/mL) ↓vs. C week (−)correlation with BMI

and HOMA-IR in RC [140]

[↓/↑—decrease/increase level; (+)/(−)—positive/negative;♣—significant association between ghrelin and degree
of cancer differentiation; �—association between ghrelin and more advanced clinical or TNM stage of cancer; AG—
acylated/active ghrelin; BC—breast cancer; C—control; BMI—body mass index; CC—colon cancer; CRC—colorectal
cancer; CRP—C-reactive protein; GC—gastric cancer; ELISA—the enzyme linked immunosorbent assay; HOMA-IR—
homeostatic model assessment-insulin resistance; H. pylori—Helicobacter pylori; NRS2002—Nutritional Risk Screening
2002; NS—statistically nonsignificant; nt—not tested; RC—rectal cancer; refs.—references; RIA—radioimmunologic
assay; TNM—tumour, node, metastasis; UnAG—des/unacylated ghrelin; yrs—years].
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5.2. Tissue Expression of the Ghrelin System in CRC

Similarly to normal colonic epithelial cells [93], colorectal adenoma [96] and colorectal
adenocarcinoma cells express ghrelin and its receptors (GHS-R1a, and GHS-R1b) [59,61,95].
Colorectal adenoma and CRC tissues are characterised by a higher local expression of
ghrelin system components compared to normal colon mucosa. All the above-mentioned
components of the ghrelin system show a predominantly cytoplasmic, rather than nuclear,
pattern of IHC expression [59,61,95,96]. A recently published (2021) pioneering work on
tissue expression of ghrelin and ghrelin receptors (without specific receptor typing) in
colorectal adenoma illustrates that a strong response to ghrelin was 7-fold more frequent
in high-grade adenomas vs. adenomas with low-grade dysplasia. Furthermore, in an
adenoma of high-grade dysplasia, the most significant positive correlation between ghrelin
and its receptor expression was observed. According to the authors, these results indicate
an important role for ghrelin in the progression of colorectal dysplasia, although further
studies are required to understand the mechanisms of cell proliferation and malignant
transformation [96].

In turn, results regarding the correlation between tissue expression of the ghrelin
system with clinical data in colorectal adenocarcinoma are divergent. Some show higher
expression of ghrelin and GHS-R1b, and reduced GHS-R1a in more severe stages of CRC.
Similar correlations were observed between the expression of both receptors and grading.
However, when it comes to ghrelin expression and grading, higher expression vs. control
samples was observed only in well- and moderately differentiated tumours. Interestingly,
a complete loss of IHC signal for ghrelin and its receptors was observed in poorly differ-
entiated CRC (highly malignant tumours) [59]. Similarly, Wang et al. observed negative
correlations between GHS-R1a expression and grading [95]. In turn, no significant correla-
tions between ghrelin/GHS-R1a expression and grading could be demonstrated in another
publication [61]. Only Waseem et al. obtained a high positive correlation between tissue
ghrelin expression and BMI of CRC patients [59].

The discrepancies in the results obtained by different authors in tissue material from
patients with adenoma and CRC may occur for various reasons, including the number and
size of CRC samples tested, the primary antibodies used (rabbit/goat anti-human), all being
polyclonal and not monoclonal, the suppliers they were sourced from (e.g., Chemicon,
Phoenix Pharmaceuticals, Santa Cruz, ABCAM), the lack of differentiation between the
types of ghrelin receptors tested, different scoring systems used to assess the intensity of
expression, and more.

A summary of the results on tissue expression of ghrelin system components in CRC
and colorectal adenoma, with their possible role in pathogenesis, diagnosis, and prognosis,
is presented in Table 2.

At the tissue level, using RNA extraction and quantitative RT-PCR (qRT-PCR) signifi-
cantly reduced GHRLOS expression, which was detected in the tissues of nearly 55% of
CRC patients compared with adjacent non-cancerous colon tissue. It was reported that a
decreased expression of GHRLOS is an independent prognostic marker of poor outcomes,
namely disease-free survival (DFS) and overall survival (OS) (HR = 2.0., 95 CI = 1.42–3.88,
and 1.96, 95% CI = 1.34–2.86). GHRLOS may act as a tumour suppressor during CRC
development, and downregulation of its expression may facilitate tumour progression and
metastasis. However, the exact mechanism of GHRLOS action, and the influence of other
transcription factors directly regulating its expression and downregulation in CRC, are still
an open question [149].

In conclusion, the study of tissue expression of peptides from the ghrelin system using
only the IHC technique is of limited use. Nonetheless, validation of these findings using
other models and research techniques (cultured cells, colorectal tumour xenograft mouse
model, qRT-PCR) confirms the local and, often, increased production of ghrelin and its
receptors in the cells of this tumour, as will be described later in this paper. A prognostic
significance in CRC was demonstrated only for lncRNA (GHRLOS) expression.
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Table 2. Tissue Expression of Ghrelin System Components in CRC and Colorectal Adenoma.

Material and
Methods

Ghrelin System
The Main Results of the Study Refs.

Ghrelin GHS-R1a GHS-R1b

n = 12 CRC and C;
TMA; IHC nt ↑vs. C;

↑Cyt vs. N nt
(i) negative correlation with ♣,�; (ii) ↑expression

in patients with lower weight loss vs. higher
weight loss

[95]

n = 110 CRC and C;
IHC

↑vs. C;
N, Cyt

↑vs. C;
Cyt

↑vs. C;
Cyt

(i) ↑vs. C in advanced stage; (ii) gradually
↑GHS-R1b expression with advancing tumour

stage; (iii) (−)correlation of GHS-R1a with �; (iv)
↑vs. C in well- and moderately-differentiated CRC;

(v) ↑GHS-R1b and ↓GHS-R-1a in low-grade
tumours; (vi) loss of ghrelin and GHS-Rs in highly
undifferentiated CRC; (vii) (+)correlation between

ghrelin and BMI

[59]

n = 150 CRC and C;
IHC

↑vs. C;
Cyt

↑vs. C;
Cyt nt no correlation between ghrelin and/or GHS-R1a

expression and tumour grades [61]

n = 92 colorectal
adenoma; adjacent

colon tissue (C); IHC

↑vs. C;
Cyt ↑GHS-R in adenoma vs. C

(i) 7×more common ↑ghrelin in high-grade vs.
low-grade adenoma; (ii) the most significant
correlation between ghrelin and GHS-R in

adenomas with high-grade dysplasia

[96]

[↓/↑—decrease/increase level; (+)/(−)—positive/negative; ♣—significant association between ghrelin and
degree of cancer differentiation; �—significant association between ghrelin and more advanced clinical or TNM
stage of cancer; BMI—body mass index; C—control, normal epithelial cells; Cyt—cytoplasmic localization; CRC—
colorectal cancer; GHS-R1a/R1b—ghrelin receptor 1a/1b; IHC—immunohistochemistry; N—nuclear localization;
nt—not tested; refs.—references; TNM—tumour, node, metastases; TMA—tissue microarray].

A schematic of the potential role of the ghrelin system in colorectal cancer (CRC)
pathogenesis, based on in vivo studies, is presented in Figure 2.
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Figure 2. Potential role of both local expression and systemic levels of the ghrelin system in the
pathogenesis of colorectal cancer (CRC). [↓/↑-reduced/increased expression/level; AG-acylated
ghrelin; GHS-R(s)-ghrelin receptor(s); UC-unchanged; n.r.-not reported].
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6. Studies on Potential Mechanisms of Ghrelin System Components in Colorectal
Carcinogenesis
6.1. In Vitro Studies

Tumour cell lines derived from colorectal tumours with different degrees of differ-
entiation are characterised by the production (mRNA, protein) of endogenous (native)
ghrelin and both its receptors. This expression is higher than in normal intestinal epithelial
cells [59,60]. Caco2 colorectal adenocarcinoma cells also showed high levels of GHRLOS
expression [125]. GHRLOS completely overlaps the ghrelin gene, and hence may also have
a major effect in regulating the ghrelin axis [8].

The pro-proliferative properties of both native ghrelin [59,60], as well as exogenous
ghrelin injected into cultures of normal epithelial cells and transformed colonocytes, were
already described [61]. An increase in invasiveness, cell migration [59,60], and cell via-
bility was also observed [61,150,151]. Administration of exogenous ghrelin also resulted
in increased endogenous ghrelin mRNA production and weaker expression of both of its
receptors in HCT116 cells, with a gradual decrease in production after prolonged pep-
tide administration (18 and 24 h). This could indicate the presence of negative feedback
mechanism in these cells, triggered by exogenous ghrelin [152].

The effect of ghrelin on tumour cell growth in various GI tract cancers was discussed
by a number of authors [6,55,72]. The majority of publications describe proliferogenic
effects of ghrelin system components in this tumour type [153–155]. In CRC cells, enhance-
ment of proliferation and cell cycle promotion could be mediated via adenylate cyclase
(AC)-independent epidermal growth factor receptor (EGFR) trans-activation and PI3K/Akt
phosphorylation [60]. Activation of Ras/PI3K/Akt/mTOR signalling was also demon-
strated in the study of Lien et al. [62]. This mechanism was confirmed in the study based
on the GHSR1a knockdown model, in which a decrease of Ras/PI3K/Akt pathway activity
was demonstrated, correlating with an increase in the level of phosphatase and tensin
homolog deleted on chromosome ten (PTEN) protein. The authors summarise that the reg-
ulation of the PTEN/PI3K/Akt pathway is associated with GHS-R1a-induced proliferation
in poor-differentiated SW480 cells [61].

The only work showing a rather weak antiproliferative or antineoplastic effect of
ghrelin was conducted in MC38 murine colon cancer cells. Application of a GHS-R1a
antagonist (D-Lys-GHRP-6) resulted in biphasic activity, with strong inhibition and weak
stimulation of cell growth in vitro. A stronger inhibitory effect on MC38 cell growth was
obtained when D-Lys-GHRP-6 was administered together with fluorouracil (FU) and UnAG.
In turn, UnAG alone had a rather weak growth inhibitory effect (8–10%) as compared to
the controls [156].

Differential involvement of the ghrelin system in CRC cell apoptosis was also de-
scribed [150,152]. Downregulation of 5-FU-induced apoptosis in HT-29 cells through
regulation of the Bcl-2/Bax system was described in one study [150], while an induc-
tion of HCT116 apoptosis following exogenous ghrelin administration via a mechanism
of ubiquitin-proteasome system inhibition and increased autophagy was reported in an-
other [152].

In conclusion, in vitro model studies using different CRC cell lines strongly confirm
the local production of ghrelin and its receptors, and the mainly pro-proliferative properties
of the whole system. Ghrelin also increased the invasion and migration of cancer cells,
which could potentially play a role in cancer progression.

6.2. Animal In Vivo Models

While the potential role of the ghrelin system has also been studied in mouse models of
colorectal carcinogenesis, such works are relatively sparse [61,157]. Significant reductions
in tumour weight were demonstrated in GHSR1α knockdown SW480 mouse xenograft
tumours compared to tumours from negative controls in a study of Liu et al. [61] Moreover,
interesting research on the administration of exogenous AG or in the absence of endogenous
ghrelin (Ghrl deletion) was performed in two mouse models of colon carcinogenesis—
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genetic (ApcMin/+ mice) and inflammation-associated (azoxymethane (AOM)/DSS). In
inflammation-induced colitis, administration of exogenous ghrelin significantly inhibited
colon tumour formation. In contrast, ghrelin administration had no effect on the number of
intestinal tumours forming in ApcMin/+ mice. While the absence of endogenous ghrelin did
not affect the incidence of intestinal tumours in both AOM/DSS-treated and Apc mutant
mice, the size of tumours was larger in the ghrl(−/−) colon than in the AOM/DSS model.
Interestingly, no tumour-promoting effect was observed after ghrelin administration in any
of the models [157].

A chronological summary of the major findings in in vitro and mouse models of the
study regarding the involvement of the ghrelin system in the basic mechanisms of colorectal
carcinogenesis is presented in Table 3.

Table 3. The Potential Role of the Ghrelin System in Colorectal Carcinogenesis—in vitro and mouse
model studies (*) on exogenous ghrelin in cancer.

Model of the
Study

The Components of Ghrelin System
The Main Mechanisms of

Action Refs.Ghrelin GHS-R1a GHS-R1b

mRNA Protein mRNA Protein mRNA Protein

well
differentiated
CCs (SW-48)

(+++) (+++) (++) (++) (+++) (+++) ↑↑cell prolifera-
tion/invasion/migration

[59]
poorly

differentiated
CCs (RKO)

(+++) (+++) (++) (++) (+++) (+++) ↑↑cell prolifera-
tion/invasion/migration

normal human
colonocytes (+) (+) (+) (+) (+) (+) do not proliferate

hCCs (HT-29);
eG nt nt nt nt nt nt

(i) ↑cell viability; (ii)
↓5-FU-induced apoptosis via
regulation of Bcl-2/Bax ratio

[150]

murine colon
cancer MC38

cells; eG (hAG,
hUnAG)

nt nt nt nt nt nt

(i) hG-dose-response for
anti-proliferative action with the
synergistic effect of hUAG and

GHS-RA; (ii) hUnAG-↓ or
↑antineoplastic effect of GHS-RA;
(iii) biphasic activity of GHS-RA

(↓↓/↑of cell growth)

[156]

hCCs (HCT116);
eG

(+),↓at
18 and

24 h
treat-
ment

nt

(+),↓at
18 and

24 h
treat-
ment

nt

(+),↓at
18 and

24 h
treat-
ment

nt

(i) negative feedback triggered by
eG; (ii) direct ↓of 20S

proteasomes; (iii) ↑of apoptosis
by ↓ubiquitin-proteasome system

and by ↑autophagy

[152]

normal human
intestinal cells

(FHs74Int);
eG (AG, UnAG)

(+) (++) (++) (++) (++) (++)
(i) ↑cell proliferation in all cells
under both isoforms of eG, ↓cell
proliferation in higher doses of

eG; (ii) ↑of cell cycle progression
via PI3K/Akt pathway and EGFR
trans-activation both converging

to ERK 1/2 phosphorylation

[60]

RKO, hCRCs
(Caco-2); eG
(AG, UnAG)

(+) (++);
Cyt, N (++) (++);

M (++) (++);
M

HCT116 cells;
eG nt nt nt nt nt nt

(i) ↑in cell viability vs. untreated
cells; (ii) ↑↑in cell viability of cells

treated solely with eG vs. the
groups treated with the eG +

melatonin, and leptin + melatonin

[151]
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Table 3. Cont.

Model of the
Study

The Components of Ghrelin System
The Main Mechanisms of

Action Refs.Ghrelin GHS-R1a GHS-R1b

mRNA Protein mRNA Protein mRNA Protein

AOM/DDS-
induced

inflammation-
associated colon
carcinogenesis
and ApcMin/+

mouse model;
eG

(++) nt (++) nt (++) nt

(i) ↓↓in tumour incidence in
AOM/DDS colitis but not in

ApcMin/+ model; (ii) no
tumour-promoting effect in either
model; (iii) the chemopreventive
effect of inflammation-associated
colorectal carcinogenesis; (iv) loss

of ghrelin did not affect the
incidence of intestinal tumour

formation in either model

[157] *

normal colon
epithelial cells

(NCM460)
nt (+) nt (+) nt nt

(i) in KD model-↓cell viability vs.
blank/scrambled C regardless of

the eG application; (ii) in KD
model-↑PTEN, ↓PI3K/AKT
pathway and promoting the
release of p53 in SW40 cells

[61] *

Caco-2 cells,
SW480 cells; eG

↑vs.
NCM460

↑vs.
NCM460

SW480
>

Caco-2

↑vs.
NCM460 nt nt

colorectal
tumour

xenograft mice
with GHS-R1a

KD

nt nt nt nt nt nt

(i) ↓tumour weight vs.
blank/negative C tumours; (ii)

↓Ki-67(+) cells vs.
blank/scrambled C; (iii)

↑PTEN-positive cells vs. other
groups

HT-29 cells; eG nt nt nt nt nt nt
(i) ↑cell proliferation via

Ras/PI3K/Akt/mTOR signalling;
(ii) time-dependent ↑Ras activity

[62]
hCCs (HCT-15);

eG nt nt nt nt nt nt ↑cell proliferation

[(↑↑)↑—(significant/strong) increase/promotion/induction/; (↓↓)/↓—(significant/strong) decrease/inhibition;
(+)—minimal expression; (++)—expression; (+++)—overexpression; AKT/Akt—serine/threonine-protein ki-
nase or protein kinase B (PKB); AOM—azoxymethane; APC/Min+—adenomatous polyposis coli/multiple in-
testinal neoplasia+; C—control; Cyt—cytoplasm; DDS—dextran sodium sulphate; eG—exogenous/synthetic
ghrelin; EGFR—epidermal growth factor receptor; ERK1/2—extracellular signal-regulated kinase 1/2; 5-FU—5-
fluorouracil; GHS-RA—ghrelin receptor type 1a antagonist; hAG—human acylated ghrelin; hCCs—human colon
cancer cells; hCRCs—human colorectal cancer cells; hUAG—human unacylated ghrelin; KD—knockdown; M—
membranous localization; mTOR—the mammalian target of rapamycin, protein kinase; N—nuclear localization;
nt—non tested; PI3K-PKC—protein kinase C; PTEN—phosphatase and tensin homolog deleted on chromosome
ten; Ras—“Rat sarcoma virus” protein; refs.—references].

7. Therapy Using Ghrelin System Components in CRC-Associated Cachexia and
Sarcopenia

Patients with cancer (including CRC) are at greater risk of losing muscle mass through
two different mechanisms: sarcopenia, defined as an age-related decrease in muscle mass
via changes in muscle synthesis signalling pathways, and/or cachexia, defined as cytokine-
mediated muscle and fat tissue degradation [158,159]. There is a growing understanding of
the causative factors of sarcopenia, including metabolic dysregulation, intestinal dysbiosis,
diet, and lifestyle in ageing people [160]. Criteria are being defined for impaired food intake
and CRP values, which may improve the diagnosis and classification of cancer-related
cachexia [161]. An in vitro model has been developed that can be used to study tumour-
induced myoblast apoptosis. These results suggest the possibility of using both forms of
ghrelin (AG and UnAG) in the treatment of cancer cachexia [159]. As there is as yet no
universal therapy for both of these multifactorial syndromes, attempts are also being made
to use anabolic-orexigenic agents based on ghrelin system components.
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Therapeutic attempts of ghrelin and ghrelin receptor agonists used in cancer
cachexia [152,162–164] and chemoprevention of inflammation-associated CRC carcino-
genesis in animal models [157], have given rise to the idea of including such a therapy
in humans. The effectiveness of cancer cachexia treatment is determined by a number of
basic (primary) parameters, e.g., food intake, weight gain, lean body mass (LBM) gain, fat
mass gain, and survival in the setting of cancer cachexia (reviewed in: [165]). Additional
(secondary) end points assessed in the treatment of cachexia also comprise changes in
quality of life, general nutritional status of patients or serum biomarkers of nutritional
status (e.g., IGF-1, IGFBP-3, and prealbumin) [166].

Studies and/or clinical trials report the beneficial effects of ghrelin [167,168] and
an agonist for the ghrelin receptor (anamorelin) in the treatment of cancer-associated
cachexia [166,169–171] and cancer-associated sarcopenia (reviewed in: [172]). In such trials,
subcutaneously administered synthetic ghrelin [167], or natural ghrelin, was used [168].
Although these studies are based on a small number of patients with cachexia, good tolera-
bility and safety of ghrelin administered in such way has been demonstrated in patients
with advanced disease (most with metastatic cancer) and with cancer cachexia in pancreatic,
head and neck, lung, and gastrointestinal cancer. Moreover, positive effects of ghrelin on
food intake, stable muscle mass or muscle growth and high exercise tolerance have been
observed [168]. Subcutaneously administered ghrelin resulted in an increased appetite,
improved energy balance, attenuated catabolism, and supported host metabolism [167].

An oral ghrelin-receptor agonist with appetite-enhancing and anabolic properties, known
as anamorelin hydrochloride, was studied in both healthy volunteers and cancer patients
with cachexia [169,173]. In healthy volunteers, increases of GH, IGF-1, IGFBP-3, and body
weight were observed, with good tolerability and selectivity [173]. Treatment of patients with
anorexia-cachexia-cancer syndrome for 12 weeks resulted in a favourable clinical response
profile, although some adverse effects were also observed [169]. The orally administered
anamorelin (ANAM tablets) was also studied in Japanese patients with CRC, gastric, and
pancreatic cancer. It has been shown to have beneficial effects on advanced and unresectable
gastrointestinal cancer (including CRC) [166]. Its use was well tolerated and improved
anorexia and patient nutritional status, resulting in increased LBM and body weight in
patients with cancer cachexia. Importantly, other non-clinical and clinical studies indicate that
ANAM promotes secretion of GH, IGF-1, and IGFBP-3 but not tumour growth [169,173].

Anamorelin is a drug approved (December 2020) only in Japan (not Europe) for
the treatment of cancer cachexia in multiple solid tumours, including CRC-associated
cachexia [166,170]. Recent studies have confirmed the effect of anamorelin on maintaining
and increasing LBM and body weight, as well as improving anorexia. The efficacy and
safety of anamorelin in treating cancer-related cachexia was confirmed [171].

Therapeutic options based on the ghrelin system in CRC-associated cachexia are
summarised in Table 4.

Table 4. Therapeutic Options Based on the Ghrelin System in Colorectal cancer (CRC)-associated Cachexia.

Name of
Targeted Agents

Agent
Characteristics

and Doses

Group/Model of the
Study Effects Stage of Development Refs.

Synthetic ghrelin
~13 µg/kg or

0.7 µg/kg daily s.c.
for 8 wk

solid GI tract
tumours; unselected
weight-losing cancer

patients

(i) supports host
metabolism; (ii) improves
appetite; (iii) attenuates

catabolism

randomised,
double-blind study

(National Clinical Trial
no. NCT00681486)

[167]

Anamorelin
hydrochloride
(RC-1291 HCl,

tabl. 50 mg)

synthetic peptide
agonist of GHS-R;
50 mg or placebo

once-daily for
12 wk

44 patients with CC
and n = 38 placebo

group

(i) ↑LBM; (ii) a favourable
clinical response profile in

patients with cachexia

phase 2, multicentre,
placebo-controlled,
double-blind trials;
ClinicalTrials.gov,

numbers NCT00219817
and NCT00267358

[169]
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Table 4. Cont.

Name of
Targeted Agents

Agent
Characteristics

and Doses

Group/Model of the
Study Effects Stage of Development Refs.

Anamorelin
(ONO-7643;
ANAM, tabl.

100 mg)

agonist of GHS-R;
once daily over

12 wk

50 Japanese patients
with advanced and
unresectable CRC,

GC, and PC

rapid ↑LBM and BW in
patients with advanced GI
tract cancer who had CC

multicenter, open-label,
single-arm study [166]

Anamorelin
hydrochloride

(ADLUMIZ, tabl.
50 mg)

selective agonist of
GHS-R1a humans

(i) maintains and ↑LBM and
BW; (ii) improves of

anorexia; (iii) the efficacy
against CC

phase III study for CRC,
GC, and PC [171]

Promising trials on animal models or in vitro systems

GHRP-2

agonist of GHS-R;
s.c. 10 µg/mouse

daily;
5-FU+GHRP-2;

5-FU alone

BALB/c female
colon

tumour-bearing mice
(CT26 colorectal
adenocarcinoma

cells)

5-FU+GHRP-2 improved
appetite in tumour-bearing

mice with
anorexia/cachexia

syndrome in early stage

may improve the
efficacy of therapy and
the quality of life thank
to the amelioration of
their nutritional state

[162]

Exogenous
ghrelin

1–10 µM of mostly
UnAG

human colon cancer
HCT116 cells

(i) direct ↓of 20S
proteasomes; (ii) ↑of

apoptosis by
↓ubiquitin-proteasome

system and by ↑autophagy

the proteasome as target
for cancer therapy [152]

Exogenous
ghrelin

i.p. injection of AG
(3 nmol/day)

AOM/DDS and
ApcMin/+ mouse
model of CRC

(i) the chemopreventive
effect of

inflammation-associated
CRC; (iv) loss of ghrelin did

not affect the incidence of
tumour formation

in vivo experimental
evidence for the

usefulness of ghrelin in
the chemoprevention of

inflammation-
associated CRC
carcinogenesis

[157]

HM01

agonist of GHS-R;
10 mg/kg and

2 × 20 mg/kg/day
orally until day 20

mice bearing CT26
cells; healthy mice

(i) ↑BW, fat mass, neuronal
hypothalamic activity in
healthy mice; (ii) ↑food

intake, BW, fat mass, SM
mass, bone mineral density
(iii) ↓energy expenditure in
tumour-bearing mice; (iv)
capable to counteract CC
without interfering with

cytokine or E3 ligase
signalling

counteracts cachectic
BW loss under

inflammatory conditions
and is a promising
compound for the

treatment of CC in the
absence of severe

anorexia

[163]

Exogenous
ghrelin

AG, UnAG-0.8
mg/kg i.p. twice
daily from day 14,

when the mice
presented signs of

cachexia

mice bearing CT26
cells

(i) both ghrelins-↓calpain
activity in SM of cachectic

mice; (ii) improved
tumour-free BW, grip

strength, muscle mass, and
nutritional state; (iii) ↓serum

TNF-α, ↑Akt activity, and
↓atrogin-1 in SM

contributed to the
development of an
AG/UnAG-based

therapy for CC

[164]

[↑,↓—increase (up-regulation)/decrease (inhibition)/expression/level; AG—acylated ghrelin; AOM—
azoxymethane; APC/Min+—adenomatous polyposis coli/multiple intestinal neoplasia+; BW—body weight;
CC—cancer cachexia; DDS—dextran sodium sulphate; GC—gastric cancer; GHS-R—ghrelin receptor; GHRP-
2—ghrelin agonist growth hormone releasing peptide; GI—gastrointestinal; i.p.—intraperitoneally; LBM—lean
body mass; PC—pancreatic cancer; s.c.—subcutaneously; SM—skeletal muscle; tabl.—tablets; TNF-α—Tumour
Necrosis Factor α; UnAG—unacylated ghrelin; wk—weeks].
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Sarcopenia occurs in 12–60% of CRC patients and appears to be a risk factor for
multiple complications after CRC surgery [174]. It could also negatively affect OS, DFS,
recurrence-free survival (RFS), and cancer-specific survival (CSS) in these patients. In addi-
tion, patients with sarcopenia appear to be susceptible to the toxic effects of chemotherapy.
Therefore, the use of ghrelin may help preserve muscle mass in metastatic CRC (reviewed
in: [172]). The effects of ghrelin and its analogues (anamorelin) stimulate appetite and
muscle anabolism, indicating the potential importance of the ghrelin system in alleviating
CRC-associated sarcopenia. The understanding of GHS-R signalling and the development
of new drugs and non-peptide agonists of this receptor (e.g., ibutamorene) could also be
an important factor in the treatment of sarcopenia in cancer. Recent studies reveal the
molecular basis of the binding of ghrelin and ibutamorene to GHS-R [175].

8. Concluding Remarks and Future Perspectives

In the normal large intestine, different ghrelin system components are detected in
small amounts and are mainly implicated in colon motility. In obesity, a risk factor for CRC,
ghrelin secretion in visceral adipocytes is increased. This excess may result in increased
mitogenic signalling, decreased cell apoptosis and increased pro-angiogenic signalling. One
pathway that is important in these mechanisms is the GH/IGF-1 axis and its downstream
signalling pathways. However, this matter requires continued large-scale prospective
studies to better understand the role of the ghrelin system in this pathology.

Genetic alterations of GHRL/GHSR in CRC usually occur in the form of SNPs and
are not significant risk factors for CRC development or progression. However, further
investigation of the contribution of the ghrelin system genetic alterations in patients with
many additional risk factors for CRC development (including obesity, MetS, and T2D) is
required. The findings on epigenetic alterations of the ghrelin system (hypermethylation of
GHSR in adenoma) are encouraging, especially in terms of their clinical utility in CRC.

Although there is an increasing number of studies on serum ghrelin concentrations,
and tissue expression of components of the ghrelin system (ghrelin, GHS-Rs, GOAT) in
CRC patients, still none of them meet the conditions for a good biomarker of development
risk and/or prognosis of this tumour. Prognostic significance in CRC was demonstrated
only for the expression of lncRNA (GHRLOS), which functions as a tumour suppressor
during the development of this cancer. The role of the perinuclear localization of UnAG in
the context of colon carcinogenesis is interesting, although it is not yet fully understood.

In vitro models on CRC cells confirm the local production of ghrelin/GHS-Rs and
the mainly pro-proliferative properties of this system. This hormone also increased the
invasion and migration of cancer cells. However, administration of exogenous ghrelin in
various CRC models (including inflammation-associated mouse model) had no direct colon
carcinogenesis-promoting effect. The potential significance of the effects observed in vitro
on CRC progression in vivo remains to be elucidated.

Further research is needed to link the ghrelin system to IBD mechanisms (especially
ulcerative colitis (UC)), as important risk factors for CRC. Investigating the molecular
mechanisms of UC-associated CRC, regarding the anti-inflammatory effects of the ghrelin
system in multiple tissues may allow for the development of better therapeutic approaches.

The use of ghrelin and an agonist for the ghrelin receptor (anamorelin) in the treat-
ment of cancer-associated cachexia and sarcopenia has been attempted with good results.
Anamorelin is expected to provide a new therapeutic option for cancer cachexia, for which
no effective treatment has been available to date.
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Abbreviations

AG acylated (active) ghrelin
Akt/AKT serine/threonine-protein kinase or protein kinase B (PKB)
APC adenomatous polyposis coli
BMI body mass index
BRAF a human gene that encodes protein called B-Raf
cAMP cyclic adenosine monophosphate
CC colon cancer
CI confidence interval
CRC colorectal cancer
EGFR epidermal growth factor receptor
ERK extracellular signal-regulated kinase
GH growth hormone
GHRLOS the ghrelin opposite strand/antisense non-coding RNA
GLP-1 glucagon-like peptide-1
GOAT ghrelin-O-acyl-transferase
HOMA-IR homeostatic model assessment-insulin resistance
HR hazard ratio
IGF-1, -2 insulin-like growth factor 1, -2
IGFBPs IGF binding proteins
IR insulin resistance
KRAS oncogene found in Kirsten rat sarcoma virus
LBM lean body mass
mTOR the mammalian target of rapamycin; protein kinase from PI3K family
OD odds ratio
PI3K phosphoinositide 3-kinase
PTEN phosphatase and tensin homolog deleted on chromosome ten
Ras “Rat sarcoma virus” protein, small GTP-ase
RC rectal cancer
SNPs single nucleotide polymorphisms
TNF-α tumour necrosis factor alpha
UC ulcerative colitis
UnAG des/unacylated ghrelin
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