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Chronic treatment with a carbon monoxide releasing molecule reverses dietary
induced obesity in mice
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ABSTRACT
Chronic, low level treatment with a carbon monoxide releasing molecule (CO-RM), CORM-A1, has been
shown to prevent the development of obesity in response to a high fat diet. The objective of this
study was to test the hypothesis that chronic, low level treatment with this CO-RM can reverse
established obesity via a mechanism independent of food intake. Dietary induced obese mice were
treated with CORM-A1, the inactive compound iCORM-A1, or saline every 48 hours for 30 weeks while
maintained on a high fat (60%) diet. Chronic treatment with CORM-A1 resulted in a 33% decrease
from initial body weight over the 30 week treatment period while treatment with iCORM and saline
were associated with 18 and 25% gain in initial body weight over the same time frame. Chronic
treatment with CORM-A1 did not affect food intake or activity but resulted in a significant increase in
metabolism. CORM-A1 treatment also resulted in lower fasting blood glucose, improvement in insulin
sensitivity and decreased heptatic steatosis. Chronic treatment with CO releasing molecules can
reverse dietary induced obesity and normalize insulin resistance independent of changes in food
intake or activity. These findings are likely though a mechanism which increases metabolism.
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Introduction

Carbonmonoxide (CO) is a gaseous transmitter in the same
family as nitric oxide (NO) and hydrogen sulfide (H2S). CO
can be generated through oxidation of lipids but is mainly
synthesized as a by-product of heme catabolism by heme
oxygenase enzymes.1 CO has well known cardiovascular
functions where it mainly serves as a vasodilator through
activation of potassium channels in vascular smooth muscle
cells.2,3 Several studies have demonstrated the beneficial car-
diovascular effects of CO inhalation.4-7

Carbon monoxide releasing molecules (CO-RMs) are
drugs that have been developed to specifically release CO
in vivo.8 The first generation CO-RMs were metal con-
taining compounds while subsequent generations of CO-
RMs such as CORM-A1 do not contain any metals and
release CO at a much slower rate under physiologic con-
ditions.9,10 CO-RMs have been demonstrated to protect
against acute renal injury, renal cold-storage induced
injury, and cardiac ischemia/reperfusion injury.10-14

We have previously demonstrated that chronic treatment
with a CO-RM, CORM-A1, was able to attenuate the devel-
opment of dietary induced obesity, hyperglyce-

mia and insulin resistance.15 CORM-A1 treatment resulted
in an increase in metabolism as measured by increased oxy-
gen consumption without any significant effect on food
intake or physical activity.15 CORM-A1 treatment also
resulted in a significant remodeling of white adipose tissue to
amore brown or beige phenotype.15 These studies have dem-
onstrated that CO-RM treatment can be preventative against
dietary-induced obesity, hyperglycemia, and insulin resis-
tance; however, the ability of CO-RMs to reverse these phe-
notypes once they are established in obesity is not known.
The goal of the present study was to determine if chronic
treatment with the CO releasingmolecule, CORM-A1, could
reverse dietary-induced obesity, hyperglycemia, and insulin
resistance.

Results

Chronic CORM-A1 treatment promotes weight loss,
decreases fat mass and increase lean mass in
dietary-induced obese mice

Initial body weights of 3 treatment groups were not dif-
ferent; however, the control mice were significantly
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lighter over the first 3 weeks of the experimental protocol
but caught up to the iCORM-A1 and saline treated
groups by 6 weeks of age (Fig. 1). CORM-A1 treatment
resulted in the lack of weight gain in the high fat treated
mice over the first 18 weeks of the study after which time
the mice started to progressively lose weight over the last
12 weeks such that at the end of the experimental proto-
col the mice lost 33% of their initial body weight (Fig. 1).
Saline treated mice transiently exhibited a greater
increase in body weight during week’s 19�21 of the

study but no significant differences in body weight
between controls, saline or iCORM-A1 treated mice
were observed at the end of the study (Fig. 1).

Body fat as determined by non-invasive echoMRI was
similar in all 3 treatment groups at the start of the study but
lower in the control group (Fig. 2A). CORM-A1 treatment
resulted in significant decrease in body fat starting at week
18 of the study and was decreased by 66% of control levels
by the of the 30week treatment protocol (Fig. 2A). Fatmass,
as determined by the weight of various fat pad depots at the

Figure 1. Body weights of treated mice over 30 week study. � D P < 0.05 as compared to other groups. y D P < 0.05 as compared to
control and iCORM-A1 treated mice.

Figure 2. (A) Total body fat as measured by noninvasive echoMRI. Body fat was measured every 6 weeks after the start of treatment. (B)
Weights of epidydmal, visceral, and total fat of different groups obtained at the end of the experiment protocol. (C) Lean body mass as
a percentage of total body weight measured at 30 weeks of treatment. �D P < 0.05 as compared to other groups.
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end of the study, was significantly lower in CORM-A1
treated mice versus all other groups (Fig. 2B). CORM-A1
treatment resulted in significant increase in lean body mass
as a percent of total body weight at 30 weeks with lean mus-
cle mass increased 45% in CORM-A1 as compared to con-
trol, saline, and iCORM-A1 treated mice (Fig. 2C). While
CORM-A1 treated mice exhibited a significant increase in
the percent lean mass as compared to the other groups, this
was due to the significant loss of fat mass and body weight
rather than an increase in actualmusclemass in thesemice.

CORM-A1 treatment normalizes hyperglycemia and
hyperinuslinemia in dietary-induced obese mice

Fasting blood glucose levels were elevated above normal
to similar levels in all groups prior to treatment. CORM-
A1 treatment resulted in significant attenuation of hyper-
glycemia starting at 6 weeks of treatment and lasting
throughout the duration of the study (Fig. 3A). At 30
weeks of treatment fasting blood glucose levels in
CORM-A1 treated mice were 55% of those observed in
control mice (Fig. 3A). Fasting plasma insulin levels were
also elevated to a similar degree in all groups prior to
treatment. CORM-A1 treatment resulted in a significant
decrease in plasma insulin levels as compared to all other
groups at both 24 and 30 weeks of treatment (Fig. 3B).
CORM-A1 treatment also significantly decreased plasma
insulin levels from time 0 values (Fig. 3B).

CORM-A1 treatment does not alter food intake or
activity but increases oxygen consumption in
dietary-induced obese mice

In order to determine if CORM-A1 treatment causes
weight loss by decreasing food intake, we measure
weekly food intake in mice over the first 4 weeks of

treatment. Food intake in control, untreated mice was
significantly higher as compared with all mice receiv-
ing injections over the first 3 weeks of treatment; how-
ever, this difference was lost by week 4 of treatment
(Fig. 4A). Next, we determined if CORM-A1 treatment
increases motor activity to promote weight loss in die-
tary-induced obese mice. Motor activity was measured
in all groups of mice at 28 weeks of treatment. No dif-
ferences in motor activity were detected between any
of the groups (Fig. 4B). Lastly, we measured oxygen
consumption as an index of metabolism to determine
if CORM-A1 treatment was associated with any altera-
tions in metabolism. CORM-A1 treatment resulted in
a doubling of oxygen consumption as compared to all
other groups of mice (Fig. 4C).

CORM-A1 treatment increases protein levels of
PGC1-a, NRF-1, and UCP1 and decreases HMGB1
levels in white adipose of dietary-induced obese
mice

In samples of epidydimal fat, chronic CORM-A1 treat-
ment increased levels of peroxisomal proliferating acti-
vating receptor- g coactivator (PGC-1a) and nuclear
respiratory factor-1 (NRF-1) which are considered
markers of mitochondrial biogenesis (Fig. 5A, B, C). Lev-
els of uncoupling protein-1 (UCP1) were also increased
in epidydimal fat of CORM-A1 treated mice (Fig. 5A
and D). Obesity is associated with elevated levels of
inflammation. We examined the protein levels of high
mobility group box-1 (HMGB1) in the epidydmal fat in
each of the groups to determine the effect of chronic
CORM-A1 treatment on HMGB1 in white adipose tis-
sue. CORM-A1 treatment significantly attenuated
HMGB1 levels in dietary-induced obese mice as com-
pared to all other groups (Fig. 5A and E).

Figure 3. (A) Measurement of fasting blood glucose in experimental groups. Fasting blood glucose was measured at baseline and every
6 weeks for entire 30 week treatment. (B) fasting plasma insulin levels measured at baseline, 24 and 30 weeks of treatment. � D P <

0.05 as compared to other groups. y D P < 0.05 as compared to time 0 value.
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Figure 4. (A) Daily food intake measured over the first 4 weeks of treatment in each experimental group. (B) Motor activity measured at
28 weeks of treatment in each experimental group. (C) Oxygen consumption measured at 28 weeks of treatment in each experimental
group. � D P < 0.05 as compared to other groups.

Figure 5. Representative Western blots from epidydmal fat tissues from control, saline treated, iCORM-A1 and CORM-A1 treated mice
(n D 6). (A) Representative blots. (B) Levels of PGC1-a. (C) Levels of NRF1. (D) Levels of UCP1. (E) Levels of HMGB1. � D significant from
control mice, P < 0.05.
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CORM-A1 treatment attenuates high fat diet induced
hepatic steatosis

Increased fat storage in the liver is a significant complica-
tion of dietary-induced obesity. We determined the level
of hepatic steatosis in mice from each treatment group
by Oil Red O staining of liver sections obtained from
samples at the end of the study. Oil Red O staining aver-
aged around 53% in all 3 control groups but only aver-
aged 25 § 6% in mice treated with CORM-A1 (Fig. 6A).
CORM-A1 treatment also had a significant effect to
reduce overall liver weights in dietary-induced obese
mice. CORM-A1 treatment decreased liver to tibia length
ratios by 50% as compared to all non-treated mice
(Fig. 6B).

Discussion

CO gas is one of the metabolites generated by the break-
down of heme by heme oxygenase (HO) enzymes.
Induction of heme oxygenase-1 (HO-1) has been dem-
onstrated to have both anti-obesity and anti-diabetic
effects in several different models.16-21 While the anti-
obesity and anti-diabetic effects of HO-1 have been
established, the effects of specific increases in CO on obe-
sity and diabetes are still emerging. We have previously
reported that chronic administration of the carbon mon-
oxide releasing molecule, CORM-A1 was able to prevent
dietary induced obesity and insulin resistance.15 How-
ever, the ability of CORM-A1 to lower body weight and

reverse type II diabetes in established dietary induced
obesity was not known. The results of the present study
along with those of our previously published study make
evident that chronic treatment with CO releasing mole-
cules, such as CORM-A1 can not only prevent but
reverse established obesity and type II diabetes in dietary
induced obese mice.

The results of the present study demonstrating that
chronic treatment with the CO releasing molecule,
CORM-A1 can reverse established obesity and type II
diabetes opens up the prospect of CO-RMs as novel anti-
obesity and anti-diabetes drugs. Given the apparent
effectiveness of CO-RMs other methods of CO delivery
such as CO inhalation may also be considered as poten-
tial therapies against obesity and diabetes. Initial studies
by Zheng et. al demonstrated that CO inhalation at
250 ppm for 2 hours a day prevented weight gain in
mice fed a high fat diet for 16 weeks.22 In separate studies
performed by our group, we also examine the effect of
low (28 ppm) and high (200 ppm) inhalation of CO on
the prevention and reversal of dietary induced obesity in
mice. Similar to the results obtained by Zheng et al. we
observed positive effects of CO inhalation at both levels
on body weight and fasting blood glucose over the initial
16 weeks of our study; however, this effect was totally
lost over the last 16 week of our study such that by the
end of the 32 week study no differences in body weight
or fasting blood glucose were observed between the mice
inhaling CO and control mice.23 Thus it appears that the
beneficial actions of CORM treatment cannot be obtain

Figure 6. (A) Representative images and quantification of hepatic steatosis as measured by Oil Red O staining of liver sections. (B) Liver
to tibia length ratios in each group obtained at the end of the 30 week study. � D P < 0.05 as compared to other groups.
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with chronic inhalation of CO. This may be due to sev-
eral factors including: transient hypoxia due to binding
of CO to hemoglobin at high (>200 PPM) levels of CO
exposure or the inability of CO to be effectively delivered
to systemic tissues after inhalation due to the kinetic of
CO binding to hemoglobin. One limitation of our studies
with CORM-A1 is that they have only been conducted in
male mice. So the effect of sex on the response to
CORM-A1 administration is not known. Previous stud-
ies in obese ob/ob mice have demonstrated that female
mice treated with the heme oxygenase-1 inducer, cobalt
protoporphyrin (CoPP), do not exhibit the same weight
loss as male mice do; however, CoPP was effective in
reducing other aspects of the metabolic syndrome in
these mice despite no effect on body weight.19

CORM-A1 treatment was able to cause significant
reductions in body weight, percent body fat and fasting
blood glucose in mice with established dietary induced
obesity and diabetes. CORM-A1 treatment resulted in a
33% decrease in initial body weight, a 66% decrease in
initial body fat and a 55% decrease in initial fasting blood
glucose levels. This powerful effect of CORM-A1 treat-
ment on these phenotypes was not due to a decrease in
food intake at least in the initial 4 weeks of the study. We
have previously reported that CORM-A1 treatment did
not alter food intake a later time points in treatment as
well.15 CORM-A1 treatment was also not associated with
any increase in physical activity. So, how does CORM-
A1 treatment result in such pronounced weight loss in
the treated mice without influencing food intake or phys-
ical activity? CORM-A1 treated mice exhibited a signifi-
cant increase in oxygen consumption which was twice as
high as the levels of oxygen consumption observed in
control dietary induced obese mice. The increase in oxy-
gen consumption was associated with a significant
increase in the levels of NRF1, PGC-1a and UCP1 in the
white adipose tissue of CORM-A1 treated mice. Thus,
the increased mitochondrial stimulating proteins may
allow white adipose tissue to undergo phenotypical
changes resulting in increased oxygen consumption and
reduced adipose storage similar to that of beige adipose
tissue.

Carbon monoxide is a potent regulator of mitochon-
drial biogenesis and mitochondrial respiration.24-26 CO-
RM treatment has been shown to improve cardiac mito-
chondrial function in dietary induced obese mice.14 CO-
RM treatment resulted in both improvement of mito-
chondrial quality through mitochondrial autophagy as
well as increased mitochondrial biogenesis.14 The
improvement of mitochondrial quantity and quality
resulted in an increased in cardiac oxygen consumption
and an increased cardiac performance in the CO-RM
treated dietary induced obese mice. The effect CO to

increase mitochondrial biogenesis is proposed to occur
through increases in mitochondrial reactive oxygen spe-
cies (ROS) and hydrogen peroxide (H2O2) generation.
The observed increase in the levels of UCP1 in the adi-
pose tissue of CORM-A1 treated mice supports this
hypothesis. The increase in mitochondrial ROS/H2O2

then can activate NRF1 and PGC1-a through a PI-3
kinase/Akt pathway.26 While no specific measurements
of mitochondrial biogenesis were made in the present
study, significant increases in both NRF1 and PGC1-a
were observed in the epidydmal adipose tissue of
CORM-A1 treated mice. The increased level of these
proteins in the white adipose tissue may correspond with
increase mitochondrial number and increased oxygen
consumption resulting in a lowering of fat mass and
decreased body weight observed in the CORM-A1
treated mice. Previous studies have also found the CO-
RMs including CORM-A1 can directly uncouple mito-
chondrial respiration via a marked depression of state 3
respiration.27 The distinct roles of these proteins in the
ability of CORM-A1 to increase oxygen consumption
and decrease body weight needs to be addressed in future
studies using mice which are specifically deficient in
these proteins in white adipose tissue.

Inflammation is a believed to be a significant compo-
nent of obesity. Whether obesity drives inflammation or
increased inflammation promotes obesity is a highly con-
troversial area. However, recent studies have indentified
high mobility group box (HMGB) proteins as potential
sources linking increased adipose tissue mass to
increased inflammation.28 HMGB-1 is a secreted adipo-
kine which acts to drive the production of inflammatory
molecules through the Receptor for Advanced Glycation
Endproducts or RAGE. It can increase the levels of
inflammatory cytokines such as interlukin-6 from
peripheral tissues as well as immune cells.29 Recent stud-
ies have demonstrated that CO attenuates HMGB-1 lev-
els in both macrophages exposed to lipopolysaccharide
and kidney tubules exposed to hypoxia.30,31 In the pres-
ent study, we demonstrate for the first time the chronic
treatment with CORM-A1 attenuates HMBG-1 protein
levels in white adipose tissue of dietary induced obese
mice. These results indicate that CORM-A1 treatment
also has beneficial anti-inflammatory actions in obesity
in addition to decreasing body weight and body fat.

Non-alcoholic fatty liver disease (NAFLD) is a serious
complication of obesity for which there is currently no
effective therapy.32,33 Previous studies have demon-
strated that hepatic induction of heme oxygenase, the
enzyme responsible for CO generation in vivo, can pre-
vent fatty liver development in genetically obese mice.34

However, this is the first study to specifically demon-
strate that administration of CORMs prevents hepatic
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steatosis in dietary induced obesity. CORM-A1 adminis-
tration not only decrease the amount of fat in the liver as
determined by Oil Red O staining of liver sections but it
also significantly decreased relative liver weight. Whether
the effect of CORM-A1 treatment to attenuate high fat
diet induced hepatic steatosis was due to the significant
decrease in body weight/fat or the significant increase in
metabolism exhibited in the treated mice is not known.
It is also possible that CORM-A1 treatment could have
some direct effect on the liver to attenuate hepatic steato-
sis or this effect could be mediated by an alteration in the
release of adipokines from adipose tissue which could
then influence hepatic lipid accumulation. These poten-
tial mechanisms will need to be addressed in future stud-
ies to directly evaluate the use of CO-RMs as potential
therapies for NAFLD.

In summary, chronic treatment with CORM-A1 was
able to elicit weight loss, reverse hyperglycemia and
hyperinsulinemia, reduce body fat, and prevent hepatic
steatosis in a mouse model of dietary-induced obesity.
CORM-A1 treatment did not have any significant effects
on food intake or activity but resulted in an increase in
metabolism as evidenced by a significant increase in oxy-
gen consumption. CORM-A1 treatment resulted in an
increase in markers of increased mitochondrial biogene-
sis and uncoupling. In addition, CORM-A1 treatment
also has potent anti-inflammatory action by decreasing
the levels of the pro-inflammatory cytokine HMGB1.

Methods

Animals

The experimental procedures and protocols of this study
conform to the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and were
approved by the Institutional Animal Care and Use
Committee of the University of Mississippi Medical
Center.

Studies were performed on male dietary induced
obese (DIO) C57BL/6J mice purchased from Jackson
Labs (Bar Harbor, ME). DIO mice were on a high fat
diet prior to purchase for at least 16 weeks and then
maintained on the high fat diet for another 8 weeks.
Mice were housed under standard conditions and
allowed full access to 60% high fat diet (diet # D12492,
Research Diets, Inc., New Brunswick, NJ) and water. The
groups of mice utilized in the present study consisted of
1) control high fat diet mice, 2) high fat diet mice receiv-
ing intraperitioneal (i.p.) injection of saline (0.2 cc vol-
ume), 3) mice receiving i.p. injection of iCORM-A1
(2.25 mg ¢ ml¡1, 0.2 cc volume), 4) mice receiving i.p.
injection of CORM-A1 (5 mg/kg body wt., 0.2 cc

volume) every 48-hours for 30 weeks. CORM-A1 was
synthesized as previously described.35 iCORM-A1 con-
sisted of CORM-A1 prepared in 0.1 M HCl bubbled with
N2 gas for 10 min to dissipate all of the CO and then the
pH of the solution was adjusted to 7.4.

Body composition (EchoMRI)

Body composition changes were assessed at 6 week inter-
vals throughout the study using magnetic resonance
imaging (EchoMRI-900TM, Echo Medical System,
Houston, TX). MRI measurements were performed in
conscious mice placed in a thin-walled plastic cylinder
with a cylindrical plastic insert added to limit movement
of the mice. Mice were briefly submitted to a low inten-
sity electromagnetic field and fat mass, lean mass, free
water and total water were measured.

Fasting glucose and insulin

Following an overnight fast a blood sample was obtained
via orbital sinus under isoflorane anesthesia. Blood glu-
cose was measured using an Accu-Chek Advantage gluc-
ometer (Roche, Mannheim, Germany). Fasting plasma
insulin concentrations were determined by ELISAs
(Linco Insulin ELISA kit) as previously described.36

Oxygen consumption, respiratory exchange rate,
and motor activity

At 28 weeks after the start of the experimental protocol
mice were placed individually in an acrylic cage (16 cm
£ 24 cm £ 17 cm) equipped with a metabolic monitor-
ing system (AccuScan system, Harvard Apparatus, Hol-
liston, Massachusetts) for measurements of oxygen
consumption (VO2) and motor activity as previously
described.15 VO2, was determined daily (for 2 min every
10-min interval) and expressed as the 24 hour average
normalized to lean body mass as determined by
EchoMRI. Motor activity was determined using infrared
light beams mounted in the cages in x, y, and z axes.

Food consumption

Food consumption was measured during the first 4
weeks of the experimental protocol in mice housed indi-
vidually. The total amount of food was weighed daily in
the morning and averaged for each mouse to obtain a
24-hour food consumption measurement. Daily 24-hour
food consumption measurements were then averaged
over the week to obtain weekly measurements.

ADIPOCYTE 7



Liver Oil Red O staining

To determine the effects of treatment on lipid accumula-
tion in the liver, livers of mice from each group were
fixed in formalin, and 10 mm thick frozen sections were
obtained. Oil Red O staining was performed using a
commercially available kit according to manufactures’
guidelines (NovaUltra Oil Red O Stain Kit, IHC World,
Woodstock, MD). The degree of Oil Red O staining was
determined at 40£ magnification using a color video
camera attached to a Nikon microscope by Metamorph
software (Universal Imaging Corporation, Downingtown
PA). To ensure accuracy of measurement 6 images of
each animal were analyzed and averaged into a single
measurement. Measurements were obtained from 3 indi-
vidual animals per group. Data is presented as the aver-
age § SE of the percent Oil Red O staining for each
group.

Western blot analysis

Western blots were performed on lysates prepared from
tissues collected at the end of the experiments. Samples
of 30 mg of protein were boiled in Laemmli sample buffer
(Bio-Rad, Hercules, CA) for 5 min and electrophoresed
on 10 or 12.5% SDS-polyacrylamide gels and blotted
onto nitrocellulose membrane. Membranes were blocked
with Odyssey blocking buffer (LI-COR, Lincoln, NE) for
2 hours at room temperature and then incubated with
primary antibodies overnight at 4�C. Membranes were
incubated with either Alex 680 (Molecular Probes) or
IRDye 800 (Rockland, Gilbertsville, PA) secondary anti-
bodies for 1 hour at room temperature. Membranes were
visualized using an Odyssey infrared imager (Li-COR,
Lincoln, NE) which allows for the simultaneous detec-
tion of 2 proteins. Densitometry analysis was performed
using Odyssey software (LI-COR, Lincoln, NE). Anti-
bodies for Western blots were as follows: HMBG1
(Abcam, Boston, MA), NRF-1 (Rockland, Gilbertsville,
PA), PGC1-a (Millipore, Temecula, CA), UCP-1 (Sigma,
St. Louis, MO) and b-actin (Abcam, Cambridge, MA).
All antibodies were used at a ratio of 1:1000 with block-
ing buffer, the lone exception being b-actin which was
used at a ratio of 1:5000. All blots from tissue samples
were run with 3 samples from all groups of mice per gel.

Statistics

All data are presented as mean § SEM. Differences
between treatment groups were determined using one-
way analysis of variance with a post hoc test (Dunnett’s).
A P < 0.05 was considered to be significant. All analyses

were performed with SigmaStat (Systat software, Inc.,
Richmond, CA, USA).
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