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Background: Previous studies from our group and others have shown that cyclooxygenase-2 (COX-2) has an essential role in
radiation-induced non-targeted responses and genomic instability in vivo. However, the signalling pathways involved in such
effects remain unclear.

Methods: A 1 cm2 area (1 cm� 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of
300 keV X-rays. Nimesulide, a selective COX-2 inhibitor, was given to mice for five consecutive days before irradiation. Changes in
transforming growth factor-beta (TGF-b) and TGF-b receptor type-1 (TGFBR1) mediated signalling pathways, in the out of
radiation field lung and liver tissues were examined.

Results: While the plasma level of cytokines remained unchanged, the expression of TGF-b and its receptors was elevated in non-
targeted lung tissues after partial body irradiation. In contrast to the predominant expression of TGF-b in stromal and alveolar
cells, but not in bronchial epithelial cells, TGF-b receptors, especially TGFBR1 were significantly elevated in non-targeted
bronchial epithelial cells, which is consistent with the induction of COX-2. The different expression levels of TGFBR1 between liver
and lung resulted in a tissue specific induction of COX-2 in these two non-targeted tissues. Multiple TGF-b induced signalling
pathways were activated in the non-targeted lung tissues.

Conclusion: The TGFb-TGFBR1-COX-2 Signalling Pathway has a critical role in radiation-induced non-targeted response in vivo.

Ionising radiation is a well-established human carcinogen and is
known to cause tumours in various organs. On the other hand,
radiation is a main therapeutic modality in the treatment of a
variety of human cancers. In the past two decades, there has been
plenty of evidence that radiation can induce bystander/non-target
effects in vitro and in vivo. However, the precise mechanisms are
still unclear (Morgan, 2007, 2009; Hei et al, 2011). In in vitro
studies, there is evidence that reactive oxygen/nitrogen species and
cytokines are involved in mediating the non-targeted response in
subconfluent cultures or from medium transfer studies. On the
other hand, gap junction-mediated cell-cell communications have
been shown to be critical for bystander effects in confluent cultures
of either human or rodent origin. It is likely that a combination of

pathways is involved in producing a bystander response. Using
primary human fibroblasts, we showed recently that the cyclo-
oxygenase-2 (COX-2) signalling cascade, including the activation
of mitogen activated protein kinase pathways, has an essential role
in the bystander process (Zhou et al, 2005). Furthermore, we found
that mitochondria had an important role in radiation-induced
bystander effect, partially via mitochondria-dependent regulation
of iNOS and COX2 signalling pathways, which are under NF-kB
regulation (Zhou et al, 2008). More recently, there is evidence that
bone marrow cells of both CBA/Ca and C57BL/6 mice are
responsive to signals produced by either irradiated CBA/Ca or
C57BL/6 mice, and the responses are mediated by the cytokines
converging on a COX-2 dependent pathway (Rastogi et al, 2012).
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Using gpt delta transgenic mice, we reported recently that
radiation can induce DNA damage and mutagenesis in the out of
field lung and liver tissues after a 5 Gy dose of X-rays delivered to
the lower abdomen of otherwise shielded animals. Furthermore,
the induction of COX-2 coincided with an increase in prostaglan-
din and spi- mutations in out of field lung tissues (Chai et al, 2012).
As a follow-up study, here, we examined the possible pathways
involved in partial body irradiation induced non-targeted
responses in gpt delta transgenic mice.

MATERIALS AND METHODS

Animal and drug treatment schedule. Nimesulide (Sigma
Aldrich, St Louis, MO, USA), a selected COX-2 inhibitor
(Famaey, 1997), was dissolved in PBS containing 0.2% DMSO,
freshly prepared on the day of the experiments. Four groups of
adult male gpt delta transgenic mice were used in this study. There
were two non-irradiated groups, consisting of three animals each,
treated with vehicle (PBS with 0.2% DMSO, used for dilution of
Nimesulide, 0.3 ml per animal, intraperitoneal injection) or
Nimesulide (0.3 ml per animal, 1.5 mg kg� 1, intraperitoneal
injection) only. The other two parallel groups were partial body
irradiated with 5 Gy of X-rays as described previously (Chai et al,
2012) after pretreatment by vehicle or Nimesulide. Each partial
body irradiation group consisted of five mice. To be consistent
with our previous study, a 5 Gy dose was chosen in the current
work. On the other hand, treatments with gamma-knife for CNS
tumours and with hadrontherapy for other solid tumours involved
doses in excess of 10–15 Gy in a single fraction been used with the
intent to cure (Miyamoto et al, 2007; Han et al, 2012). As such,
with modern advances in radiotherapy regimen, doses larger than
2 Gy fractions are no longer clinically irrelevant. All of the drugs
were administered for five consecutive days. The last treatment of
drugs was given 2 h before irradiation. Animals in the four groups
were sacrificed at 24 h after irradiation. Lung and liver tissues were
collected and processed for further molecular studies. A portion of
each tissue was frozen in liquid nitrogen while the rest of each
tissue was fixed in 10% formalin.

Western blot analysis. Cell lysates (50–100 mg protein) were
resolved on 4–12% gradient SDS–PAGE gel (Invitrogen, Carlsbad,
CA, USA), and processed according to standard protocols. Various
antibodies were used, including anti-COX-2 (Cayman, Ann Arbor,
MI, USA), anti-TGF-b1(Cell Signaling, Danvers, MA, USA), anti-
TGF-b receptor type-1 (TGFBR1) (Abcam, Cambridge, MA, USA),
anti-TGF-b receptor type-2 (TGFBR2) (Santa Cruz Biotech,
Santa Cruz, CA, USA), anti-TNF-a(Cell Signaling), anti-TNF
receptor 1(TNF-R1) (Santa Cruz Biotech), anti-extracellular
signal-regulated kinase (ERK) (Cell Signaling), anti-phospho-
ERK(Thr202/Tyr204), (Cell Signaling), anti-c-Jun N-terminal
kinase (JNK) (Cell Signaling), anti-phospho-JNK(Thr183/Tyr185)
(Cell Signaling), anti- nuclear factor kappa-B (NFkB) p65 (Cell
Signaling), anti-phospho-NFkB p65(Ser536) (Cell Signaling), anti-
AKT (Cell Signaling), anti-phospho-AKT(Ser473) (Cell Signaling),
anti-Smad2 (Cell Signaling), anti-phosho-Smad2(Ser465/467) (Cell
Signaling), anti-Rac1/2/3 (Cell Signaling), anti-phosho-Rac1/
cdc42(Ser71) (Cell Signaling) and monoclonal anti-b-actin (Sigma
Aldrich) (optimal dilutions of antibodies were 1:100–1:1000). The
secondary antibodies (anti-rabbit or anti-mouse, GE Healthcare,
Piscataway, NJ, USA) were conjugated with horseradish peroxidase
(HRP) (dilution 1:5000). Chemiluminescent signal was detected
using the ECL system (GE Healthcare) and quantified using Image
J software (NIH, Bethesda, MD, USA) and normalised to the b-
actin expression level.

Immunohistochemistry staining. Immunohistochemistry stain-
ing was performed using various primary antibodies and specific

secondary antibodies including anti-COX-2 (Cayman), anti-8-
OHdG (Abcam), anti-TGF-b1 (Sigma Aldrich), anti- TGFBRI
(Abcam) and anti-phosho-ERK (Cell Signaling) as previously
described (Calaf et al, 2008). The slides were analysed by using an
Olympus CX31 microscope connected with a Motic MC Camera
(2.0 megapixel; MC2001interface, Sterling Heights, MI, USA).
Paint Shop Pro (Sterling Heights, MI, USA) was used to quantify
the protein expression level on each slide (Calaf et al, 2008). The
data were expressed as the mean±s.e. of the mean (s.e.m.) of the
relative grade of luminescence obtained from each slide.

Enzyme-linked immunosorbent assay (ELISA). Microwell plates
(Nunc Maxisorp, eBioscience, San Diego, CA, USA) were coated
with 100 ml of capture antibody in coating buffer (Invitrogen)
overnight at 4 1C. For blocking, 200 ml of 3% bovine serum albumin
(BSA) in PBS was added to wells and incubated for 1 h at 20 1C.
Plasma was diluted 1:5 in 2% BSA in PBS containing 0.05% Tween
20 (PBST) to the wells followed immediately by addition of biotin-
conjugated detection antibody, diluted in 50 ml of 2% BSA-PBST.
After 90 min incubation at 20 1C with shaking, plates were washed
(4 � PBST) and streptavidin-HRP was added, diluted in 100 ml of
2% BSA-PBST. Following 1 h incubation at 20 1C, microwells were
washed four times and 100 ml of tetramethylbenzidine (TMB,
Thermo Scientific, Rockford, IL, USA) added for 15–30 min at
20 1C. Reactions were stopped by addition of 0.9 M H2SO4 (50 ml)
and product absorbance was determined at 450 nm (Partridge et al,
2010).

Statistical analysis. All data were expressed as mean±s.e. of
mean. Differences between groups were tested for statistical
significance using a Student’s t-test. A P-value less than 0.05
denoted the presence of a statistically significant difference
between groups.

RESULTS

Role of COX-2 inhibitor in lower abdominal irradiation-
induced DNA damage in out of field lung tissues. Consecutive
pretreatment with Nimesulide (1.5 mg kg� 1 body weight, intra-
peritoneal injection) for 5 days did not affect COX-2 expression in
lung tissues of non-irradiated animals (Figure 1A). In our previous
study, we found that both female and male animals showed a
similar induction peak of COX-2 at 24 h after irradiation (Chai
et al, 2012). In contrast, pretreatment of Nimesulide reduced COX-
2 expression in non-targeted lung tissues by 30% relative to vehicle
control animals at 24 h after lower abdominal irradiation
(Figure 1A). Similar to western blot, results from immunohisto-
chemistry staining showed a 30% suppression efficiency of COX-2
in non-targeted lung bronchial epithelial cells by Nimesulide,
relative to the vehicle pretreated group at 24 h after partial body
irradiation (Po0.05, Figure 1B). Compared with the vehicle
control group, Nimesulide reduced induction of PGE2, a major
isoform of prostaglandin by 30% in bystander lung tissues (3.9-fold
vs 2.6-fold, respectively, Figure 1C). The efficiency of PGE2

suppression by Nimesulide was consistent with that of COX-2
among the same non-targeted lung tissues after lower abdominal
irradiation. As a consequence of inhibiting the production of
prostaglandin, Nimesulide efficiently reduced radiation-induced
oxidative DNA damage in non-targeted lung tissues by 40%
compared with vehicle group after lower abdominal irradiation
(Po0.05, Figure 1D).

Alteration of Cytokines and their receptors in plasma and
bystander tissues after partial body irradiation. The plasma
levels of released cytokines, especially TGF-b and TNF-a, after
PBIR were examined using ELISA. A fluctuation of both cytokines
in plasma at a series of time points after PBIR was observed
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although the difference was not statistically significant comparing
with the levels in controls (Figures 2A and B). Further, we
examined the expression level of ligands and related receptors of
TGF-b and TNF-a in lung tissues using western blots after PBIR.
As shown in Figure 3A, TGF-b expression was significantly
elevated in bystander lung tissues at 24 h after partial body
irradiation, but decreased at 48 h. Following the upregulation of
TGF-b, TGF-b receptors, especially TGFBR1, were gradually
elevated in bystander lung tissues at 48 h after irradiation and
decreased to basal level at 72 h (Figure 3B). Quantification analysis
of western blot bands showed that TGF-b ligands responded earlier
than TGFBR1 and TGFBR2, respectively (Figure 3B). In contrast,
expression of TNF-a ligands and receptors in bystander lung
tissues was not significantly different from that in the non-treated
lung tissues at a series of time points after partial body irradiation
(Figure 3C). Consistent with our previous finding that COX-2
induction was tissue-specific but not gender-specific (Chai et al,

2012), there was a difference in the expression of TGF-b receptor
levels between non-targeted livers and lungs of the same animals.
There was a negligible level of TGFBR1 in liver tissue but a high
level in lung tissues, which might result in different sensitivity of
TGF-b signals in lung vs liver (Figure 3D). The difference in TGF-
b receptors was consistent with different induction of COX-2 and
DNA damage response in bystander lung and liver tissues after
treatment, as shown previously (Chai et al, 2012).

Using immunohistochemistry staining, we determined the
location of TGF-b ligands and receptors in non-targeted lung
tissues after PBIR. As all end points obtained with a 6c Gy dose of
WBIR (control for scattering dose) were similar to non-irradiated
controls, the result obtained with the 6c Gy dose was shown. TGF-
b1 was predominantly expressed in stromal and alveoli cells but
not in bronchial epithelial cells of both scattered dose control and
PBIR 5 Gy groups (Figures 4A and B). In contrast to the induction
of COX-2 shown earlier, there was no significant difference in the
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Figure 1. Pretreatment of COX-2 inhibitor suppresses induction of COX-2, PGE2 and 8-OHdG in non-targeted lung tissues after partial body
irradiation. (A) Western blot data show pretreatment with Nimesulide did not affect COX-2 basal expression in lung tissues but reduced COX-2
expression levels in non-targeted lung tissues 24 h after lower abdominal irradiation. (B) COX-2 was significantly reduced in non-targeted bronchial
epithelial cells at 24 h after partial body irradiation. A representative microscopic field from each group is shown under 10� magnification. Bar
represents 200mm. (C) Nimesulide reduced PGE2 production in non-targeted lung tissues. Pooled data from three animals and error bars:
means±s.e.m. Quantification of COX-2 staining intensity in bronchial epithelial cells in Nimesulide-treated mice showed a significant reduction
relative to controls with asterisks (**Po0.01, student’s t test). (D) Pretreatment with Nimesulide suppressed the induction of 8-OHdG in non-
targeted lung tissues. 8-OHdG was localised predominantly in bronchial epithelial cells at 24 h after partial body irradiation. A representative
microscopic field from each group is shown under 40� magnification. Bar represents 50mm. Statistical comparison between DMSO and
Nimesulide groups with similar partial body irradiation is marked with asterisks (**Po0.01, Student’s t-test). Error bars indicate standard errors of
the means (s.e.m.) for 20 independent microscopic fields from three different mice.
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distribution of TGF-b in lung tissues after PBIR vs the scattering
dose WBIR group. Quantification analysis did not show a
significant difference in the expression of TGF-b in bronchial
epithelial cells between non-irradiated control and partially
irradiated animals (PBIR 5 Gy, data not shown). In contrast to

the results obtained with TGF-b, TGFBR1 was found to distribute
mainly in bronchial epithelial cells but not in neighbouring stromal
cells (Figures 4C and D). TGFBR1 was significantly increased in
non-targeted lung bronchial epithelial cells compared with
controls, which was consistent with the expression pattern and
location of COX-2 induced by partial body irradiation.

Activation of multiple TGF-b induced pathways in non-targeted
lung tissues. There are two major TGF-b related signalling
pathways, Smad-dependent and Smad-independent pathways.
Activation of TGF-b signalling leads to the induction of multiple
signalling pathways involving Smad2, Rac1, ERK, JNK, NFkB and
AKT as described (Wrzesinski et al, 2007). The expression of
Smad2, an important factor in the Smad-dependent TGF-b
pathway in bystander lung tissues was examined after PBIR at
different time points. p-Smad2 levels were elevated at 24 h after
treatment and maintained through 48 h before returning to basal
levels at 72 h after irradiation, consistent with the induction of
TGF-b and COX-2 in the non-targeted lung tissues (Figure 5A).

Besides the Smad-dependent pathway, we examined the Smad-
independent signalling pathways involving Rac1, ERK, JNK, AKT
and NFkB (Ivanov et al, 2010). Rac1 did not show any changes in
non-targeted lung tissues at a series of time points after irradiation
(Figure 5A). In contrast, NFkB, AKT, ERK and JNK, were
activated by phosphorylation, which are critical upstream events
controlling COX-2 expression. The activated forms of NFkB, AKT,
ERK and JNK were all dramatically upregulated in bystander lung
tissues at different time points after PBIR (Figures 5B-E).
Phosphorylation of p65 signified an upregulation of NFkB activity
at 3 h after treatment and that was maintained above basal levels
within 24 h after irradiation, indicating a persistent response in
non-targeted lung tissues to the signals derived from the irradiated
area (Figure 5B). Similar to NFkB, AKT showed activation in
bystander lung tissues at a series of time points after treatment
(Figure 5C). Similarly, expression of ERK and JNK showed a bi-
phasic pattern in the bystander lung tissues with an initial peak
induction at 1 hr after irradiation and a later, more sustained
secondary peak at 24–48 h before returning to basal levels at 72 h
(Figures 5D and E). Immunohistochemistry staining showed that
p-ERK was predominantly localised in non-targeted bronchial
epithelial cells, consistent with induction of COX-2 and TGFBR1 at
24 h after lower abdomen irradiation (Data not shown).
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DISCUSSION

We have shown previously that the induction of COX-2 in
bystander lung tissue is tissue-specific, but not gender dependent
(Chai et al, 2012). Tissue-specific bystander effects have also been
shown in other in vivo systems. Previous studies have shown that
partial body irradiation induced different epigenetic responses in
bystander organs such as skin and spleen (Ilnytskyy et al, 2009),
whereas no differential response was seen in the same organism by
acute vs fractionated exposure. There is evidence that whole-body
irradiation of animals by either X-rays or g-rays significantly
induces an increase in TNF-a and a decrease in TGF-b levels in
plasma (Partridge et al, 2010). Our present studies show that liver,
in contrast to the lung, showed no induction of TGFBR1 and lacks
the subsequent downstream signalling responses, including JNK
and NFkB, that are necessary for the induction of COX-2 as shown
previously (Zhou et al, 2005). The lack of receptor provides a
reasonable explanation for the differential induction of COX-2
levels between the lung and the liver in partially irradiated animals.

There are two possible pathways whereby signals from
irradiated lower abdomen can be transmitted to non-targeted lung
tissues. The first involves release of cytokine(s) from irradiated
tissues/organs in the lower abdomen, circulation to non-targeted
lung tissues and binding to their receptors on the corresponding
cells to induce bystander effects such as upregulation of COX-2
and DNA damage in non-targeted lung tissues. Therefore, the
change of cytokines in plasma could be associated with the
upregulation of COX-2 in non-targeted lung tissues. However, our
preliminary ELISA analysis did not show any significant change in
the plasma level of either TGFb or TNFa as a function of time
postpartial body irradiation whereas COX-2 was shown to be
significantly induced in non-targeted lung tissues. A second
possible mechanism of transferring damage signals is through
circulation of lymphatic cells from exposed regions in the lower
abdomen of animals to non-targeted lung tissues to activate
downstream effects such as induction of COX-2 and DNA damage
response. COX-2 is over-expressed with chronic inflammation and
infiltration of macrophages, neutrophils and lymphocytes
(Desouza et al, 2005). Previous studies have shown that cytokines,
especially TGF-b, are induced in lung tissues during acute
inflammation (Xing et al, 1994). Interestingly, from the present
studies, over-expression of TGF-b receptors did not colocalise with
TGF-b in the same regions of bystander lung tissues. TGF-b was
highly expressed in lung bronchial stromal cells and alveoli cells
but TGF-b receptors were predominantly localised in bronchial
epithelial cells where they colocalised with the induction of COX-2
and oxidative DNA damage after lower abdominal irradiation.
There is evidence that TGF-b is involved in ROS induction and
Ca2þ influx in bystander cells (Shao et al, 2006; Shao et al, 2008)
and inhibition of TGF-b or ROS can reduce the bystander
responses in cells. While the rationale for the differential
expression of TGF-b and its receptors in specific bystander cell
types is not known, it is clear that the TGF-b signalling pathway is
involved in bystander responses in non-targeted lung tissues.

As demonstrated in the present studies, multiple TGF-b related
signalling pathways, both Smad-dependent and Smad-indepen-
dent, including Smad2, ERK, JNK, NFkB (p65) and AKT, are
activated in non-targeted lung tissues after lower abdominal
irradiation. However, the expression kinetics appears to be
different for each pathway. The expression of the Smad-2 pathway
showed that there was only one peak within 3 days after
irradiation, consistent with the change of TGF-b ligands and
receptors in non-targeted lung tissues. In contrast, all the Smad-
independent pathways examined, showed a biphasic expression
profile, reminiscent of that reported for NFkB regulated gene
expression in human bystander lung cells in vitro (Ghandhi et al,

2008; 2011). In the bystander lung tissues, the change in Smad-
independent pathways is more complicated than in Smad-
dependent pathways possibly because the former could be
simultaneously regulated by other factors, but Smad-dependent
pathways were primarily controlled by TGF-b.

On the basis of the in vivo results of this study, a working model
of the signalling pathway for the radiation-induced bystander effect
in non-targeted lung tissues after lower abdominal irradiation is
proposed (Figure 6). After irradiation of the lower abdomen,
irradiated lymphatic cells circulate and infiltrate into non-targeted
lung tissues to induce expression of TGF-b ligands and receptors in
different regions of the non-targeted lung tissues. The TGF-b
ligands in stromal and alveoli cells bind to TGFBR1 in the
bronchial epithelial cells to activate multiple downstream signalling
pathways such as ERK, JNK, NFkB, AKT and Smad2. Conse-
quently, COX-2 is induced in non-targeted lung tissues, especially
bronchial epithelial cells. COX-2 catalyses arachidonic acid to
produce prostaglandin and further induces oxidative DNA damage
in bronchial epithelial cells. Our current study highlights the
importance of COX-2 as a mediator of in vivo non-targeted
responses. Earlier studies by (Mancuso et al, 2008) showed the
induction of tumorigenesis in the brain after irradiation of the
lower halves of neonatal Ptch1þ /� mice. Furthermore, their
studies also indicated that pretreatment with a single dose of
Nimesulid (1.5 mg kg� 1) induced a non-significant reduction in
apoptosis and double strand breaks in non-targeted brain tissues.
However, the study was inconclusive since only a single dose was
applied. There was not enough evidence to show that pretreatment
with COX-2 inhibitor suppressed the activity of COX-2 in brain
tissues efficiently as a result of rapid clearance/degraded activity.
Considering different biological end points, radiation induced non-
targeted response in vivo appears to be a tissue specific observation.
In the present study, a consecutive five day treatment regimen
reduced the COX-2 as well as 8-OHdG levels in non-targeted
bronchial epithelial cells by 30% (Po0.05).

A better understanding of the mechanisms of non-targeted
effects will be invaluable to assess the clinical relevance of
bystander effects and ways in which the bystander phenomenon
can be manipulated to increase therapeutic gain in radiotherapy.

Oxidative DNA damage

Prostaglandin

Nimesulide

COX-2

SMAD2 ERK JNK NFkB AKT

TGF-� receptors

TGF-�

Figure 6. A signalling model for the induction of non-targeted
responses in the out of field lung tissues after lower abdomen
irradiation. Lower abdomen irradiation induces TGF-b ligands and
receptors in non-targeted lung tissues but not released forms in the
blood. TGF-b in stromal regions binds to its corresponding receptors
on bronchial epithelial cells and activates a range of signalling
pathways involving ERK, JNK, AKT, NFkB and Smad2, which lead to
the upregulation of COX-2 in non-targeted lung tissues. COX-2 further
induces prostaglandin production, oxidative DNA damage and
mutagenesis in the non-targeted lung tissues.
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