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The aim of the present study was to detect adulteration of canola oil with other vegetable oils such as sunflower, soybean, and peanut
oils and to buildmodels for predicting the content of adulterant oil in canola oil. In this work, 147 adulterated samples were detected
by gas chromatography-ion mobility spectrometry (GC-IMS) and chemometric analysis, and two methods of feature extraction,
histogram of oriented gradient (HOG) and multiway principal component analysis (MPCA), were combined to pretreat the data
set. The results evaluated by canonical discriminant analysis (CDA) algorithm indicated that the HOG-MPCA-CDA model was
feasible to discriminate the canola oil adulterated with other oils and to precisely classify different levels of each adulterant oil.
Partial least square analysis (PLS) was used to build prediction models for adulterant oil level in canola oil. The model built by PLS
was proven to be effective and precise for predicting adulteration with good regression (R2>0.95) and low errors (RMSE ≤ 3.23).

1. Introduction

Canola oil is a vegetable oil derived from rapeseed which has
low erucic acid content [1]. In the 1980s, in order to decrease
the health concerns about erucic acid, rapeseed varieties free
from erucic acid were developed by using selective breeding
[2, 3]. And then, these varieties were called canola.Nowadays,
China has become one of the major consumers of canola oil,
and it is also popular with consumers in Canada, Europe,
and South America. Canola oil can provide consumers with
many health benefits that others cannot provide. For example,
canola oil is low in saturated fat and high in polyunsaturated
fats, with a good ratio of omega-6 to omega-3, which make
it very suitable for cooking [4–6]. Since canola oil has its
specific function to human body, it has become one of
the most susceptible food materials adulterated with other
vegetable oils of lower quality, which is a serious threat to the
health of consumers. Therefore, it requires reliable tools and
methods for analyzing the purity of edible vegetable oil.

Many techniques have been developed and used to
detect adulteration in oil. These techniques include physical-
chemical analysis, spectral analysis, gas chromatography
(GC), gas chromatography-mass spectrometer (GC-MS), and

electronic nose. Physical and chemical analysis includes
sensory evaluation, colorimetry, centrifugation, and freez-
ing. These traditional methods are simple and convenient
and suitable for local monitoring. However, physical and
chemical analysis methods are not accurate, require high
degree technical expertise, and can only determine whether
the sample is adulterated without finding out which specific
component is adulterated. Spectral methods, e.g., Nuclear
Magnetic Resonance Spectroscopy (NMR) [7], Raman [8],
Fourier Transform Infrared (FTIR) [9], and Fluorescence
[10], were shown to be useful for detection and quantification
of adulteration in oil. However, their data analysis requires
specialized software and complex algorithms which are diffi-
cult for common users tomaster. Chromatographic methods,
such as GC-FID (flame ionization detector) [11], GC-MS [12],
and high performance liquid chromatography (HPLC) [13],
have been proven to be effective in detecting adulteration in
oil. Nevertheless, the requirement for standard samples and
high input of time and labor make them unsuitable for on-
site analysis, thus limiting the wide use of them. Electronic
nose [14] also has been used to evaluate the quality of oil.
However, it needs electrode activation process during which
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sensor poisoning may occur depending on operation and
ambient conditions.

Ion mobility spectrometry (IMS) is an analytical tech-
nique and was initially developed for the detection of explo-
sives and chemical warfare agents [15]. At present, it has been
widely used in novel application in the field of agricultural
products and foods [16]. IMS is used to separate and identify
ionized molecules in the gas phase based on their mobility in
a carrier gas, which is considered as a screening technique due
to its ability to identify the properties of samples at consider-
able low cost and short analysis time without pretreatment.
On the other hand, IMS has limitations in detecting complex
sample (e.g., food) for having low resolution and the risk
of mutual interferences between analytes [17]. Yet, if com-
bined with GC, the capability of IMS in separating various
components is strengthened. Chromatographic elution of
each target compound can be automatically analyzed and the
obtained data information is richer because both retention
time and drift time information are included [18]. GC-IMS
has been shown to be able to characterize and discriminate
adulteration in oil, wines, honey, andmeat [19–23]. Successful
applications have been reported on the determination of
aldehydes in oil, adulteration in extra virgin olive oils by using
UV-IMS [24], and determination of volatile compounds [25].

Most of the previous reports on canola oil analysis mainly
focused on the adulteration detection and main component
quantification of oil species [8, 26], with few studies per-
formed on aroma differentiation. Odour is an important
quality criterion for edible vegetable oil.Theprevious relevant
studies often transformed the matrix to vector (like peaks
selected manually as variables) for chemometric analysis by
UV-IMS or GC-IMS, which may result in losing information
of certain analytes. In addition, to the best of our knowledge,
no recent work has been conducted using chemometrics
for feature extraction of the two-dimensional data produced
fromGC-IMS instrument.Therefore, the potential use ofGC-
IMS for detection of canola oil adulteration was investigated.
The aims of this study were (1) to investigate the use of GC-
IMS combined with pattern recognition methods to detect
the presence of adulterant in canola oil, (2) to apply a new
method to extract information for two-dimensional data, (3)
to build a model for content prediction of adulterated oil in
canola oil, and (4) to develop a rapid method for adulteration
detection in canola oil.

2. Materials and Methods

2.1. Preparation of Oil Blends. 3 canola oil samples were
provided by Ningbo Entry-Exit Inspection and Quarantine
Bureau (Zhejiang Province, China), while sunflower oil (2
samples), soybean oil (3 samples), and peanut oil (2 samples)
were all purchased from Metro Supermarket at Zhenjiang,
China. All the samples were stored at -5∘C in the refrigerator
before experimental process.

The adulterated samples were prepared by blending
canola oil with sunflower oil, soybean oil, and peanut oil
at levels of 0%, 5%, 10%, 20%, 30%, 40%, and 50% by
volume, respectively. The mixed oil samples were brought
to room temperature before detection. All the samples (147

samples) were homogenized with vortex for 60s and analyzed
immediately after preparation.

2.2. Experimental Device. All prepared oil samples were
analyzed with GC-IMS device (FlavourSpec�) from G.A.S.
(Gesellschaft für Analytische Sensorysteme GmbH, Dort-
mund, Germany). The instrument was equipped with an
incubating device intended to heat the sample and keep
the headspace container at a constant temperature and a
heated splitless injector for direct sampling of headspace
volatile compounds from the oil samples into the GC-IMS.
In addition, the device was coupled to an automatic sampler
unit (CTC-PAL, CTC Analytics AG, Zwingen, Switzerland),
which made the injection volume more accurate and repeat-
able without any human manipulation. Sample vials were
transported into a heated incubator for preconditioning.
After they reached equilibrium, a heated gas-tight syringe
moved over the incubator and withdrew the headspace
sample. After sample injection, the hot syringe was automat-
ically cleaned by purging with inert gas. The experimental
parameters used for this method were summarized in Table 1.

For analysis, 2 mL of oil sample was placed in a 10
mL vial which was sealed with a magnetic cap and heated
at 90∘C for 10 min in incubating box in order to generate
volatile compounds from oil sample. 200 𝜇L of headspace
was automatically injected by heated syringe (95∘C) into
the heated injector (95∘C) of the GC-IMS instrument. After
that, the volatile organic compounds were pushed into the
multicapillary column (MCC, 40∘C) through a carrier gas (15
mL/min) for timely separation. And then, a drift gas (300
mL/min in counter flow) was generated to collide with the
gaseous ions of separated components from the sample to
produce the ion mobility spectra at room temperature and
pressure, and finally gaseous ions were captured by a detector
(a Faraday plate). Data of samples were obtained by IMS
Control TFTP Server software and displayed by using LAV
software (Version 1.3.1, from G.A.S).

2.3. Data Processing. The multidimensional signals of GC-
IMS data required pretreatment before statistical analysis.
The alignment is an important step before chemometric
process of the data due to small deviation in temperature of
MCC and flow velocity causing changes in retention time and
small deviation in temperature of drift tube causing changes
in drift time. Therefore, RIP (Reaction Ion Peak: reaction
ions are generated by a cascade of reactions following the
collision of a fast electron emitted from ionization source
with the drift gas atmosphere; as a consequence, the so-called
RIP representing the total of all ions available is formed)
normalization was applied to align with a shift in x-axis
by LAV software. Moreover, a Savitzky-Golay smoothing
method (order 2 and window size 15) was used to standardize
the measurement and improve the signal-to-noise rate.

Many studies [27, 28] have proposed various feature
extraction methods, such as Gabor filters, local binary pat-
tern, Haar, and histograms of oriented gradients (HOG).
HOG is a feature descriptor used in computer vision and
image processing for the purpose of object detection. The
theory of HOG descriptor is that local object appearance
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Table 1: Experimental conditions for GC-IMS analyses.

Parameters Value

Automatic inject system

Headspace sampling volume 200 𝜇L
Incubation time 10 min
Sample volume 2 mL

Incubation temperature 90∘C
Injector temperature 95∘C

Column

MCC OV-5 (nonpolar)
Column temperature 40∘C
Length of column 30 cm

Run time 15 min

IMS

Ionization source Tritium (6.5 KeV)
Voltage Positive drift

Drift length 10 cm
Carrier gas flow rate 15 mL min−1 (N

2
5.0)

Drift gas flow rate 300 mL min−1 (N
2
5.0)

Equipment temperature 45∘C
Average 32

Electric field strength 350 V cm−1

Grid pulse with 100 𝜇s
Trigger delay 100 ms

Sampling frequency 150 kHz
Repetition rate 21 ms

and shape within an image can be described by the distri-
bution of intensity gradients or edge directions. The image
is divided into small connected regions called cells, and for
the pixels within each cell, a histogram of gradient directions
is compiled by counting occurrences of gradient orientation
in localized portions of an image. For the present, HOG is
proven to offer better feature extraction that could signifi-
cantly outperform existing feature sets for object detection.

Principle component analysis (PCA) is a classical feature
extraction and data representation technique widely used in
the area of pattern recognition and computer vision [29]. In
PCA-based pattern recognition, the 2D (two-dimensional)
matrices must be previously transformed into 1D (one-
dimensional) vectors. However, the resulting vector usually
leads to a high-dimensional vector space, which is difficult
to evaluate the covariance matrix accurately due to its large
size. Fortunately, a new method, called multiway principal
component analysis (MPCA) [30], was developed for matrix
feature extraction. Figure 1 summarizes the computation
procedure of MPCA. As mentioned above, each sample
was detected by GC-IMS and a 2D matrix was obtained.
These sample data are arranged and merged to a three-
dimensional matrix X(I×J×K), where I is total samples,
J is drift time, and K is retention time. First, the three-
dimensional matrixX is split along the direction of the
sample axis (see Figure 1) and formed a new matrixX(I×JK);
then, the new matrixX is decomposed into the product of
the score vector tr with the load vector pr, plus the residual
matrix E (see (1)), which is similar to the two-dimensional
principal component analysis method. R is the number
of principal components; ⊗ is the product of Kronecker.

K

I

J

syncopate

Sc
or

es

Loadings

JK

Figure 1: Computation procedure of MPCAmethod.

As opposed to conventional PCA, MPCA is based on 2D
matrices rather than 1D vector. As a result, MPCA has two
important advantages over PCA. (1) It is easier to evaluate
the covariance matrix accurately. (2) Less time is required to
determine the corresponding eigenvectors.

𝑋 =
𝑅

∑
𝑟=1

𝑡𝑟 ⊗ 𝑝
𝑇

𝑟
+ 𝐸 (1)

In our study, a preprocessing step to the statistical analysis
of the GC-IMS data was performed to all oil samples which
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Figure 2: GC-IMS plot comparison of (a) pure canola oil, (b) 30% sunflower oil adulteration, (c) 30% soybean oil adulteration, and (d) 30%
peanut oil adulteration.

consisted of a RIP normalization and a Savitzky-Golay
smoothing filter. Firstly, a HOG method was used to extract
texture and contour information. Later, as an unsupervised
method, MPCA was applied to further extract the features
and visualize the dataset retaining the maximum variabil-
ity present in the original data and eliminating possible
dependence between variables. Then, canonical discriminant
analysis (CDA) algorithm was used to generate nonlinear
boundaries between classes according to the content of
adulterated oil. Lastly, partial least square analysis (PLS) was
performed to study the predictive capacity of GC-IMS for the
adulteration content of mixed oil.

For data analysis, the MATLAB R2009a (The Math-
works Inc, Natick, USA) and PLS Toolbox 5.5 (Eigenvector
Research, Inc., Manson, WA, USA) were used.

3. Results and Discussion

3.1. Sample Analysis by GC-IMS. The size of raw data from
each oil sample was huge, so the spectral area was cut
(899×1114 dimension) and selected by limiting the retention
time from 35.49 to 385.71 s and drift time from 7.666 to 15.086
ms on the basis of retaining the major information. As it
is known, GC-IMS spectrum of a sample corresponded to
a matrix and could be displayed as a pseudo color image
for visualization [31]. A popular method for comparing
two matrices is to form a difference image by subtract-
ing the individual element values of one matrix from the
corresponding element values of the other matrix. In this
condition, a positive difference indicates that the analyzed
matrix has a larger element value and a negative difference

indicates that the reference matrix has a larger element value.
Therefore, taking canola oil sample as reference matrix, the
other adulterated samples were regarded as analyzed matrix
and colorized differences were formed by subtracting the
canola oil sample from the adulterated sample. In this way,
with the increment of sunflower oil content, the changes
about volatile organic compounds from adulterated samples
were clearly visualized. Figure 2 showed the GC-IMS pseudo
color map for change visualization when a raw canola oil
sample (Figure 2(a)) was adulterated with 30% sunflower oil
(Figure 2(b)), 30% soybean oil (Figure 2(c)), or 30% peanut
oil (Figure 2(d)), respectively. The red region indicated that
the sample had more volatile components compared with
reference sample.The deeper the color, the more components
it had and the blue region was the opposite. As shown in
Figure 2, there were obvious changes between pure canola
oil sample and adulterated canola oil samples. Many new
volatile compounds were produced, some peaks weremarked
by black dotted rectangle for effective observation, and those
differences of red regions were reflected in retention time,
drift time, and intensity of the corresponding peaks. On the
other hand, levels of original volatile compounds in canola
oil were weakened by different degree.Those peak differences
(drift time, retention time, peak volume, etc.) from volatile
organic compounds of each kind of vegetable oil are the key
to qualitative analysis or quantitative detection. On the other
hand, volatile organic compounds from samples adulterated
with soybean oil appeared only in a short retention time,
and the gas molecule materials could not be well separated,
which may be caused by higher initial carrier gas flow-rate.
However, only a general overall impression of the differences
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Figure 3: Visualization results of original data (a) and HOG feature extraction (b).

through the topographic plot was obtained. The content
changes of volatile organic compoundswere not regular and it
was hard to realize digital characterization. Therefore, further
analysis was necessary with the help of chemometric tools.

3.2. Adulteration Classification of Oil Samples. Before MPCA
analysis, the data set was processed by HOG algorithm
(24×24 block size after optimization) in order to extract
useful information and reduce the dimension of the original
matrix. As shown in Figure 3, some peaks were selected and
marked with red solid line ellipse and Arabic numerals for
visual observation in Figure 3(a), which are corresponding
to the marked area with the same Arabic numerals in
Figure 3(b). It was clear that the visualization of HOG result
(Figure 3(b)) could describe the characteristic information of
the whole matrix with strong texture structure and contour
information from the original data (Figure 3(a)), especially
the peaks that were corresponding to volatile organic com-
pounds. In addition, the dimension of the matrix from each
sample was effectively reduced (777×966 dimension).

As mentioned earlier, each kind of adulterated samples
afterHOGpretreatment was arranged to a three-dimensional
matrix andMPCA algorithm was used to process and analyze
the matrix. Principal component scores obtained were sorted
from high to low according to the cumulative contribution
rate and the first 2 principal component score matrices
were used to show the cluster of adulterated samples (see
Figure 4). As shown in Figure 4, the data were mapped on
two most important principal components PC1 and PC2,
presenting the results of canola oil adulterated with sunflower
oil (Figure 4(a)), with soybean oil (Figure 4(b)), and with
peanut oil (Figure 4(c)). The axis heading in each figure was
labeled with the respective contribution rates of PC1 and PC2
after MPCA process.

Figure 4(a) showed the PCA score plot of canola oil
adulterated with sunflower oil, and PC1 and PC2 explained
the 96.57% of the original information. It could be inferred
that the first 2 PCs could give the most information of data

set. As shown, the pure canola oil samples were sufficiently
well distinguished from adulterated samples with different
levels of adulteration and each level of adulteration had
its own cluster group. With the increase in the proportion
of sunflower oil, the distribution of the samples moved
from right to left between first two principal components.
Figure 4(b) presented the result of MPCA analysis of the
canola oil adulterated with soybean oil samples. Two princi-
pal components covered 86.19% of the original information.
It was visible that the data points belonging to each class
of adulteration rate were gathered in compact clusters and
two principal components showed good separation in the
direction of diagonal of axis except raw canola oil samples.
Although two principal components contained large amount
of original information, some clusters overlapped each other
(for example, clusters 0% and 20% groups). The results of
canola oil containing peanut oil samples were shown in
Figure 4(c).The reconstructed information contained 95.77%
of the variance. As can be observed, pure canola oil samples
and adulterated samples were located in the opposite side
of the axis, which indicated that the raw canola oils were
well differentiated from adulterated samples. As a result,
there were significant differences in aroma between canola
oil and peanut oil. Combining with Figure 2(d), it could
be inferred that volatile compounds from peanut oil could
obviously cover up the original flavor of canola oils. On the
other hand, different content of peanut oil also could be
distinguished. However, 20% adulterant oil samples clustered
in two-dimensional space overlapping with 30% and 40%
groups, and its cluster region was a long and narrow strip.
This phenomenonmay be resulted from the origin differences
between peanut oil samples purchased.

Finally, CDA was used as pattern recognition techniques
for the authentication of canola oil. As seen in Figure 4,
each kind of adulterated oil samples was all grouped into
7 distinct clusters. All canola oil samples adulterated with
sunflower oil could be classified without any error (100 % of
accuracy). Only 2 samples (one adulterated with soybean oil
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Figure 4: PC1 and PC2 scores of pure canola oil adulterated with (a) sunflower oil, (b) soybean oil, and (c) peanut oil.

and the other adulterated with peanut oil) were misclassified.
The total accuracy of recognition was 98.64%, which showed
excellent results of classification.

3.3. Rapid Characterization of Sunflower Oil Content in
Canola Oil. In order to establish relationship between the
GC-IMS and the content of adulterant oil added to canola
oil, an analytical method of partial least square (PLS) was
used. Quantification of the percentage of adulterant added
to canola oil was carried out by building separate calibration
models for each kind of vegetable oil between 0 and 50% level.

The principal component scores of sunflower oil data
set were selected as input variables and analyzed by PLS.
Before building the model, the samples used for training
and testing were randomly selected. Data set containing 70%
canola samples was used for calibration and that containing
the remaining 30% samples was used to predict the content
of sunflower oil adulterated in canola oil. The other two
kinds of adulterated samples were treated in the same way.
The correlation coefficient (R2) and root mean square error
(RMSE) between predicted and experimental values were

used to evaluate the performance of the model. The higher
R2 and lower RMSE mean better calibration model.

PLS is a multivariate projection method for building
relationship between dependent variables and independent
variables. Due to the limited amount of training samples,
leave-one-out cross validation was applied and the first 3
principal components were determined. Correlation coeffi-
cient for calibration and prediction (R2C and R2P) and root
mean square error of calibration and prediction (RMSEC
and RMSEP) were tabulated in Table 2; good correlations of
calibration were found between GC-IMS data and content
of adulterant oil added to canola oil with high coefficient of
determination (R2C>0.96) and low errors (RMSEC ≤ 2.92).
When PLS models were used to predict the testing data set,
good prediction results for the content of adulterant oil added
to canola oil were obtained with good coefficient (R2P>0.95)
and acceptable errors (RMSEC ≤ 3.23). The RMSEP value
of sunflower oil adulterated in canola oil is lower than its
RMSEC value and the possible reason may be that the sep-
aration of samples is uneven. The best results were obtained
with the model carrying out with the canola oil adulterated



International Journal of Analytical Chemistry 7

Table 2: Requisite parameters for adulteration level prediction in adulterant canola oil samples.

PLS Models Calibration Cross validation Prediction
R2C RMSEC/(%) R2CV RMSECV/(%) R2P RMSEP/(%)

Adulterated with sunflower oil 0. 994 1.78 0.991 1.80 0.983 1.86
Adulterated with soybean oil 0.996 1.39 0.989 1.43 0.985 1.45
Adulterated with peanut oil 0.968 2.92 0.963 3.18 0.952 3.23
R2C: coefficient of determination for calibration.
R2CV: coefficient of determination for cross validation.
R2P: coefficient of determination for prediction.
RMSEC: root mean square error of calibration.
RMSECV: root mean square error of cross validation.
RMSEP: root mean square error of prediction.

with soybean oils. All those models are acceptable and useful
for detecting the adulteration in canola oil. Therefore, our
present work verifies that adulteration in canola oil can be
determined by PLS using the GC-IMS data.

4. Conclusions

In this paper, GC-IMS has been proposed to detect the
adulteration of canola oil samples with low price vegetable
oils. 147 samples were detected and the useful signals were
extracted and analyzed by HOG and MPCA algorithms. A
combination of these two methods was proved to be the
most effective feature extraction method. PLS was used to
predict the adulteration levels in canola oil precisely. The
capacity in prediction showed that all those methods were
satisfactory and applicable. In addition, the model of canola
oil adulterated with soybean oil was proved to be the most
effective.

The methodology developed has capability to detect
adulteration in canola oil. The analysis time only needs about
15minwhich is less than other techniques and no sample pre-
treatment is required. Moreover, the device has been applied
in industrial field broadly due to low cost and portability.
Therefore, GC-IMS can be seen as a powerful authentication
method with chemometrics for oil adulteration detection for
its high efficiency and accuracy.
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