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Summary

Magnetic Resonance (MR) is an exceptionally powerful and versatile measurement technique. The 

basic structure of an MR experiment has remained nearly constant for almost 50 years. Here we 

introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that permits the non-

invasive quantification of multiple important properties of a material or tissue simultaneously 

through a new approach to data acquisition, post-processing and visualization. MRF provides a 

new mechanism to quantitatively detect and analyze complex changes that can represent physical 

alterations of a substance or early indicators of disease. MRF can also be used to specifically 

identify the presence of a target material or tissue, which will increase the sensitivity, specificity, 

and speed of an MR study, and potentially lead to new diagnostic testing methodologies. When 

paired with an appropriate pattern recognition algorithm, MRF inherently suppresses measurement 

errors and thus can improve accuracy compared to previous approaches.

Introduction

Magnetic Resonance (MR) techniques such as NMR spectroscopy and Magnetic Resonance 

Imaging (MRI) are widely used throughout physics, biology and medicine because of their 

ability to generate exquisite information about numerous important material or tissue 

properties, including those reflective of many common disease states1-4. However, in 

practice MR acquisitions are often restricted to a qualitative or “weighted” measurement of a 
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limited set of these properties; the MR signal intensity is almost never quantitative by itself. 

The same material can have different intensities in different data sets depending on many 

factors, including the type and setup of the scanner, the detectors used, and so on. Because 

of this, the quantitative analysis of MR results typically focuses on differences between 

spectral peaks, spatial locations or different points in time. Even in clinical MRI today, one 

typically refers to a tissue or material as being “hyperintense” or “hypointense” compared to 

another area, which may not provide a quantitative indication of the severity of the 

differences, and may have reduced sensitivity to global changes. Thus robust, fully 

quantitative multiparametric acquisition has long been the goal of research in MR5-8. 

However the quantitative methods developed to date typically provide information on a 

single parameter at a time, require significant scan time, and are often highly sensitive to 

system imperfections. Simultaneous, multiparametric measurements are almost always 

impractical due to scan time limits and a high sensitivity to the measurement setup and 

experimental conditions. Thus purely qualitative MR measurements remain the standard 

today, particularly in clinical MRI.

Here we introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that may 

overcome these constraints by taking a completely different approach to data acquisition, 

post-processing and visualization. Instead of using a repeated, serial acquisition of data for 

the characterization of individual parameters of interest, MRF uses a pseudorandomized 

acquisition that causes the signals from different materials or tissues to have a unique signal 

evolution or “fingerprint” that is simultaneously a function of the multiple material 

properties under investigation. The processing after acquisition involves a pattern 

recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal 

evolutions. These can then be translated into quantitative maps of the MR parameters of 

interest.

MRF is related to the concept of compressed sensing (CS)9-12, and shares many of its 

predicted benefits. For example, preliminary results show that MRF could acquire fully 

quantitative results in a time comparable to a traditional qualitative MR scan, without the 

high sensitivity to measurement errors found in many other fast methods. Most importantly, 

MRF has the potential to quantitatively examine many MR parameters simultaneously given 

enough scan time, while current MR techniques can only examine a limited set of 

parameters at once. Thus MRF opens the door to computer-aided multiparametric MR 

analyses, similar to genomic or proteomic analyses, that could detect important but complex 

changes across a large number of MR parameters simultaneously. When an appropriate 

pattern recognition algorithm is used, MRF also provides a new and more robust behavior in 

the presence of noise or other acquisition errors that may lead to the near complete 

suppression of deleterious effects stemming from these factors. While we focus on 

demonstrating the feasibility for MRI in this study, it is rather straightforward to translate 

these results to other MR fields, such as multiparametric NMR spectroscopy, dynamic 

contrast enhanced MRI (DCE-MRI) and dynamic susceptibility contrast MRI(DSC-MRI)13.
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Generation and Recognition of MRF Signals

The key assumption underlying the MRF concept is that one can generate unique signal 

evolutions, or fingerprints, for different materials or tissues using an appropriate acquisition 

scheme. Here we demonstrate that this is possible through the continuous variation of the 

acquisition parameters throughout the data collection. Variations in the pulse sequence 

parameters during acquisition have been used previously in MRI and MR spectroscopy to 

reduce the signal oscillations14 and to improve the spectral response15-17. However, these 

variations were primarily used in a preparation phase or to make the signal more constant. 

Randomized sampling patterns have also been used previously to aid in the separation of 

spatiotemporal signals in moving objects or substances with different resonance 

frequencies18-20. Here we demonstrate that temporal and spatial incoherence required in 

MRF can be achieved by varying acquisition parameters such as the flip angle (FA) and 

phase of RF pulses, the repetition time (TR), echo time (TE), and sampling patterns in a 

pseudorandom manner.

After the data are acquired, the separation of the signal into different material or tissue types 

can be achieved through pattern recognition. In its simplest form, this process is analogous 

to matching a person’s real fingerprint to a database. Once a match is made, a host of 

additional information about the person such as name, address and phone number can be 

obtained simultaneously once the fingerprint sample is identified. In MRF, this pattern 

recognition can take place through many means. In the current implementation, we construct 

a dictionary that contains signal evolutions from all foreseeable combinations of materials 

and system-related parameters. For example, T1, T2, off-resonance frequency are included in 

this study, or other properties such as diffusion and magnetization transfer (MT) using the 

well-established Bloch equation formalism of MR21,22. Once this dictionary of possible 

signal evolutions is generated, a matching or pattern recognition algorithm23,24 is then used 

to select a signal vector or a weighted set of signal vectors from the dictionary that best 

correspond to the observed signal evolution. All the parameters that were used to build this 

signal vector in the dictionary can then be retrieved simultaneously. At present, the 

calculation of a complete dictionary containing the realistic range of T1, T2 and off-

resonance requires only a few minutes on a modern desktop computer.

It should be noted that there are near infinite possibilities for MRF-compatible pulse 

sequences. Other MR parameters of interest can be investigated by identifying pulse 

sequence components that impart differential sensitivity to the parameters of interest. 

Moreover, different components can be varied simultaneously, adding the potential for a 

highly efficient experimental design that allows almost any material characteristic visible 

using MR to be analyzed in a quantitative way using MRF.

Validation of the Concept

For a proof of principle implementation, an MRF acquisition based on an inversion-recovery 

balanced steady state free-precession (IR-bSSFP) sequence was employed (Figure1a). This 

choice of this basic pulse sequence for this initial implementation was based on the 

extensive existing knowledge about the evolution of the IR-bSSFP signal evolution, and its 

sensitivity to T1, T2 and off-resonance25. After each RF pulse, one interleaf of a variable 
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density spiral (VDS) read out26 was acquired, as shown in Figure 1b. Such a VDS trajectory 

has been used in fast imaging27 and for the reduction of undersampling errors28. Two MRF 

acquisition patterns with randomized FA and TR were used as shown in Figure 1c and d in 

separate scans to demonstrate the flexibility of the choice of the acquisition parameters.

Figure 2a and b show the simulated signal evolution curves that would be expected from 

four commonly encountered tissues of the brain (fat, White Matter (WM), Gray Matter 

(GM) and Cerebral Spinal Fluid (CSF)) using the schematic implementation shown in 

Figure 1c and d, respectively. Each tissue type has characteristic T1 and T2 values and thus 

each signal evolution has a different shape, which confirms that it is possible to satisfy this 

fundamental assumption in MRF. Note also that the signal levels in these evolutions 

represent a large fraction of the equilibrium magnetization (which is normalized to 1 in these 

figures.) Conventional spoiled steady-state sequences typically generate signal levels 

corresponding to 1-10% of the equilibrium magnetization. Figure 2c and 2d show an 

acquired signal evolution curve from fully sampled phantom experiments and its match to 

the dictionary by using the acquisition pattern shown in Figure 1c and 1d, along with the 

recovered T1, T2, proton density (M0) and off-resonance frequency values. MRF was able to 

match the signal to the corresponding dictionary entry and obtain the same T1 and T2 values 

from both sequence patterns. A video of the signal evolution from a fully sampled in vivo 

scan is also included (Supplementary Movie1), demonstrating the oscillating nature of the 

MRF signal observed in vivo.

Accelerated MRF Acquisitions

In addition to simultaneously quantifying multiple parameters, the error tolerance of MRF 

can be significantly better than conventional MRI. Because MRF is based on pattern 

recognition in a setting where the form of all predicted signal evolutions is known, MRF 

should be less sensitive to errors during the measurement. This is similar to conventional 

fingerprint recognition techniques which often contend with smudges and partial fingerprint 

information. In particular, the interaction of the temporal and spatial incoherence possible in 

MRF provides new opportunities to accelerate image acquisition through rejection of spatial 

undersampling errors. In order to test the limits of this acceleration, the same MRF sequence 

as shown in Figure 1a-c was modified to use only one spiral readout in each acquisition 

block. Therefore, the data collected are only 1/48th of the normally required data at each 

time point, resulting in a total acquisition time of 12.3 seconds corresponding to 1000 

sampled time points. (See Figure 3a and Supplementary Movie 2.) The signal evolutions 

from all 1000 undersampled time points were used directly to match one entry from the 

dictionary to quantify T1, T2, M0 and off-resonance simultaneously, as shown in Figure 3b. 

Because these errors are incoherent with the expected MRF signals, they are largely ignored 

by the following processing steps. Figures 3c-f show that high quality estimates of the MR 

parameters are generated even with this significant level of undersampling. WM, GM and 

CSF regions were then selected from the resultant maps. The mean T1 and T2 values 

obtained from each region were listed in the Table 1 and are within the range of previously 

reported literature values 29-32. The shortened T2 value in CSF is likely due to out-of-plane 

flow in this 2D experiment. A similar effect can be observed in conventional T2 mapping 
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techniques as well33. Also note that the roughly −220 Hz chemical shift of fat protons is 

clearly visualized in the off-resonance map.

Motion Error Tolerance in MRF

Since motion is one of the most common sources of error in an MRI scan, a motion 

corrupted scan was performed using the accelerated MRF acquisition described in the prior 

section. The subject was instructed to randomly move his head for the last 3 s of a total 15 s 

scan. Supplementary movie 3 shows the random motion as well as severe undersampling 

artifacts in the reconstructed images. Figure 4 compares the quantitative maps from the data 

with and without the motion corrupted data. The maps acquired during motion show almost 

no sensitivity to the motion and show nearly the same quality and anatomy as the maps from 

the motion-free data, thus indicating that the signal changes resulting from motion were 

uncorrelated with the evolutions included in the dictionary, and were largely ignored by the 

pattern recognition algorithm.

Accuracy and Efficiency of MRF

The accuracy and efficiency of the MRF acquisitions were compared with alternative 

mapping strategies: standard spin echo sequences (SE)34 as well as modern rapid combined 

T1 and T2 mapping methods DESPOT1 and DESPOT2 (Driven Equilibrium Single Pulse 

Observation of T1 and T2, respectively)30 using manufactured agar phantoms. Figure 5a 

compares the phantom T1 and T2 values from these methods. The concordance coefficient 

correlations for T1 and T2 between MRF and spin-echo sequence were 0.988 and 0.974, 

respectively. The concordance coefficient correlations for T1 and T2 between DESPOT and 

spin-echo sequence were 0.956 and 0.914, respectively. The high concordance correlation 

coefficients indicate that both methods are in good agreement with standard spin echo 

measurements and that MRF shows a better accuracy than DESPOT1 and DESPOT2.

The theoretical comparison of the efficiency from various mapping methods has been 

presented by Grawley35 and Deoni36 and is based on a measure of precision per square root 

of scan time. In those publications, DESPOT1 and DESPOT2 were shown to have greater 

efficiency than all previously known conventional and accelerated mapping strategies36. As 

can be seen in Figure 5b, MRF outperforms both DESPOT1 and DESPOT2 by an average 

factor of 1.87 and 1.85, respectively. For example, at a T1 of ~1280 ms, MRF shows an 

average efficiency for estimation of T1 of 24.2, while DESPOT1 has an average efficiency 

of 10.89. This means that for this T1 value, MRF achieves a precision of +/− 15.2 ms (or 

1.2%) in 12 seconds of scan time, while the precision in DESPOT1 would be +/−33.9 ms (or 

2.6%) for the same scan time. The DESPOT methods apparently display higher efficiency 

from the single phantom with T1 of 360 ms and T2 of 53 ms. However, in this one particular 

phantom, DESPOT overestimated the values of T1 and T2 by 23% and 42% respectively 

compared to the standard values, as can be seen in Figure 5a, thus causing an erroneous 

increase in the apparent efficiency. Note that these efficiency estimates do not include the 

waiting times between the acquisition of the different sub-sequences in DESPOT, nor do 

they include the time required to reach steady state during each acquisition, and thus should 

be viewed as conservative estimates of MRF’s performance when compared to DESPOT1 or 

2.
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Because there is no steady state in the signal evolution from MRF, new information will be 

continuously added by longer acquisitions. Figure 5c and d illustrates the changes of mean 

and standard deviation as different acquisition times were used to quantify T1 and T2, with a 

clear trend towards lower error at longer acquisition times. Thus one can select a tradeoff 

between precision and scan time.

Discussion and Conclusions

The MRF concept presented here is a new approach to MR and provides many opportunities 

to extend MR measurements beyond their current limits. This originates from the unique 

pulse sequence design concept in MRF, where the goal is to generate unique signal 

evolutions that can be matched to theoretical signal evolutions and subsequently yield 

underlying quantitative information about the material, tissue, or pathology of interest. Since 

there is no a priori requirement on the shape of the signal evolution curves, there are more 

degrees of freedom in designing an MRF acquisition, where parameters such as TR, TE, RF 

pulses and sampling trajectories (among others) can be varied together to produce the 

simultaneous sensitivity to numerous tissue properties. The ability to analyze oscillating 

signals in MRF also provides the opportunity to use larger fractions of the available 

magnetization than methods that rely on a steady-state signal, which is a significant factor 

contributing to the higher efficiency in MRF. In addition, the oscillatory signal in MRF 

allows one to sample more informative points along a longer signal evolution as compared 

to conventional methods which always reach a steady state level after some finite amount of 

time. Specifically, our initial results here demonstrate that the efficiency of MRF is 

approximately 1.8 times higher than the DESPOT methods, which were previously the most 

efficient methods for the measurement of relaxation parameters. Thus the direct prediction 

of the oscillating, incoherent signal evolutions through the Bloch simulation provides us the 

potential to obtain new quantitative information that is impractical today because of the 

prohibitively long scan times required, especially in biological samples and patients.

As demonstrated by the results shown here, MRF has the potential to significantly reduce 

the effects of errors during acquisition through its basis in pattern recognition. Acquisition 

errors may globally reduce the probability of a match of an observed signal to any given 

fingerprint, but as long as the errors do not cause another fingerprint to become the most 

likely match, the correct quantitative identification will still be made. Ideally, the sequence 

pattern will be designed so that the various fingerprints from different tissues and materials 

are as independent as possible, thus ensuring this robustness against motion and other 

practical errors.

Commercial MR scanners include methods to minimize the effects of unavoidable system 

imperfections. However, these inaccuracies are becoming increasingly important as MR 

technology is pushed to its limits, such as the use of very high magnetic fields or physically 

larger systems. MRF provides a route to model and account for system imperfections such 

as B0 and B1 field inhomogeneities by adding these parameters into the dictionary 

simulation. Since both MRF and DESPOT2 are based on a bSSFP sequence, which is 

known to be sensitive to field inhomogeneities30,37, Supplementary Figure 2 compares the 

T2 maps acquired from MRF and DESPOT2 from an in vivo scan. Since off-resonance is 
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not taken into account in the DESPOT2 model, the T2 map from DESPOT2 shows areas of 

signal voids resulting from susceptibility effects at the air-tissue interfaces. MRF naturally 

incorporates these effects into the fingerprints, and thus the maps generated by MRF do not 

show these errors. Thus MRF could, for example, provide higher quality results using the 

current generation of MR scanners. Alternatively MRF could also allow the design of lower 

cost MR scanners that can provide the same quality as today’s high end systems through 

application of MRF models.

Because of its ability to provide quantitative results across many parameters simultaneously, 

MRF could lead to the direct identification of a material, tissue or pathology based solely on 

its fingerprint. For example, many cancer cells show changes in multiple MR parameters 

(e.g. T1, T2, self-diffusion tensor, etc), a combination (though no single parameter) of which 

could potentially characterize them as different from all surrounding normal tissue types, 

and thus potentially separable. In an ideal situation, each given material, tissue, or pathology 

would have its own signal evolution which would be orthogonal to all other signal 

evolutions. The MRF concept also implies that completely different acquisition schemes are 

possible in cases where one is only interested in the presence or absence of a particular 

material or disease state. For example, one could do a very rapid MRF scan of a bulk area of 

material or tissue and compare the measured signal evolutions against the set of known 

states of interest. This measurement could either indicate the presence of the material or 

disease of interest, or indicate its absence within a margin of error. This feature could result 

in very rapid and accurate screening procedures. In particular, this feature may help to relax 

the required spatial resolution of an MRI exam, thus increasing the speed, and potentially 

reducing the cost of an MRI exam. A preliminary example of this kind of visualization is 

shown in the Supplemental Material Section 3. Using the MRF concept, the operation of the 

MR unit will also be greatly simplified, since the ‘all in one’ scan concept of MRF has the 

potential to reduce the dozens of parameters currently presented to the MR operator to a 

simple ‘scan’ button.

It is important to note that the proof-of-principle implementation of MRF shown here is but 

one of the many possibilities that could be employed for this technique and both the 

sequence design/implementation and post-processing methods will continue to be a 

significant open area of research just as sequence design has advanced over the decades 

since the conventional methods have been introduced. Other, more advanced pattern 

recognition algorithms38-42 will likely improve the performance of MRF. For spatially 

encoded MRI applications, the parameters retrieved from MRF are far fewer than the 

number of pixels in the images, and since the signals generated are largely incoherent, MRF 

has the additional potential to be highly accelerated through combination with other 

compressed sensing methods for accelerated spatial encoding, in addition to the now 

standard parallel imaging methods43-45, neither of which were included in Figure 5. Any of 

these methods would reduce the undersampling errors seeing in Figure 3a even before the 

pattern recognition step, which should result in higher quality results. We have recently 

published data indicating that we can achieve ~10× reduction in imaging time for a 2D slice 

using parallel imaging alone43,45,46. Also, it should be noted that the proof-of-principle 

results shown here only take advantage of two spatial dimensions for undersampling, while 

it is well known that taking full advantage of undersampling in all three spatial dimensions 
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gives higher performance than a 2D acquisition due to the reduced power of the resulting 

errors at any given undersampling factor47. Thus a combination of an optimized 3D MRF 

pulse sequence with parallel imaging and more advanced pattern matching algorithms will 

allow realization MRF in very short scan times.

Methods

1. Sequence Design

After an initial inversion pulse, the first sequence pattern shown in Figure 1c used a 

pseudorandomized series (Perlin Noise48) of flip angle (FA) and a random repetition time 

(TR) between 10.5 ms and 14 ms based on a uniform random number generator. A linear 

ramp was added to the FA train since we have seen that this can increase differential 

sensitivity to both T1 and T2.

The second FA pattern in Figure 1d used a series of repeating sinusoidal curves with a 

period of 250 TRs and alternating maximum flip angles. In the odd periods, the flip angle is 

calculated as , where t is from 1 to 250, random(5) 

is a function to generate uniformly distributed values with a standard deviation of 5. In the 

even periods, we divide the previous period’s flip angle by 2. A 600 ms delay was added 

between each of the periods to allow for both differential magnetization recovery according 

to T1 and differential signal decay according to T2. In this case, the TR was a Perlin noise 

pattern. The RF phase for both of the patterns in Figure 1 alternated between 0 and 180° on 

successive RF pulses.

The variable density spiral-out trajectory was designed to have 5.8 ms readout time in each 

TR and to have zero and first moment gradient compensation using minimum-time gradient 

design49. This trajectory required one interleaf to sample the inner 10×10 region, while 48 

interleaves were required to fully sample the outer portions of k-space. During acquisition, 

the spiral trajectory rotated 7.5° from one time point to the next, so that each time point had 

a slightly different spatial encoding.

2. Dictionary Design

The dictionary used in the matching algorithm was simulated using MATLAB (The 

MathWorks, Natick, MA). Signal time courses with different sets of characteristic 

parameters (T1, T2 and off-resonance) were simulated. The ranges of T1 and T2 for the in 

vivo study were chosen according to the typical physiological limits of tissues in the brain: 

T1 values were taken to be between 100 and 5000 ms (in increments of 20 ms below a T1 of 

2000 ms and in an increment of 300 ms above.) The T2 values included the range between 

20 and 3000 ms (with an increment of 5 ms below a T2 of 100 ms, an increment of 10 ms 

between 100 ms and 200 ms and an increment of 200 ms above a T2 of 200 ms.) Since MR 

is sensitive to parts per million (ppm) level deviations in the B0 field, different off-

resonance frequencies (1 Hz increment between ±40 Hz, 2 Hz between ±40 to ±80 Hz, 10 

Hz between ±90 to ±250 Hz and 20 Hz between ±270 to ±400 Hz) were simulated for each 

combination of T1 and T2 parameters to incorporate the effects of signal evolutions in 

different B0 fields. A total of 563,784 dictionary entries, each with 1000 time points, were 
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generated in 399 seconds on a standard desktop computer. One dictionary entry was selected 

for each measured pixel location using template matching. In this case, the vector dot-

product was calculated between the measured time course and all dictionary entries 

(appropriately normalized to each having the same sum squared magnitude) using the 

complex data for both. The dictionary entry with the highest dot-product was then selected 

as most likely to represent the true signal evolution. The proton density (M0) of each pixel 

was calculated as the scaling factor between the measured signal and the simulated time 

course from the dictionary. For this experiment, four parameters were retrieved 

simultaneously from each of the 128×128 pixels using MRF. This calculation required about 

3 minutes on a standard desktop computer.

3. Data Acquisition

All MRI and MRF data were acquired on a 1.5T whole body scanner (Siemens Espree, 

Siemens Healthcare, Erlangen, Germany) with a 32 channel head receiver coil (Siemens 

Healthcare, Erlangen, Germany). A square field of view of 300 × 300 mm2 was covered 

with a matrix of 128×128 pixels. The slice thickness was 5 mm. Images from each 

acquisition block were reconstructed separately using non-uniform Fourier transform 

(NUFFT)50. The resultant time series of images was used to determine the value for the 

parameters (T1, T2, M0 and off-resonance) as described above.

In vivo experiments were performed with IRB guidelines, including written informed 

consent. For the fully sampled spiral acquisition shown in Supplementary Movie1, 48 

repetitions were acquired, each with a different interleaf of the total acquisition. A recovery 

time of 5 seconds was used in between various acquisitions and this was taken into account 

in the simulated dictionary.

For the phantom study shown in Figure 2 and 4, eight cylindrical phantoms were constructed 

with varying concentrations of GdCl3 (Aldrich) and agarose (Sigma) to yield different T1 

and T2 values ranging from 67 to 1700 ms and 30 to 200 ms, respectively. Standard Spin 

Echo (SE) sequences were used to quantify T1 and T2 separately (T1 quantification: 13 TRs 

ranging from 50 to 5000 ms, TE = 8.5 ms, total acquisition time = 33.4 minutes; T2 

quantification: Spin Echo sequences with TEs = [15 30 45 60 90 150 200 300 400] ms, TR = 

10000 ms, total acquisition time = 3.2 hours.). T1 values were calculated pixel-wise using a 

standard three-parameter nonlinear least squares fitting routine to solve the equation: S(TR) 

= a + beT R/T1. T2 values were determined in a pixel-wise fashion using a two-parameter 

nonlinear least squares fitting routine to solve the equation S(TE) = ae−T E/T2, DESPOT1 and 

DESPOT2 sequences using a fully sampled spiral readout were implemented based on the 

acquisition values from Deoni et al30: DESPOT1: FA: 4° and 15°, TR:13.6 ms, DESPOT2: 

FA: 15° and 55°, TR=10.8 ms. The T1 and T2 values were calculated from the equations 

provided by Deoni et al 30. A 20 s waiting period was used in between the different 

acquisitions. The initial 10 s of data acquisition was not used in order to ensure that the 

signal was in steady-state for each of the DESPOT acquisitions. In the following analysis of 

efficiency, only the pure time of data acquisition for the steady-state DESPOT images is 

used. For DESPOT1 this was 1.27 s and for DESPOT2 it was 2.29 s (which includes the 

time for the required DESPOT1 acquisition.)
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Statistical Analysis—Quantitative estimates of the errors and efficiencies of MRF, 

DESPOT1 and DESPOT2 were calculated pixel-wise using a bootstrapped Monte Carlo 

method as in Riffe et al 51. Two sets of raw data were acquired for each sequence: the 

encoded signal and a separate acquisition that only contained noise. Fifty reconstructions 

were then calculated by randomly resampling the acquired noise and adding it to the raw 

data prior to reconstruction and quantification. The means and standard deviations of T1 and 

T2 along the 50 repetitions were calculated, and both were averaged within a 5×5 pixels 

square region of interest for each phantom. The concordance correlation coefficients (ρc) 

were calculated using the equation52:

where Y1 and Y2 denotes the T1 or T2 values from two different methods, n is the number of 

phantoms, , , j=1,2 and 

. The efficiency of the methods was calculated using:

where TnNR is the T1 or T2 to noise ratio (defined as the T1 or T2 value divided by the 

estimated error). Tseq is the total acquisition time for MRF, and the relevant acquisition 

times for DESPOT1 and DESPOT2 (where the waiting times required for the approach to 

steady state and the time between each of the DESPOT1 and DESPOT2 scans to allow for 

complete recovery of magnetization were ignored.)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MRF sequence pattern
a, Acquisition sequence diagram. In each TR, various sequence components are varied in a 

pseudorandom pattern. b, Here, one variable density spiral trajectory was used per TR. The 

trajectory rotated from one TR to the next. c and d are examples of the first 500 points of 

FA and TR patterns that were used in this study.

Ma et al. Page 14

Nature. Author manuscript; available in PMC 2013 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Signal properties and matching results from phantom study
(a and b) Simulated signal evolution curves corresponding to four normal brain tissues 

using the sequence patterns in Figure 1c and 1d, respectively as a fraction of the equilibrium 

magnetization. The curve from white matter with off-resonance is also plotted. (c and d) 
Measured signal evolutions from one of eight phantoms using different sequence patterns 

and their dictionary match. The estimated T1, T2, and off-resonance are (340 ms, 50 ms, −4 

Hz) and (340 ms, 50 ms, −13 Hz) in (c) and (d), respectively. The plots are normalized to 

their maximum value.
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Figure 3. MRF results from highly undersampled data
a. An image at the 5th TR out of 1000 was reconstructed from only 1 spiral readout 

demonstrating the significant errors from undersampling. b, one example of acquired single 

evolution and its match to the dictionary. Note the significant interference resulting from the 

undersampling. The reconstructed parameter maps show a near complete rejection of these 

errors based solely on the incoherence between the underlying MRF signals and the 

undersampling errors. (c), T1 map (e) T2 map (d) off-resonance frequency and (f) spin-

density (M0) map. These data required 12.3 seconds to acquire.
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Figure 4. Demonstration of error tolerance in the presence of motion
Reconstructed images acquired at the 12th second (a) and at the 15th second (b) demonstrate 

the large shift in the head position. The resulting MRF maps are nearly identical, 

demonstrating a rejection of both undersampling and motion errors that are uncorrelated 

with the expected signal evolution. (T1 map (c) and T2 map (e) from the first 12 seconds that 

has no motion, T1 map (d) and T2 map (f) from entire 15 seconds that includes the motion).
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Figure 5. Accuracy, Efficiency and Error estimation for MRF and DESPOT
The T1 and T2 values retrieved from MRF from eight phantoms were compared with those 

acquired from DESPOT1(a), DESPOT2(b) and a standard spin-echo sequence. The 

efficiency of MRF was compared to DESPOT1(c) and DESPOT2(d) at different T1 and T2 

values. MRF has an average of 1.87 and 1.85 times higher efficiency than DESPOT1 and 

DESPOT2, respectively. (e) and (f) show the means and standard deviations of T1 and T2 as 

a function of acquisition time. Error bars represent the standard deviations of the results over 

a 25-pixel region in the center of each phantom, which are smaller than the symbols for most 

MRF results.
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Table 1

In vivo data: Comparison of MRF results and reference values in different brain regions

T1 (ms) T2 (ms)

White Matter 685 ± 33 65 ± 4

Previously Reported 608 - 756 54 - 81

Gray Matter 1180 ± 104 97 ± 5.9

Previously Reported 998 - 1304 78 - 98

Cerebrospinal Fluid 4880 ± 379 550 ± 251

Previously Reported 4103 - 5400 1800 - 2460
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