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Abstract: Carbon fiber reinforced plastics (CFRP) bear a high potential in terms of electrical con-
ductivity and its potential applications. A locally resolved electrical measurement method for these
anisotropic materials is a key prerequisite for understanding the structural and manufacturing
process-related interrelationships. The aim of this paper is to develop a measurement method that
allows this to be achieved and also to investigate areas of overmolded metal contact pins in detail.
CFRP samples with polyamide 6 and polycarbonate matrices were used, which were produced by
using a custom-designed injection mold. In order to evaluate the measurement results and to correlate
them to process related structural properties, reflected light microscopy and X-ray microtomography
were used. Typical areas with significant fiber structures of assembly injection molded samples
were electrically and structurally characterized to identify correlations. Among further results, the
correlation of equipotential lines, acquired from the electrical analysis, with specific fiber orientations
within the injection molded samples was demonstrated, fiber-poor areas were identified, and a
beneficial influence of weld lines on contact resistances was determined.

Keywords: electrical testing; potential field measurement; electrical contact interface; X-ray
microtomography; carbon fiber; polyamide 6; polycarbonate; assembly injection molding; anisotropic
properties

1. Introduction

Carbon fiber reinforced plastics (CFRP) offer a high potential with regard to their
applicability in many sectors, such as the automotive industry, aviation, as well as the
sports sector. Weight reduction, high strength, fatigue properties and the possibility of
component integration are just some of the many advantages [1,2]. Not only should the
benefits of the mechanical properties be emphasized, but also the possibilities in the area of
electrical applications. Due to the comparatively high electrical conductivity in the segment
of conductive plastics, CFRP are well suited for electromagnetic shielding applications [3].

All polymer compounds modified to be electrically conductive by carbon-based fillers
show anisotropic electrical properties. Their conductivity mechanisms, which are based
on the formation of a conductive network, the percolation network, have been extensively
investigated [4-9]. The formation of this percolation network is a fundamental requirement
for electrical conduction through these anisotropic materials [10,11].

The electrical characteristics of such compounds depend largely on their filler proper-
ties, mainly on the specific conductivity, shape, orientation and concentration of the filler
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particles [12,13]. Some of these parameters are influenced by the injection molding process
of fiber reinforced parts. In particular, the local orientations and filler concentrations should
be mentioned here [14,15], as well as the potential formation of weld lines, which have an
influence on the local fiber distribution [16,17] and thus also on the conductivity in this
area. Due to processing dynamics, electrical properties may vary at different positions,
which are placed in different flow situations in an injection-molded specimen [18]. There
is also a correlation between the above-mentioned injection molding parameters and the
electrical properties [19-21].

While the total resistance of such compounds is already well-studied [22-24], there
are only a few approaches known that deal with the relationship of the local conductivity
within such parts in connection with the filler orientation either by means of simulative
or experimental methods [13,18,19]. In addition to determining the electrical properties of
anisotropically filled polymer materials, the contact between such materials and metal parts
is also a relevant topic. Approaches for the measurement of the electrical resistance of areas
close to the contact as well as for modeling the contact mechanisms are available [18,25].
Direct overmolding of electrical metal contact pins by means of assembly injection molding
offers particularly high potential for application scenarios involving the functionalization
of injection-molded components.

Alongside conventional imaging methods for the structural analysis of fiber-reinforced
polymer compounds, such as reflected-light microscopy, the non-destructive method of
X-ray microcomputer tomography offers further benefits, especially for the determination
of fiber properties. Hence, the analysis is not limited to a single cross-sectional plane, but
can also include the evaluation of specific volumes. The polymer matrix and fibers can be
segmented and the volumetric distribution of individual fibers of different types can be
quantified in three dimensions [26-30].

This paper provides a first step towards understanding the correlation of electrical
contact resistances of overmolded contact pins and their local structural properties regard-
ing the processing parameters. A new non-destructive method was developed to correlate
electrical properties (like potential distribution) with filler properties (like orientation and
particle distribution), and therefore with processing parameters (like mold temperature or
injection pressure). This is done by means of a surface potential measurement.

The innovation of this method is the possibility of determining local electrical prop-
erties within anisotropically conductive specimens, such as CFRP. This allows these local
values and location-dependent characteristics to be directly linked to structural properties.
Other standard methods can only determine volume or surface properties. This means that
the properties of the conductive network within the CFRPs are not taken into account.

The investigated specimens made of conductive CFRP (polycarbonate and polyamide 6)
and an overmolded contact pin (gold-plated steel) in the center were joined via assembly
injection molding. This pin also acts as an obstacle during the injection molding process and
increases the variations of filler concentration and orientation in the compound. To present
the method two different carbon fiber concentrations were used: 20 w% in polycarbonate
and 30 w% in polyamide. All these factors lead to areas that differ greatly regarding their
electrical properties.

These areas were investigated electrically and with image-based methods of structural
analysis (light microscopy, X-ray microcomputer tomography).

2. Materials and Methods
2.1. Materials
2.1.1. Polymer Compounds

Two different plastic compound types were used for the sample preparation. The
first one is an amorphous polycarbonate with 20 wt.% carbon fiber content (PC CF20;
ALCOM PC 740/1.1 CF20, ALBIS, Hamburg, Germany). According to the supplier, this
electrically conductive material for injection molding applications has a reduced surface
resistance and high stiffness. The second electrically conductive modified compound used
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in this research consists of a polyamide 6 matrix and contains 30 wt.% carbon fibers (PA
CF30; Durethan BCF30H2.0EF 900111, LANXESS, Cologne, Germany). The data sheet
highlights the injection molding suitability and increased electrical conductivity. The
parallel shrinkage of both materials is in a comparable range (about 0.15%), while the
perpendicular shrinkage of PC CF20 lies between 0.1 and 0.3%, and that of PA CF30 is
significantly higher at about 0.55%.

The following parameters of the filler particles of both materials were evaluated on
injection-molded specimens. The diameter of the carbon fibers in both cases is approxi-
mately df=7.5 pm, as determined from scanning electron micrographs of a cryo-fractured
samples. The fiber length was determined by dynamic image analysis (QICPIC/R06, Sym-
patec, Clausthal-Zellerfeld, Germany) and is approximately /¢ pc = 240 pm for PC CF20 and
It pas = 185 um for PA CF30.

The main differences between the compounds used are the carbon fiber content and
length, the shrinkage behavior (perpendicular) and the structure of the polymer chain
molecules (amorphous or semi-crystalline). By choosing these different filler contents
(20 wt.%; 30 wt.%) and the different molecular structures (amorphous, semi-crystalline), the
intended test method could be evaluated with a variation of thermoplastics from the initial
stage without having to implement an extensive experimental plan in the development
phase of the method.

2.1.2. Contact Pins

For the assembly injection molding of the test specimens, standard parts were used
as electrical contact pins. These are feather keys according to DIN 6885 A with a square
cross-sectional area made of tempered steel (C45K). A photograph of representative feather
keys and a technical drawing can be seen in Figure 1.

./
w

(a) (b)

Figure 1. (a) Original, cleaned and gold-plated condition of the contact pins; (b) technical drawing of
feather keys according to DIN 6885.

The inserts must be as dimensionally accurate as possible to seal the cavity. For this
reason, the dimensional accuracy of the present charge was examined on a random basis.
The relevant data can be found in Table 1.

Table 1. Dimensions of feather keys used as electrical contact pins according to DIN 6885.

Nominal dimension . 2

Width w Mean dimension ! in mm 1985 + 4.9 x 10°

Nominal dimension 2

Height I Mean dimension 1 nmm 1.985 + 4.9 x 10°

! Measured dimensions and corresponding standard deviation from a sample of ten.

In order to prepare the surface of the contact pins for a sufficient electrical contact, they
are coated with a gold layer using sputtering methods. A sputter coater (SCD 050, Oerlikon
Balzers, Balzers, Liechtenstein) is used for this purpose. Before coating, all contacts are
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cleaned with acetone. The parameters of the coating process are shown in Table 2. To
ensure uniform gold coating, the sputtering process is carried out on all four pin sides.

Table 2. Sputtering parameters of the contact pin coating process.

Sputtering target Gold
Operating gas Argon
Operating distance in mm 50
Operating pressure in mbar 0.05
Sputtering current in mA 30
Sputtering time ins 40
Layer thickness (approx.) innm 10

2.2. Sample Preparation
2.2.1. Injection Molding

The samples were produced by an assembly injection molding process. A special
modular injection mold, which is shown in Figure 2a, was designed for this purpose. The
inserts are held in position magnetically. This allows the integration of two contact pins,
which are positioned to the gate equidistantly. Due to this positioning, both inserts are
in the same flow situation during the injection process, resulting in equivalent structural
properties. The resulting specimens can be viewed in Figure 2b.

T
N: ' _ju[_z 1 ]es5 ) ,“‘:
= | [ ]
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- 19115 -
(a) (b)

Figure 2. (a) Gate-side mold half of the modular injection mold. (b) Technical drawing of the
specimen geometry.

Before processing, the polymer compounds PC CF20 and PA CF30 were dried in an air
dryer (TR-Dry-Jet EASY 15, TORO-systems, Igensdorf, Germany) for approximately 4 h at
120 °C (PC CF20) and 90 °C (PA CF30). The specimens were manufactured with a hydraulic
injection molding machine (Allrounder 320C, Arburg, Golden Edition, LoSburg, Germany).
This injection molding machine utilizes a screw diameter of 25 mm and clamping force of
500 kN. The general processing parameters are given in Table 3. An open nozzle with an
outlet diameter of 2 mm was used, since a valve gate nozzle in combination with the high
processing temperatures can lead to excessive temperature and thus material degradation
during the process. Preliminary tests have shown that this problem does not occur with
the open nozzle. The packing pressure decreases linearly from packing pressure point 1 to
point 2 over the given packing time.
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Table 3. Injection molding parameters.

PC CF20 PA CF30

Cylinder temperature in °C 290 260
Mold temperature in °C 100 87
Volume flow rate incm3/s 24 24

Injection time ins 0.24 0.24
Packing pressure point 1 in bar 600 400
Packing pressure point 2 in bar 400 380
Packing time ins 11 11
Cooling time ins 30 30

2.2.2. Specimen Preparation

For the subsequent optical imaging and electrical measurement methods, the exami-
nation area had to be exposed and prepared to obtain the specimens as shown in Figure 3a
This requires cutting the specimens along the cutting lines shown in Figure 3b without dis-
turbing the contact between the polymer compound and contact pin. A precision sectioning
saw (IsoMet 1000, Buehler, Leinfelden-Echterdingen, Germany), which is particularly suit-
able for delicate specimens, is used for this purpose. The cutting speed is quite low, since
the feed force is generated only by gravitation. This aspect, together with water cooling,
prevents heating of the cutting surfaces despite the saw rotation speed of 350 rpm. The
examination area was subsequently polished and cleaned in an ultrasonic bath to remove
possible contamination by conductive carbon or insulating polymer matrix particles. As
a result, two samples were obtained, which had a depth of 4 mm and 5 mm. The 5 mm
sample represents the area exactly in the center of the specimen and the 4 mm sample, thus
1 mm below the center of the specimen. The specimens are referred to as PC CF20_4 mm,
PC CF20_5 mm, PA CF30_4 mm and PA CF30_5 mm in the following.

-=-- Cutting Lines |

| Contact Pin

Specimen
/  5mm Ga{e

Contact Pin

]
' ©
e =
Yy L |
- Flow .
Direction szemmen
mm
24

(b)

Figure 3. (a) Examination area on a prepared specimen. (b) Dimensions of a prepared specimen and
cutting lines for precision sectioning.

2.3. Testing
2.3.1. Reflected Light Microscopic Imaging

To obtain the reflected light micrographs, a digital microscope (VHX-600, KEYENCE,
Osaka, Japan) with adapters for diffuse and coaxial illumination was used.

2.3.2. X-ray Microtomography Analysis

For the analysis of the structural parameters of the anisotropic material, which are
relevant for the electrical conductivity such as the fiber orientation and distribution in
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the contact pin area, X-ray microtomographic examinations were carried out. Specimens
were prepared by removing the contact pin to enable higher contrast between polymer and
carbon fiber phases. For the examinations, an X-ray microscope (Zeiss Xradia Versa 520,
Carl Zeiss, Oberkochen, Germany) was utilized. A power of 5 W at a voltage of 60 kV
was applied for the examinations. A total number of 1601 images were acquired with an
exposure time of 6 s for each image and a binning setting of 1. The low energy filter LE2
and a magnification of 4 x were selected, resulting in a voxel size of approximately 2 pm.
Reconstruction of the individual images was performed within Zeiss XMReconstructor
software. In addition, a 3D data visualization and analysis software system and the XFiber
extension (Avizo 9.4, Thermo Fisher Scientific, Waltham, MA, USA) was used for further
processing and evaluation of the three-dimensional data. Initially, the resulting volumetric
data were aligned and filtered using non-local means filter before partial volumes were
extracted at the areas of interest.

Cylinder correlation was used to characterize the fiber orientation in the specimens.
To segment the fibers, a tracing algorithm was applied to the resulting correlation lines.
The detected fibers can be quantitatively evaluated with regard to their fiber length and
orientation in the test specimen. In the next step, the fiber tracing algorithm, provided
by XFiber extension was applied to the subvolumes. Its settings are listed in Table 4. The
values were adjusted to match the real fiber lengths determined by dynamic image analysis
and the optical cross-sectional images from the puCT.

Table 4. XFiber extension settings (Avizo 9.4).

PC CF20 PA CF30
Cylinder length in um 38 38
Angular sampling 5 5
Mask cylinder radius in um 7 7
Outer cylinder radius in um 3 3
Minimum seed correlation 205 195
Minimum continuation quality 112 122
Direction coefficient 0.3 0.3
Minimum distance in um 2 2
Minimum length in um 38 38

This allows individual fibers to be quantitatively evaluated and displayed. The
orientations of the fibers are specified by tensor values. Furthermore, the fibers can be
labeled, and thus the contact points between the fibers can be visualized. An exemplary
analysis procedure is shown in Figure 4, based on the weld line next to the metal contact
pin. For the later examination, such results are taken from a xy-plane located at the center
in z-direction with a layer thickness of 100 pm.

2.3.3. Potential Field Measurement

As a first indicator for the electrical anisotropy of the samples, the total and partial
resistances (Ryy,, R1 and Ry) of the specimen were determined, where R; represents the
weld line area of the sample and R; the near gate area. Due to the positioning of the pin
with regard to the melt flow progression during the injection molding process, different
fiber orientations are expected in these areas and therefore different resistances, although
the injected material is the same.

The most common method to measure potential differences and thus determine
electrical resistances is the four-wire method. Figure 5a shows the measuring positions
of theses resistances. To prevent a resistance change due to heating a low direct current
of 20 mA was applied using a current source (PS 2016-050, EA, Viersen, Germany). The
voltage measurement was done with a multimeter (34401A, Agilent, Santa Clara, CA, USA).
Solid copper blocks (4 x 1 x 1 cm) were used as electrodes, which were designed and
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manufactured for this specific purpose. Due to the comparably low specific resistivity of
copper and steel, the influences of the electrodes and the steel pin are neglected.

Cross-sectional Fibers as quantified Fibers as labeled Interfaces between
Image Lines voxelized Volume labeled Fibers

) 1 mm ,

Figure 4. Evaluation method of the X-ray microtomography data.

©

Rtotaf

silver lacquer layer

weld line area ’V% near gt area weld line area % near gate area
Q specimen 2 specimen

(a) (b)

Figure 5. Schematics of the measurement setups in side view: (a) of the resistance measurements and

Ry Rz

(b) of the silver lacquer layer evaluation.

To ensure a good bonding of the conductive carbon fiber network to the electrodes,
the terminal end surfaces of each specimen were coated with a thin layer of conductive
silver lacquer (62900341 Ag Paste L204N, FERRO, Frankfurt, Germany), pressed onto the
cleaned and ground electrodes, and dried for 1 h at room temperature.

To estimate the influence of this layer two potential differences were measured, see
Figure 5b. V is the potential difference between the two electrodes, taking into account the
specimen and the lacquer layer. V; represents only the specimen and was measured close to
the lacquer layer on the sample surface using contacting needles (51E2D1, L-TRIS, Krailling,
Germany). Although this method does not take into account a possible volume effect, since
it is a superficial measurement, it can be used as a first approximation, if the potential
difference and, thus, the influence of the volume are small. A difference between V; and
V; could then be attributed to the lacquer layer. This measurement shows a negligible
difference between V1 and V5, V; is 0.2% smaller. Thus, the contact resistance between the
specimen and the electrode can be neglected.

While the partial resistances R; and R; are a first indicator of the anisotropic electrical
behavior of the samples, no further information regarding the local fiber distribution can be
derived. However, the potential field measurement introduced below allows for a spatially
resolved statement about the influence of this distribution based on a non-destructive
electrical characterization of the specimens.

The potential field measurement is also based on the four-wire method. The measure-
ment setup is shown in Figure 6. The used measurement devices are the same as before. A
measurement needle with a tip diameter of ~13 um (S1E1D1, L-TRIS, Krailling, Germany)
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scans the sample surface on a predefined area. The scanning of the surface is achieved
using a cross table (X/Y-axis, KS15-450-390, ITK, Lahnau, Germany) and an additional
linear table (Z-axis, ST9 eco, ITK, Lahnau, Germany). The positioning accuracies in the
respective directions are shown in Table 5.

reference
w position

silver lacquer layer

:
electrodes @

[l Rt

o —

(b)

Figure 6. Potential field measurement setup: (a) schematic, top view; (b) implemented setup;
(c) whole setup including the combination of cross and linear table used for positioning the scan-
ning needle.

Table 5. Positioning accuracies of the X-, Y- and Z-axes.

X-Axis Y-Axis Z-Axis
<420 um <320 um <+10 um

In general, it is expected that information about the conductivity anisotropy of CFRP
can be obtained from the measurement results. For example, areas with a high potential
gradient may indicate low conductivity. Significant potential steps even indicate high local
resistances in the specimen.

3. Results
3.1. Flow Situation at the Examination Area

To visualize the flow situation in the examination area, a basic injection molding
simulation was carried out, using Moldflow Insight 2021 (Autodesk, San Rafael, CA, USA).
For the simulation, precisely the sample geometry was used as shown in Figure 2b. The
entire injection mold was not reproduced and implemented due to the illustrative study
here. The materials PC CF 20 and PA CF30 were already defined with all properties
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‘ ==== Examination Area‘

Iﬂ 4084

03720

Il] 3356

02992

02628

in the Moldflow database. The recommended standard process parameters for these
materials were selected and an analysis sequence (fill, pack, warp) was performed. The
melt flow progression during the injection molding process of a PC CF20 sample is shown
in Figure 7. In the illustration, the gate is located outside the image section on the right.
Originating from there, the plastic melt flows through the rectangular cross-section and is
not particularly influenced by the geometry of the cavity. Here, a fiber orientation according
to classical layer models is formed. However, when the melt frontally hits the pin in the
examination area, specific characteristics start to develop. By a continuous flow onto the
pin surface until the entire volume is filled, the microstructure of the plastic compound
is significantly influenced at this location. After the melt has hit the pin, it splits into two
independent melt fronts as it passes through the side areas. At these side areas, the velocity
and also the shear rate increase due to the locally reduced cross-section, which further
determines the fiber orientations. Subsequently, they converge together again and flow as a
combined front up to the end of the flow path. This results in a typical flowing weld line,
which in turn leads to characteristic properties with regard to the microstructure.

10 mm V%x
e |
z

Figure 7. Melt flow obtained from injection molding simulation in the pin area showing the division
of the melt front and the formation of the weld line after passing the pin.

The simulation result shows a uniform merging of the flow fronts after passing the
pin, as also shown by the uniform weld line shown in Figure 8b. However, this uniform
shape can only be expected to a limited extent in a real injection molding process with
highly filled CFRP.

‘ ====Examination Area‘

(a) (b)

Figure 8. (a) Melt front dividing irregularly at the pin area of an injection molded sample (PC CF20);
(b) representation of the emerging weld line at the pin area obtained from injection molding simulation.
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A sample from a flow study, shown in Figure 8a, proves that the split flow fronts do
not pass the pin sides at exactly the same speed. Those two flow fronts do not progress
evenly passing the insert section. The gate position contributes to the problem, since the
melt first impacts on the mold side opposites the gate, which can lead to an advanced filling
of the volume and a higher pressure in the mold half on the closing side. At the same time,
a slight difference in the tempering of the mold halves can also have an influence on the
flow rates of the two narrow sections.

Due to the constriction and the high pressure present in the process here, a formation of
a weld line can occur, which means that irregularities in the fiber orientation in the volume
behind the insert can be expected. Free-jet formation also contributes to the development
of the weld line occurrences. These irregularities cannot be avoided in this case, as filling of
the cavity cannot be guaranteed at lower pressures.

The reflected light microscope image in Figure 9 allows an analysis of the fiber orienta-
tions in the examination area caused by the injection molding process. Since the essential
structures in the two examined planes (4 mm and 5 mm) of both materials (PC CF20 and
PA CF30) show a similar formation, these phenomena, which are relevant for the further
investigations, are explained based on the example of a PC CF20_4 mm specimen.

Flow
Direction
——

‘2 mm

Near Gate Are;.

(a) (b)

Figure 9. Light microscopic illustration of the examination area (PC CF20_4 mm specimen) with focus
on near gate area (b) and weld line area (a) with schematically marked characteristic fiber orientations.

The schematic indications shown in Figure 9 can be used to identify characteristic fiber
structures before and after the melt flow passed through the pin region. In the near gate
area, orientations as known from layered models are recognizable. Typical fiber orientation
regions resulting from the source flow can be identified here. Layers are established, which
are oriented to known layer models [31,32]. The most important of these are the shear layer,
which primarily contains fibers oriented in the flow direction and the core layer, where the
fibers are aligned along the progressing flow front.

In the weld line area, the orientations are determined by the weld line formation and
its implications. A straight aligned weld line can be identified in the immediate proximity
behind the contact pin (red), which was to be expected as a goal of the cavity design. Weld
lines cause locally increased fiber concentration and a strong orientation of the fibers in
x-direction due to the encounter of the flow fronts [17,31].

In the more distant areas (non-specific oriented areas; yellow), there is no distinct weld
line appearance, but the fronts also flow together, but less predictably. This is related to the
formation of free jets. These do not develop like a source flow, but enter the free volume in
an unguided manner and fold into each other, so that they subsequently also cause weld
line-like structures, which are recognizable, but not reproducible.
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3.2. Electrical Resistances

The resistance measurements provide some interesting results (Table 6). The resis-
tances of the PC CF20_4 mm specimen are slightly higher than that of the 5 mm counterpart.
This is to be expected since the cross-sectional area of the 4 mm specimen is smaller,
resulting in a higher resistance when the same material is used.

Table 6. Electrical resistances.

Electrical Resistance PC CF20_4 mm PC CF20_5 mm PA CF30_5 mm
Riopar in Q 163 119 3.9
Riin Q) 134 91 7.7
Ry, in Q) 84 67 7.3

The sum of R; and R; is about 30% higher than Ryy,;. In part, this can be explained by
the current paths. Figure 10 shows a simplified representation of the current paths for each
measurement, assuming an ideal contact between the pin and the surrounding polymer
matrix. Due to the geometry of the specimen, the measurement of one partial resistance
always partially includes the other one, as well. This effect is expected to be small.

weld line area near gate area

(a)

®

Figure 10. Simplified schematics of the current paths for the measurement of the partial resistances
(a) Rq in blue, and (b) R, in red.

So far, an ideal contact has been assumed, but of course, there is also a contact resis-
tance. This seems to be the main reason for the high partial resistances between polymer
matrix and metal pin. Further information will be presented in Section 3.3.4.

The most interesting part is the difference between R; and R; for the PC CF20 spec-
imens. As expected, it seems that different fiber orientations lead to different electrical
resistances. In this case, the resistance of the weld line area is much higher than the near
gate area. This is probably due to the non-specific, almost chaotic fiber orientation in this
area. A more ordered fiber orientation seems beneficial for lower resistivity.

It should be noted that R; consists of the resistivity of the weld line area and the
contact resistance to the pin; and R; of the resistivity of the near gate area and also a contact
resistance to the pin. However, the contact resistances here can differ due to the current
density distribution and fiber orientation on the left and right side of the pin.

Comparing these results with the measurements of the PA CF30 specimen, two things
are immediately obvious: firstly, the total resistance of the polyamide specimen is signifi-
cantly lower (explained by the higher filler content) and secondly, R; and R, are almost
equal; in fact, both are significantly higher than the total resistance. This is a clear indication
of a poor contact resistance to the pin. A more detailed analysis of this circumstance follows
in Section 3.3.4.
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3.3. Potential Field Interpretation

Based on the measurement of the specimen PC CF20_4 mm (Figure 11) the main
characteristics of the obtained potential field will be discussed.

- I . 1
weld line area 1 pin area i near gate area

yin mm

potential in V

X in mm 0

Figure 11. Potential field of the specimen PC CF20_4 mm with equipotential lines (potential difference
between the lines is 0.2 V). The top left area is outside of the sample.

3.3.1. Areas with No Connection to the Conductive Network (Non-Contact Areas)

If the measuring needle reaches an area that is not connected to the conductive carbon
fiber network, the measuring circuit is not closed and 0 V is measured accordingly. This can
occur in areas with a low filler concentration or unfavorable filler orientation, where the
carbon fibers do not reach each other. Small areas with no contact are scattered throughout
the potential field. A fiber concentration of 20 wt% is probably not enough to allow good
crosslinking over the entire surface, leaving unconnected areas. Some of these areas are
clustered along the weld line (probably due to air pockets, see Section 3.3.4) and larger
non-contact areas are located below and above the contact pin (probably fiber depletion
zones, see also Section 3.3.4).

3.3.2. Near Gate Area

The potential difference of the near gate area is 0.8 V over 7 mm, which is about
25% of the total potential difference of the measurement field, indicating a better specific
conductivity in this region. This agrees with the result of the resistance measurement. It can
also be observed that the potential profile is smoother and more constant. This is probably
due to the more ordered distribution of the fibers.

The charge transport within such samples takes place via carbon fibers, as these have
a much higher conductivity compared to the polycarbonate matrix. By definition, an
equipotential line is perpendicular to the current density flow, so one would expect the
equipotential lines to be perpendicular to the fiber orientation, as well. This mainly applies
to the frozen and shear layer, because here the fiber orientation is aligned with the main
current path (from electrode 1 to electrode 2, see Figure 12b). The conductivity depends on
the specific conductivity of the carbon fibers and the contact resistance between connecting
fibers. It should be noted that carbon fibers have two different specific conductivities,
longitudinal about 10* times better then transverse [32]. Since the contact resistance
between two fibers can never be less than the resistance of the carbon fibers, a long current
path along the fibers with few transitions at the contact points is preferable.

The transition and core layer, on the other hand, show a different behavior. Here, the
equipotential lines follow the fiber orientation, indicating a current flow perpendicular to
the fiber orientation, although the conductivity along the fibers is much higher. Current
flow along the fibers is causing only a small potential drop due to the comparably high
conductivity of the carbon fibers, the main potential drop is caused by the transition across
the fibers in transverse direction. In addition to the already poor transverse resistance, the
current path is also interrupted by much more transitions compared to a fiber orientation
along the main current direction (Figure 13).



Polymers 2022, 14, 2805

13 of 21

Flow
Direction
e

‘2mm

Core Layer

(a) (b)

Figure 12. Transfer of the equipotential lines to the microscopy image with equipotential lines (red)
and schematically marked characteristic fiber orientations (yellow, white) with focus on near gate
area (b) and weld line area (a).

Figure 13. Two simplified scenarios for an electron path from left to right with a fiber orientation
(a) transverse and (b) along the main current direction. The carbon fibers are marked in black, the
selected electron path is highlighted in blue and the fiber contact points along the path are marked as
red dots.

The distinguishable layers of the near gate area with regard to their potential field as
well as the potential profiles along the center of each layer are shown in Figure 14.
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Figure 14. Potential field section of the near gate area (a), with marked positions of the potential
profiles in (b) along these lines.
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All four potential profiles show a more or less linear potential drop with a comparable
slope. According to Ohm’s law:

J(x,y) = o(x,y)E(x,y), 1)

the current density J depends on the specific conductivity o and the electric field strength E.
The material properties are strongly anisotropic due to the carbon fibers used. To represent
this behavior, sigma must therefore be a matrix and thus location-dependent.

The comparable slope of each curve indicates a comparable E for each layer, and since
the fiber orientation predicts a different o, the current density ] must also differ. For the
frozen and shear layer with a fiber orientation along the main current path and therefore
good specific conductivity, the current density must be high for E to be equal. Conversely,
the current density of the core and transition layer with a transverse orientation must be
low. In fact, this is even worse for the core layer, since here the slope is slightly higher.
Thus, as expected, the fiber orientation also affects the current density distribution.

To fully solve this equation, either o (x,y) or J(x,y) must be known in addition to E(x,y).
This will be a topic for future studies.

3.3.3. Weld Line Area

The weld line area has a potential drop of 2 V over 7 mm, which is about 63% of
the total potential difference of the sample, compared to the near gate area the specific
conductivity is worse here. The whole potential profile in this area seems to be rather
chaotic compared to the near gate area, but a closer look reveals a strong dependence
on fiber orientation. The equipotential lines seem to follow the fiber orientation (see
Figure 12a), indicating a current flow perpendicular to the fiber orientation and therefore
having many transition points, resulting in a lower conductivity of this area, consistent
with the resistivity measurement (see Section 3.2). Since this area is rather chaotic and not
reproducible, further analysis is omitted.

3.3.4. Contact Pin Area

For the analysis of the contact pin area, a distinction is made between three subareas,
which differ primarily in terms of their fiber orientation in relation to the contact surface.
Figure 15 provides the descriptions including their corresponding subareas.

Similar to the weld line area described in Section 3.1, the weld line side is also domi-
nated by the weld line in the mid-section, which leads to increased fiber concentrations and
an orientation perpendicular to the contact surface (at least at the center of the pin surface).

The microstructure of the lower pin side is mainly characterized by fibers that have
been aligned by increased shear. The shear layer occupies an enormous proportion here,
so that the fibers in this area are almost completely oriented parallel to the pin surface.
Furthermore, increased shear rate is to be expected due to the narrow area. This leads
to shear-induced particle migration at this position [33,34]. The carbon fibers arrange
themselves predominantly in areas of lower shear, which leads to a reduction of the local
fiber concentration in this area.

The third side to be considered is the one near the gate. Here, the melt flow front
meets the surface directly. Additionally, at this point, the separation of the fronts takes
place. Until the volume behind the insert is completely filled, the melt flows continuously
onto the surface. The orientation near the contact surface cannot be predicted clearly, but a
low orientation is likely. The effect of shear-induced particle migration also plays a role
here since the shear stress is increased. On top of this low-orientation layer, carbon fibers
are increasingly attached, which form a parallel layer in relation to the pin surface.

The microscopic image in Figure 16 was obtained in order to visualize irregularities of
the prepared surface and thus to identify air pockets and voids.
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X 2 mm ,

Figure 15. Pin sides according to a PC CF20_4 mm sample including indications for significant
orientations.

y
PCCF20 \_ PACF30
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Figure 16. Microscopic images with marked air pockets and voids (red) of the pin areas of the
specimen PC CF20_5 mm (a) and PA CF30_5 mm (b).

Especially in the case of the PA CF30 specimen, voids can be detected around the weld
line; for the PC CF20 specimen they are more scattered. Gap formation between the pin
surface and the plastic compound can also be observed on the near gate side and the weld
line side for PA CF30. In comparison, this observation is only present to a minor extent in
the PC CF20 specimen. This can be explained by the volume shrinkage of the two materials.
The perpendicular shrinkage of PA CF30 is almost twice as high as that of PC CF20.

The described filler orientations of the three subareas of the contact pin area shown
in Figure 15 are now correlated with the electric potential field (Figure 17). In order
to characterize these areas more precisely, X-ray microtomographic examinations were
evaluated and compared with the measured potential fields. In general, it is noticeable that
there are significantly more non-contact areas (for the PC CF20 specimen). To explain why
this is the case, and to identify other interesting features, the three subareas around the pin
are considered individually and compared with the fiber orientation there.
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Figure 17. Measured potential fields of the pin areas of the specimen PC CF20_4 mm (a), and PA
CF30_5 mm (b).

On the near gate side of the PC CF20 specimen, there is a clearly identifiable layer
in front of the pin, exactly at the position of the prior identified low orientation layer
(Figure 18a). This layer is at the same potential and is clearly separated from the pin
(potential difference of ~160 mV) and the rest of the surrounding material by a potential
step (potential difference of ~150 mV). This indicates a poor connection to the other areas.
There is also a clear difference in fiber orientation between this layer and the rest. This layer
shows a comparably low fiber concentration, but there are almost no non-contact points.
Consequently, the carbon fibers within this layer, although not many, are well connected
and present everywhere, at least at the measurement surface. The carbon fibers directly
in front of the pin are all aligned parallel to the pin surface, probably the reason for the
potential difference between pin and the low orientation layer, indicating a poor electrical
bonding. The connection between this layer and the surrounding material is also poor,
indicated again by a potential difference and the presence of many non-contact areas in
between.

Potential in V

PCCF20 Near Gate Side PACF30 Near Gate Side

-— -—
Flow Direction Flow Direction

0
Fiber Orientation T W Fiber Potential in V Fiber Orientatign T W Fier
0 Interfaces 0.16 0.2 1 Interfaces

y[ AP L
0.5 mm
A

(a) (b)

Figure 18. Comparison of the measured potential fields and the fiber orientation at the near gate
sides of the specimen PC CF20_4 mm (a) and PA CF30_5 mm (b).
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In order to investigate the influence of the filler content on the bonding to the metal
pin in more detail, this result was compared to the measurement of the specimen PA
CF30_5 mm (Figure 18b). In this measurement, the layer in front of the pin is not so clearly
electrically separated, but clearly better bonded to the rest of the surrounding material.
The bonding of the carbon fibers to the pin is again poor; the carbon fibers are again
aligned parallel to the pin. In addition, shrinkage of the material occurs in front of the pin
(Figure 16), and is probably the reason for the potential difference here. Based on these
two results, it can be concluded that for this material combinations an electrical bonding at
the near gate side seems to be not optimal, although the potential difference for the higher
filled PA CF30 is.

On the lower pin side (Figure 19), there are many large areas in the 20 wt.% specimen
not connected to the conductive network. This can be clearly deduced from the fiber
orientation. In contrast, in the 30 wt.% specimen, there are practically no areas where
the conductive network of the carbon fibers is interrupted. A higher filling degree en-
ables a good cross-linking of the carbon fibers throughout the whole specimen, at least at
the surface.

<
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Figure 19. Comparison of the measured potential fields and the fiber orientation at the lower pin
sides of the specimen PC CF20_4 mm (a) and PA CF30_5 mm (b).

What is almost the same for both filling levels is the poor bonding to the pin, since the
carbon fibers lie parallel to the pin, similar to the near gate side.

At the weld line side (Figure 20), however, the carbon fibers are well bonded to the
pin for the PC CF20 specimen (indicated by the small potential difference between pin and
weld line side). The bonding of the weld line and pin of the PA CF30 specimen is poor,
likely due to the observed gap formation (Figure 16). Although the specific conductivity of
a higher filling degree should be beneficial also for the contact resistance, the combination
with polyamide seems unfavorable. Regarding the PC CF20 specimen, it can be clearly seen
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that the carbon fibers are perpendicular to the pin, especially in the area where the melt
meets and forms the weld line. Here, the potential difference is almost zero. This result is
interesting because the weld line area actually provides a worse resistivity compared to the
near gate area, but for contacting a metal pin, the weld line side is clearly preferable.

PCCF20

Potential in V

' Weld Line Side PACF30 “ Weld Line Side
— —
Flow Direction Flow Direction
Fiber Orientation T , W Fier Potential in V Fiber Orientation T, W Fiber

- Interfaces

1 Interfaces

0.19 } ;‘ 0.21
ﬁ l
1 !

L,

X

(a) (b)

Figure 20. Comparison of the measured potential fields and the fiber orientation at the weld line
sides of the specimen PC CF20_4 mm (a) and PA CF30_5 mm (b).

4. Conclusions

In this study, carbon fiber reinforced plastics (CFRP) with polyamide 6 and polycar-
bonate matrix were investigated by means of electrically conductive assembly injection
molded specimens. The main aspects here involved the structural properties as a function
of the phenomena induced by the injection molding process with the resulting anisotropic
electrical properties and, especially, the underlying measurement method. Based on all
results and their corresponding interpretations, the following conclusions can be drawn:

e By designing the cavity of the injection mold and purposeful placement of the contact
pins, it was possible to achieve specific microstructural properties of the CFRP com-
pound samples, particularly with regard to the fiber orientation. The focus was on the
areas close to the contact on the different end faces, as well as the plastic compound
volume before and after flowing around the insert.

e  These fiber structures could be detected and quantitatively visualized by classical
methods such as reflected light microscopy and also X-ray microtomography.

e  For the electrical characterization, a suitable examination area was identified, exposed
and prepared for the investigations.

e Inorder to investigate and electrically distinguish the areas near and far from the gate,
the total and partial resistances of the specimens were measured.

e For a more accurate non-destructive electrical characterization of the examination
area, a potential field measurement method based on scanning the specimen surface
was applied. The focus was on the investigation of the local anisotropic electrical
properties and their connection with the structural properties.

e  Asaresult of the resistance measurements, it was determined that the near gate area
of the specimen has a lower resistance than the weld line area. This is consistent with
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the observation of the fibers, because they are clearly more consistently oriented in the

near gate area than in the weld line area.

e  The weld line area is largely defined by the shape of the weld line itself and the free jet
formation, which results in a more chaotic fiber orientation and distribution.

e  The near gate area can be divided into different layers. Within these layers, the fiber
orientation is relatively uniform and ordered, but the layers differ from each other and
therefore have different current densities.

o  The differences in the ordered structure of the fibers in the near gate area and the dis-
ordered arrangement in the weld line area are also evident in the equipotential lines.

e  When looking at the pin area, it becomes clear that there is a relatively large shrinkage
of the composite material at the contact surface in the PA CF30 specimen. This poor
bonding of the contact pin to the plastic is also evident from the high partial resistances
measured compared to the total resistance.

e  The pin area can be divided into three subareas (pin sides), which differ in terms of
their fiber orientation in relation to the contact surface of the pin.

o  The three sides of the contact pin area could be successfully investigated with respect
to their contacting and the measured potential fields could be correlated with the
fiber orientations.

e The isolated spots in the plastic matrix, which are not connected to the conductive
network, can be detected by the potential field measurement method. When comparing
PC CF20 and PA CF30, clear differences due to the different filler concentrations can
be seen with regard to the number of isolated spots.

e  Although the weld line area has a poorer specific conductivity, the weld line side is
more suitable when it comes to good electrical contact with metal pins.

e  The measurement methods can be optimized to obtain even more detailed results. For
this purpose, current methodological difficulties regarding the potential field method
should be taken into account with respect to the measurability of materials with a
low degree of filling. Furthermore, the evaluation of the tomographic data can be
optimized and extended in order to obtain even more representative data. For the
theoretical procedure in the case presented here, it is essential to solve Ohm’s law,
for which an approximation of the location-dependent specific electrical conductivity
is provided.

In the future, it will be possible to build on the obtained results and further research
the contacting between CFRPs and metal pins. The correlation between the potential field
measurement and the fiber orientation and distribution obtained from X-ray tomography
allows, among other things, further conclusions to be drawn about the contact situation
and the anisotropic conductivity distribution.
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