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Major depressive disorder (MDD) is a complex mood disorder characterized by persistent

and overwhelming depression. Previous studies have identified abnormalities in large

scale functional brain networks in MDD, yet most of them were based on static functional

connectivity. In contrast, here we explored disrupted topological organization of dynamic

functional network connectivity (dFNC) in MDD based on graph theory. One hundred and

eighty-twoMDD patients and 218 healthy controls were included in this study, all Chinese

Han people. By applying group information guided independent component analysis

(GIG-ICA) to resting-state functional magnetic resonance imaging (fMRI) data, the dFNCs

of each subject were estimated using a sliding window method and k-means clustering.

Network properties including global efficiency, local efficiency, node strength and

harmonic centrality, were calculated for each subject. Five dynamic functional states were

identified, three of which demonstrated significant group differences in their percentage

of state occurrence. Interestingly, MDD patients spent much more time in a weakly-

connected State 2, which includes regions previously associated with self-focused

thinking, a representative feature of depression. In addition, the FNCs in MDD were

connected differently in different states, especially among prefrontal, sensorimotor, and

cerebellum networks. MDD patients exhibited significantly reduced harmonic centrality

primarily involving parietal lobule, lingual gyrus and thalamus. Moreover, three dFNCs

with disrupted node properties were commonly identified in different states, and also

correlated with depressive symptom severity and cognitive performance. This study is
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the first attempt to investigate the dynamic functional abnormalities in MDD in a Chinese

population using a relatively large sample size, which provides new evidence on aberrant

time-varying brain activity and its network disruptions in MDD, which might underscore

the impaired cognitive functions in this mental disorder.

Keywords: major depressive disorder, independent component analysis, dynamic functional network connectivity,

graph theory, resting-state functional magnetic resonance imaging

INTRODUCTION

Major depressive disorder (MDD) is a debilitating psychiatric
disorder characterized by pervasive depressed mood, anhedonia,
cognitive disability, and suicidal tendency with suicide rates of
4%, affecting 350 million people worldwide each year (1–3), and
it has a high rate of recurrence, which causes increasing social and
economic burdens (4). While previous studies have investigated
both structural and functional abnormalities, depression is
increasingly understood as a disorder of aberrant interactions
between multiple brain regions and networks (5–8). In this
respect, the exploration of atypical brain connectivity in MDD
might advance our understanding of the disorder.

Resting-state functional connectivity (FC) using functional
magnetic resonance imaging (fMRI) is widely used to identify
correlated brain regions (9, 10). Numerous studies have found
differences in resting-state FC in default mode network related
to self-referential processing and emotion regulation, central
executive network involved in attention and working memory,
and other cortical or subcortical regions including basal
ganglion, visual cortex, and cerebellum (8, 11, 12). However,
most of these studies assumed that functional connectivity is
stationary throughout the entire scan period and thus used
the entire time course to calculate functional connectivity.
Such an approach ignores the possibility of different mental
activity occurring at different time points in time. Recent
studies have found reoccurring connectivity patterns among
intrinsic networks in multiple diseases including schizophrenia
and bipolar disorder, which cannot be detected in static
functional connectivity analysis (13, 14). Other studies have
demonstrated that resting-state brain functional connectivity
is indeed highly dynamic (15, 16). Previous research has
also exhibited variability in disrupted functional network
properties in MDD (17, 18). For example, Demirtas et al.
found increased global synchronization and temporal stability in
MDD by using Hilbert transform to assess dynamic functional
connectivity (17), while Kaiser et al. discovered both increased
and decreased variability of the functional connectivity related to
medial prefrontal cortical (18). Group independent component
analysis (ICA) has been used to investigate dynamic functional
network connectivity (13, 19). Group ICA computes group-
level components from all data and subsequently estimates
subject-specific components to recapture intersubject variability
based on group-level independent components (IC) using back-
reconstruction or dual-regression (20, 21). However, these
methods do not necessarily preserve the independence of
subject-specific ICs, which is an important measure in ICA

measure for accurately grouping brain activity. In group
information guided independent component analysis (GIG-
ICA), subject-specific ICs were estimated based on group-
level components using a multi-objective function optimization
framework to preserve independence among ICs of each subject
and simultaneously establish spatial correspondence of ICs
across subjects (22). GIG-ICA has been shown to identify the
subtle difference among symptom-related disease (23, 24) and
provide more reliable functional network with respect to the
effects of data quality, data quantity, variable source numbers
across subjects, and presence of spatially unique artifacts (25).
In addition, GIG-ICA is more sensitive to group difference
and biomarker detection (26). To the best of our knowledge,
dynamic functional network connectivity (dFNC) analysis using
GIG-ICA has not been explored in MDD (22), which may
capture more time-varying information over tens of seconds and
capture uncontrolled but reoccurring patterns of interactions
among intrinsic networks during task engagement or at rest
(14, 27).

The human brain is organized into a complex network
to effectively process the integration and segregation of
information. Graph theory provides a powerful mathematical
framework for describing the topological organization of
functional networks represented graphically by sets of nodes
and edges (28). Though previous studies have demonstrated
disrupted network properties, including global and local
efficiency, characteristic path length, node degree, harmonic
centrality (node efficiency) and node betweenness in MDD
patients (29–31), the results are often inconsistent or even
contradictory. For example, while Zhang et al. showed increased
global efficiency in MDD patients (29), Meng et al. provided
decreased global efficiency (30). And while Zhang et al. showed
decreased node degree in dorsal lateral prefrontal gyrus (DLPFC)
in MDD patients (29), Jin et al. observed increased node degree
in DLPFC which plays a critical role in mood regulation and
cognitive functioning (32). These inconsistent findings may be
partially due to threshold selection or the diversity of patient
subtypes. In addition, the assumption of static connectivity as
well as the use of fixed ROIsmay contribute to the inconsistencies
(33). Our approach utilizes data-driven ROIs via the ICA
approach and also allows for the connectivity to vary over time
through the dFNC approach.

In this study we aim to examine the dynamic functional
network connectivity for a relatively large sample size of subjects
(182 MDD patients and 218 healthy controls [HC]) based on
spatial GIG-ICA. Network properties including global and local
efficiency, node strength and harmonic centrality, were calculated
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and compared between MDD and HCs, and then tested for
associations with symptom severity and cognitive scores.

MATERIALS AND METHODS

Participants
In this study, 400 Chinese Han participants (182 MDD
patients and 218 healthy controls) were recruited from 3
hospitals in China, including the West China Hospital of
Sichuan (Site 1), Henan Mental Hospital of Xinxiang (Site
2) and First Affiliated Hospital of Zhejiang (Site 3). More
detailed demographic information for subjects is provided in
Table 1 and Table S1. Significant group difference between
HC and MDD was found in age (p = 0.0069, χ

2 test),
and no significant difference between HC and MDD was
detected in gender. All patients were confirmed by the DSM-
IV based on the SCID-P interview (34) and HCs were also
interviewed using the SCID-I/NP and excluded if their first-
degree relatives had any psychotic disorders (34). Ethical
approval was granted by the relevant Ethics Committees,
and informed consent was obtained from each subject prior
to scanning according to each site’s Institutional Review
Boards.

Symptom Severity and Cognitive Ability
Current symptom severity of patients was rated by clinical
psychiatrists using the 17-item Hamilton Depressive Rating
Scale (HDRS) (35) or the Beck Depression Rating Scale (BDI)
(36). The cognitive ability was measured with the Cambridge
Neuropsychological Test Automated Battery (CANTAB) (37).
The CANTAB test was administered typically within 3 days
(median time) of imaging. The Intra-Extra Dimensional Set
Shift (IED) and Rapid Visual Information Processing (RVP)
and Spatial Working Memory (SWM) in CANTAB test are
involved in this study. Detailed information is shown in
Table 1.

TABLE 1 | Demographic and clinical information of subjects.

Mean ± SD MDD HC P-value

Number 182 218 NA

Age 32.0 ± 10.3 29.5 ± 8.3 0.0069

Gender(M/F) 63/119 76/142 0.96

SYMPTOM SEVERITY

HDRS 21.9 ± 5.0 NA NA

BDI 21.0 ± 7.1 NA NA

COGNITIVE PERFORMANCE

RVP 16.8 ± 5.4 18.3 ± 5.6 0.07

SWM 33.5 ± 5.7 33.3 ± 4.6 0.77

IED 23.5 ± 12.6 22.9 ± 12.4 0.77

P denotes the significance value of two sample t-test performed between healthy controls

(HC) and major depressive disorder (MDD) patients for all measures, except gender (used

chi-squared test). SD, standard deviation HDRS, Hamilton Depression Scale BDI, Beck

Depression Rating Scale RVP, Rapid Visual Information Processing SWM, Spatial Working

Memory IED, Intra-Extra Dimensional Set Shift F, female M, male NA, not applicable.

Data Acquisition
For site 1, the resting state fMRI data were collected on
a 3T Philips scanner (Achieva, Netherlands) using an eight-
channel phased-array head coil. A total of 240 volumes of echo
planar images were obtained with the following parameters:
repetition time (TR)/echo time (TE) = 2,000/30ms field of view
(FOV) = 240 × 240mm (64 × 64 matrix) flip angle (FA) = 90

◦

;
38 sequential ascending axial slices of 4mm thickness. For site 2,
the fMRI data were acquired on a 3T Siemens scanner (Verio,
Germany) using a 12-channel phased-array head coil. A total
of 240 volumes of echo planar images were obtained with the
following parameters: TR/TE = 2,000/30ms FOV = 220 ×

220mm (64 × 64 matrix) FA = 90; 33 sequential ascending
axial slices of 4mm thickness. For site 3, the fMRI data
were acquired on a 3T Siemens scanner (Prisma, Germany)
using a twelve-channel phased-array head coil. A total of 240
volumes of echo planar images were obtained with the following
parameters: TR/TE = 2,000/30ms FOV = 220 × 220mm (64
× 64 matrix) FA = 90; 38 sequential ascending axial slices of
4mm thickness. During scanning, foam padding and earplugs
were used to minimize head movement and scanner noise
and subjects were instructed to lie still with eye closed and
stay awake.

Analysis Pipeline
The analysis pipeline of the study is shown in Figure 1.
After preprocessing the fMRI data, the spatial independent
components and their associated time courses were estimated by
GIG-ICA. Then a sliding time windowmethod was performed to
compute dFNC for each subject and k-means clustering method
was used to cluster all dFNC windows of all subjects. Thus, dFNC
states and state transition vectors were obtained for each subject.
Besides, the network properties were also calculated in each state
for each subject. Finally, the group difference between HCs and
MDDpatients in dFNC and network properties in each state were
compared using two-sample t-tests.

Data Preprocessing
The resting state fMRI data were preprocessed using the SPM12
(http://www.fil.ion.ucl.ac.uk/spm/) software in an automated
analysis pipeline developed at the Brainnetome center (http://
www.brainnetome.org/). The processing pipeline included the
removal of the first 10 volumes to exclude T1 equilibration effects,
slice timing corrected to the middle slice, motion correction to
the first image using INRIalign, normalization into the standard
Montreal Neurological Institute (MNI) space, reslicing to 3 ∗3∗

3mm voxels, denoising and spatially smoothing with an 8mm
full width half max (FWHM) Gaussian kernel. Each voxel time
course was z-scored to normalize variance across space. In
addition, we excluded the subjects with a maximum translation
of >2mm or rotation of >2 or framewise displacements (FD)
>1mm to limit the impact of head motion. Results indicate that
mean FD for all subjects were<0.5mm and there is no significant
difference between HCs and MDD patients on mean FD (HC:
0.080± 0.048, MDD: 0.078± 0.043, two-sample t-test: p= 0.47).
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FIGURE 1 | Schematic of the analysis pipeline. Independent components and time courses are estimated by group information guided independent component

analysis (GIG-ICA) using preprocessed fMRI data. A sliding window approach was used to compute the dFNC of each subject, and dynamic states and subject state

transition vectors were obtained based on k-means clustering method across all windows of all subjects.

GIG-ICA
The fMRI data were decomposed into spatial independents
components (ICs) by estimating maximally independent spatial
sources using GIG-ICA implemented in the GIFT software
(20, 21) (http://mialab.mrn.org/software/gift). We used a high
model order ICA (number of components = 100). Data for
each subject was first reduced into 150 principal components
using principal component analysis (PCA). Group data obtained
by concatenating subject reduced data across time were further
reduced to 100 components using PCA (19). The 100 group
independent components were obtained from the reduced group
data using the infomax algorithm. The algorithm was repeated
20 times in ICASSO (38) and the most central run was selected to
improve the reliability of the decomposition (39). Subject-specific
time courses (TC) and spatial maps (SM) were estimated by GIG-
ICA. Then we calculated one sample t-test map for each SM and
mean power spectra of the corresponding TC across all subjects.
A set of ICs was characterized as intrinsic connectivity networks
(ICNs) that exhibited higher low-frequency spectral power and
their peak activation fell on gray matter with minimal overlap
with white matter, ventricles, and edge regions (40).

The TCs of the selected ICNs were post-processed by
detrending linear, quadratic and cubic trends, regressing out
6 realignment parameters and their temporal derivatives,
despiking, and band pass filtering between [0.01 and 0.15] Hz
using a 5th order Butterworth filter.

Dynamic Functional Network Connectivity
The dFNC of each subject was computed based on a sliding time-
window method (13, 19). We used a tapered window created
by convolving a rectangle (width = 22 TRs) with a Gaussian
(σ = 3 TRs). A total of W = 208 windows were obtained by
sliding the time-window in steps of 1TR. For each window, we
estimated the FNC between ICNs from a regularized inverse
covariance matrix using a graphical LASSO method (41, 42). An
L1 norm was placed on the inverse covariance matrix to promote
sparsity and the regularization parameter lambda was optimized
for each subject by evaluating the log-likelihood of the covariance

matrix in a cross-validation framework. Thus, for each subject,
we obtained 208 connectivitymatrices reflecting the time-varying
functional network connectivity between ICNs. The dFNC values
were Fisher-Z transformed and regressed out with age, gender,
site, and mean FD effects. We initially divided ICNs into eight
networks based on the dFNC by the Louvain algorithm of the
brain connectivity toolbox (https://sites.google.com/site/bctnet/)
and slightly adjusted the ICNs according to previous studies
(13, 40).

Next, a k-means algorithm was used to cluster all dFNC
windows based on the correlation distance. Instead of clustering
all of the dFNC windows across all subjects, initial k-means
clustering was repeated 500 times with random initialization
on subject exemplars to obtain initial group cluster centroids.
Subject exemplars were corresponding to windows of maximal
variability in correlation across component pairs. To obtain
the subject exemplars, we first computed variance of dFNC
across all pairs at each window and we then selected windows
corresponding to local maxima in this variance time courses (13).
Then we clustered all dFNC windows across all subjects with a
start point of the initial group centroids. The optimal number of
cluster was determined using the elbow criterion defined as the
ratio of within cluster distance to between clusters distances.

The connectivity pattern of each subject in each state was
estimated as a subject median of the subject windows which were
assigned to this state. Using subject state transition vectors, we
also computed the percentage of state occurrence. The group
difference was compared using 10,000 bootstrap statistics at each
state. Besides, we also estimated within-network connectivity
for each subject and compared the group difference in within-
network connectivity between MDD patients and HCs using
a two-sample t-test, and more details were described in the
supplement.

Graph Theory Analysis
Graph theory was used to analyze the topological properties of
the dynamic functional networks. Global properties, including
global efficiency (Eglob) and local efficiency (Elocal), and
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node properties, including node strength (Si) and harmonic
centrality (Ei), were used to investigate the networks (43–45).
Global efficiency measures the ability of parallel information
transmission over the network and local efficiency measures
the capability of information exchange for each subgraph when
the index node is eliminated. Node strength can quantify the
extent to which a node is relevant to the graph and harmonic
centrality measures the information propagation ability of a node
with the rest of the nodes in the network, which were able to
use to investigate which IC might play a vital role to the brain
abnormalities. Their definitions and descriptions are provided in
Table S2.

As the dynamic functional networks contained both positive
and negative connectivity, we calculated the network properties
on positive and negative networks separately. The network
properties of weighted dFNC were carried out using the brain
connectivity toolbox (BCT, https://sites.google.com/site/bctnet/)
at each dFNC state. Particularly, the harmonic centrality was
computed according to Rochat et al. (44) based on BCT and
group differences were examined on network properties using
two-sample t-test. To explore whether aberrant dFNC of ICs with
disrupted node properties were associated with the symptom
severity and the cognitive ability, we also investigated the
partial correlation between the dFNC and symptom severity and
cognitive score to minimize the group effect.

RESULTS

Spatial ICA and ICNs
SMs of ICNs and their TCs were decomposed using GIG-ICA.
The resulting SMs are depicted in Figure S1. Overall 49 ICs
were selected as ICNs which were further categorized into eight
networks based on their anatomical and functional properties,

including subcortical network (SCN), auditory network (ADN),
visual network (VSN), sensorimotor network (SMN), cognitive
control network (CCN), default-mode network (DMN), frontal
network (FN), and cerebellar network. The identified ICNs with
their activation peaks primarily fell on gray matter. Detailed
information for the SM, peak coordinate, component label, and
volume of each ICN are provided in the Table S3.

Dynamic Connectivity States and
Connectivity Strength
Five reoccurring dFNC states over time were identified using k-
means clustering and the cluster centroid of each dFNC state
is shown in Figure 2A. The results showed that MDD and HC
had similar connectivity patterns in each state (Figure S2). Note
that not all subjects have dFNC windows assigned to each state,
and the number of subjects observed in each state is shown in
Figure 2B. The dFNC results suggested that different states have
different connectivity patterns. State 1 and State 5 both showed
positive connectivity between VSN and SMN, and negative
connectivity between FN and VSN, SMN. State 5 distinguished
itself from State 1 with more antagonism between CCN and VSN,
SMN. Compared to State 1, State 2 showed opposite connectivity
pattern among all networks, especially the connectivity between
VSN and SMN. State 2 also showed a weaker connectivity within
each network and demonstrates no strong connectivity between
networks. In State 3, VSN and a subset of ICNs in DMN showed
strong negative connectivity with other networks while strong
positive connectivity within networks. State 4 showed strong
connectivity related to CCN.

The percentage of occurrence of each dFNC state was
computed across all subjects. Among five dFNC states, three
state’s occurrence exhibited significant group differences between
MDD patients and HCs (FDR corrected, Figure 2C). Compared

FIGURE 2 | (A) The five identified dFNC states using the k-means clustering method. (B) The number of subjects in each state. (C) The group difference in the

percentage of occurrence in each state. Asterisk indicates p < 0.05 (FDR corrected).
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FIGURE 3 | Group differences in dFNC in each state (p < 0.001, uncorrected). The wider line means larger group difference. Red lines represent increased

connectivity while blue lines represent decreased connectivity in MDD patients. The red asterisks indicate significant group differences (FDR corrected).

to HCs, MDD patients demonstrated significantly increased
occurrence in relatively weakly-connected State 2 (p = 2.1
× 10−3, FDR corrected) and decreased occurrence in State 3
(p = 2.3 × 10−3, FDR corrected) and State 5 (p = 0.024, FDR
corrected).

The group differences between MDD patients and HCs on
connectivity strength are shown in Figures 2, 3 (p < 0.001,
uncorrected) in each dFNC state. Compared to HCs, MDD
patients showed increased FNC strength between superior frontal
gyrus (SFG, IC 41) in FN and SMN in State 1 and State 5,
especially the connectivity between SFG and precentral gyrus
(PreCG, IC 16) (p = 4.9 × 10−6, FDR corrected) and the
connectivity between SFG and medial frontal gyrus (medFG, IC
8) (p= 4.1× 10−5, FDR corrected) in State1. Relative to HCs, we
also found decreased FNCs between CCN and SMN, DMN, SCN
in State 2 and 4 in MDD patients, while increased FNCs within
CCN in State 4. The decreased FNCs in MDD patients between
VSN and ADN and within VSN were also observed in State 2 and
4 compared to HCs. And the increased FNCs in MDD patients
between CBN and DMN, SMN were found in State 2, especially
the connectivity between uvula (IC 21) in CBN and cingulate
gyrus (CG, IC 60) (p = 1.0 × 10−5, FDR corrected). Other
abnormal FNCs in MDD patients in lentiform nucleus, inferior
frontal gyrus, middle temporal gyrus and fusion gyrus were also

found in State 2, 3, and 5 compared to HCs. For within-network
connectivity, compared with HCs, MDD patients demonstrated
decreased coactivations in thalamus (IC 30), medFG (IC 8), IFG
(IC 36), and IFG (IC 71) (Figure S3).

Group Differences in Network Properties
Network properties with significant group difference on both
positive and negative networks were found in different dFNC
states, especially in State 2 (Figure 4 and Table S4). On positive
networks, compared to HCs, MDD patients demonstrated
significantly reduced global efficiency and local efficiency in State
2 (p < 0.05, FDR corrected, Figure 4A) and showed reduced
global efficiency in State 5 (p < 0.05, uncorrected). On node
properties, relative to HCs, significantly reduced node strength
and harmonic centrality in MDD patients were both found in
VSN, SMN, and CCN, including precentral gyrus (PreCG) (IC
16), superior parietal lobule (SPL, IC 34), cuneus (Cun, IC 56),
and lingual gyrus (LG, IC 58) in State 2, and MDD patients
also showed reduced node strength in PreCG (IC 7), insular
(IC 83), middle temporal gyrus (MTG, IC 94) in State 2. On
negative networks, MDD patients demonstrated significantly
reduced global efficiency in State 2 compared to HCs (p < 0.05,
FDR corrected, Figure 4A) and no group difference was found
in local efficiency. On node properties, compared to HCs, MDD
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FIGURE 4 | Group difference in network properties and three commonly identified abnormal FNCs. (A) Group difference in global efficiency and local efficiency in

positive network (P) and negative network (N) (The asterisks indicate p < 0.05, FDR corrected). (B) Group difference in node strength and harmonic centrality

(p < 0.001, FDR corrected), where the upward arrow and the down arrow represent increased and decreased node properties, respectively. (C) Three commonly

identified FNCs in different states. Red lines represent increased FNCs while blue lines represent decreased FNCs in MDD patients. (D) The partial correlation between

three commonly identified abnormal FNCs and symptom severity and cognitive performance.
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patients showed reduced node strength and harmonic centrality
in thalamus (Tha, IC 30) in SCN in State 2. Besides, relative
to HCs, MDD patients also exhibited reduced node strength in
cerebellar (IC 21) in State 2 and SFG (IC 41) in FN in State 5.
All results of node properties were corrected (p < 0.001, FDR
corrected) and reported based on absolute value.

To summarize the above results, three FNCs with disrupted
node properties were commonly identified in state 1, 2, and
4 as shown in Figure 4C. More importantly, the three FNCs
were also significantly correlated with both symptom severity
and cognitive scores (Figure 4D). Particularly, the higher dFNC
strength between SFG and medFG in State 1(MDD>HC),
the patients would have more severe depressive symptoms
measured by Hamilton Depressive Rating Scale (HDRS, r= 0.30,
p = 1.7 × 10−3), and more impaired attention and executive
function obtained from IED (r = 0.20, p = 0.013). In addition,
the decreased connectivity between LG and MOG in State
4 was correlated with both HDRS (r = −0.28, p = 3.6
× 10−3) and RVP score (r = 0.23, p = 4.2 × 10−3),
which measures the ability of attention. Finally, the reduced
connectivity between SPL and medFG was associated with BDI
(r = −0.39, p = 0.02) and SWM (r = −0.28, p = 1.1 ×

10−3) as well, which is related to working memory and executive
function.

DISCUSSION

In this study, we investigated the dynamic functional
abnormalities in Chinese MDD using a relatively large sample
size, which provides new evidence on aberrant time-varying
brain activity and its network disruptions in MDD. Our results
showed that both MDD patients and HCs had similar dFNC
states, but they spent markedly different length time in certain
states. Compared to HCs, MDD patients showed altered FNCs
among different networks, especially the FNCs related to FN
and CBN. By analyzing the network properties of dFNC states,
we also found mostly reduced network properties in MDD
patients compared with HCs. Interestingly, three FNCs with
disrupted node properties were identified in different states and
also correlated with depressive symptom severity and cognitive
performance.

Five Reoccurring dFNC States
Five reoccurring dFNC states were identified in this
study. Our findings, together with previous studies,
provide additional evidence that functional connectivity
in human brain is indeed highly dynamic, representing
flexibility in functional coordination between distinct brain
systems (13, 27). For example, in this study, negative
FNCs between VSN and SMN and within these two
networks were only found in State 2. VSN and SMN
were highly synchronous in State 1 and State 5, but their
synchronous patterns are different. Compared to HCs, MDD
patients showed significantly different occurrence in three
states.

The weakly-connected dFNC state was found to be associated
with self-focused thinking in a previous study (46), which is a

main feature of depression. In our study, the MDD patients spent
more time in weakly-connected state 2, especially connectivity
related to CCN, DMN, and FN, while HCs spent more time in
strongly-connected State 3 and State 5, especially the connectivity
related to VSN. Therefore, we speculated that the reason why
MDD patients spend more time in State 2 might be due to
their spending more time on self-focused thinking during the
resting-state. In particularly, a similar difference in time spent in
weakly-connected state was also reported in schizophrenia (13).

Group Differences in dFNC States
As shown in Figure 3, abnormal FNCs in MDD were observed
primarily in FN, SMN, DMN, CCN, and CBN, which are
related to emotion regulation and cognitive functioning (8,
11). Compared to HCs, MDD patients also demonstrated
decreased FNCs between CCN and SMN, DMN, SCN, mainly
located in frontal, parietal, cingulate and precentral gyrus,
which were consistent with previous studies (8). CCN is active
during cognitive task and is involved in cognitive functioning
including attention and working memory (8). For example, the
reduced connectivity in MDD between IPL (IC 46) and SFG
(IC 67), known as frontoparietal systems (11), is involved in
cognitive control, leading imbalance between control systems
and externally-directed attention. MDD patients also showed
decreased FNCs in VSN and ADN located in middle temporal
gyrus, LG, and MOG, which are involving in the perception and
processing of emotional facial expressions (47, 48). The reduced
FNCs in LG and MOG might cause abnormal reactivity to
viewing images of emotional face, which has been adopted as an
early biomarker of depression as reported in (49). The increased
FNCs between CBN andCG andMFG inMDDpatients were also
reported in previous study, suggesting dysfunctional regulation
of emotion (50).

MDD patients exhibited increased FNCs between SFG in FN
and SMN including medFG and PreCG, which has been reported
in (51). The SFG known as prefrontal gyrus receives input from
sensory cortices and is densely connected with premotor to
form executive memory, especially those guided by emotions
(52, 53). And the motor, premotor and prefrontal networks are
a major hierarchy of executive memory (52), so the increased
FNCs in MDD patients between SFG in FN and SMN suggested
abnormalities in executive function in MDD patients.

Our findings are consistent with previous research, but
also provide additional insights in the context of a dynamic
perspective as different dFNC states are more strongly associated
with depression and its associated symptoms. In addition,
MDD patients showed decreased within-network connectivity
in thalamus, medFG, IFG. The thalamus was a key structure
involved in the patho-physiology mood disorder (54). Anand
et al. also found decreased activity in thalamus in emotion
processing (55). The decreased activity in medFG was related
with the psychomotor retardation that was commonly observed
in depressed patients (56). The IFG play a major role in the
pathophysiology of mood disorder, as it displayed reductions in
cortical thickness and gray matter volume in depressed patients
(57, 58).
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Group Differences in Network Properties
For global properties, we found reduced global efficiency and
local efficiency in weakly-connected State 2 which are related
with self-focused thinking indicated a disturbance of normal
integration of whole-brain networks in MDD patients (30, 46).
For node properties, significantly reduced node properties were
found in VSN ADN, SMN, and CCN in positive networks in
MDD patients. Among them, the findings in VSN including
LG and Cun are consistent with previous studies which found
decreased cerebral blood flow in the LG (59) and decreased
gray matter volume in the Cun in MDD patients (29, 60). The
reduced node properties in MTG in ADN was also found to
be involved in parietal-occipital-temporal networks associated
with suicide in depression (61). Besides, SPL and insular in CCN
play a central role in attention and cognitive control, leading to
more self-focused and anxiety in MDD patients (11, 62). Finally,
reduced node properties in negative networks were also found in
Tha, cerebellum and SFG, which are involved in cognitive and
emotional regulation (50, 63, 64).

Interestingly, three FNCs with disrupted node properties were
commonly identified in different states, which are also correlated
with depressive symptom severity and cognitive performance.
The increased FNC between SFG and medFG was associated
with IED related to attention and executive function. Previous
study has observed that MDD patients with higher HDRS/BDI
score showed worse performance in attention test (65). The
increased FNC between SFG andmedFG suggested the abnormal
attention ability in MDD patients. The reduced FNC between
LG and MOG was positively correlated with RVP related to
sustained attention. As LG and MOG are related with negative
stimulus, which might suggest that MDD patients are more
easily engaged in negative attention. The decreased FNC between
SPL and medFG was negatively correlated with SWM related to
spatial working memory and executive function. Note that SPL is
involved in the manipulation of information in working memory
(66), thus the reduced FNCs between SPL and medFG might
cause the deficit of cognitive function in MDD patients.

LIMITATIONS AND FUTURE DIRECTIONS

A limitation of the current study is that the criteria for the
symptom severity recorded in the Second Affiliated Hospital of
XinxiangMedical University is different from other sites. Though
most of the subjects were measured by HDRS (35), few others
were measured by BDI (36), consequently, we investigated the
relationship between dFNC and symptom scores using subjects
with either HDRS or BDI. Besides, the age was not matched
between groups in our study. To clarify age effects, the dFNC
analysis was repeated with age and gender-matched samples
(MDD, age: 31.7± 10.4 HC, age: 30.8± 8.7), where age: p= 0.39,
gender: p = 0.67. In the analysis, the centroids of clustered
dFNC states as well as the differences in percentage of state
occurrence were in line with the results obtained using all of the
data (Figure S4).

A previous study has reported that the window size in
a sliding window analysis should be selected to capture the
lowest frequencies of interest in the signal, as well as to detect

interesting short-term effects (67). In this study, we used an
empirically validated fixed sliding window of 22 TR (44 s) similar
to (13). It has been suggested that the windows of 30–60 s are
able to capture resting state dynamic functional connectivity.
Future work should evaluate connectivity changes using separate
windows of various windows lengths (68) and also compare with
windowless approaches (69).

Regarding the clustering method, we used k-means to
identify the group centroids. Though k-means is an efficient
and robust algorithm, it is difficult to separate clusters with
different size and densities and it has a high susceptibility to
outliers. Future work could consider other clustering models, like
PCA (70), ICA (71, 72), to extract connectivity states. Besides,
here we only investigated functional network connectivity
defined as the statistical dependency using fMRI data. It is
unclear if abnormal connectivity is caused by altered anatomical
connection or by coherence between different regions and
other noise signal. Future work can combine the structural
and functional network connectivity to investigate the abnormal
connectivity. In addition, we are assuming that each part of an
ICN communicates uniformly with the other networks when
computing connectivity between different networks, whichmight
ignore that different parts of ICN have different communication
patterns with other regions in the network.

CONCLUSION

This study investigated the dFNC using GIG-ICA and analyzed
node properties in each dynamic state based on graph theory
in MDD, which provides a new insight into the pathological of
depression. MDD patients were found to spend more time in a
weakly-connected dFNC state that was found to be associated
with self-focused thinking. Moreover, three dFNCs with both
abnormal connectivity strength and disrupted node properties
were identified in different states, which are also correlated
with depressive symptom severity and cognitive performance.
In summary, this is the first attempt to investigate the dynamic
functional abnormalities in MDD in a Chinese population using
a relatively large sample size, which provides new evidence on
aberrant time-varying brain activity and its network disruptions
in MDD, which might underscore the impaired cognitive
functions in this mental disorder.
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