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Abstract

Large scale biological responses are inherently uncertain, in part as a consequence of noisy

systems that do not respond deterministically to perturbations and measurement errors

inherent to technological limitations. As a result, they are computationally difficult to model

and current approaches are notoriously slow and computationally intensive (multiscale sto-

chastic models), fail to capture the effects of noise across a system (chemical kinetic mod-

els), or fail to provide sufficient biological fidelity because of broad simplifying assumptions

(stochastic differential equations). We use a new approach to modeling multiscale stationary

biological processes that embraces the noise found in experimental data to provide esti-

mates of the parameter uncertainties and the potential mis-specification of models. Our

approach models the mean stationary response at each biological level given a particular

expected response relationship, capturing variation around this mean using conditional

Monte Carlo sampling that is statistically consistent with training data. A conditional probabil-

ity distribution associated with a biological response can be reconstructed using this method

for a subset of input values, which overcomes the parameter identification problem. Our

approach could be applied in addition to dynamical modeling methods (see above) to predict

uncertain biological responses over experimental time scales. To illustrate this point, we

apply the approach to a test case in which we model the variation associated with measure-

ments at multiple scales of organization across a reproduction-related Adverse Outcome

Pathway described for teleosts.

Introduction

Biological processes at all scales and the measurements of their outputs, from the molecular to

the population level, are noisy. In order to understand and predict behaviors of complex bio-

logical systems it is essential to include stochasticity into models in order to capture empiri-

cally-observed variability. For example, a population of isogenic cells can exhibit a wide array

of responses to the same environment as a result of the molecular noise caused by proteins dif-

fusing to reach target regulated gene or in the variability observed in intercellular biochemistry

[1–7]. The technology used to measure the biological responses can introduce measurement

error, including laboratory and batch effects [8–10]. On larger scales, researchers have come to

appreciate the necessity of stochastic modeling in predicting the movement of animal
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populations traditionally assumed as deterministic or mechanistic [11–14]. A greater apprecia-

tion for the variability inherent to biological phenomena has led to an increasing use of sto-

chastic models, which are typically harder to fit with sparse datasets and are more

computationally expensive to execute.

A recurring issue in the mathematical modeling of noisy biological phenomena is what is

known colloquially as the “parameter identification problem.” Biological models often admit

many sets of parameter values consistent with the training data, inviting questions as to why

certain values were chosen over others, especially when parameter choice affects model perfor-

mance such as sensitivity [15]. These considerations have spurred further research into new

methods of parameter estimation and model development [16–18].

In this work, we seek to avoid the parameter identification problem by embracing the

uncertainty associated with fitted parameter values, rather than justifying the choice of a singu-

lar set of values post hoc. In what follows we describe a data-driven approach to modeling

developed from the premise that parameter values estimated from curve-fitted models are but

one parameter set sampled from a distribution of all sets that are consistent with data. The out-

put permits reconstruction of the conditional probability distribution between an input value

(e.g., exposure concentration in a toxicity experiment) and a biological endpoint (e.g., animal

mortality). Briefly, the method works by associating experimental data for endpoints repre-

sented by adjacent nodes of a hierarchical network with one root and one leaf, fitting the data

to a set of sigmoidal curves, and bootstrapping the regression to obtain confidence intervals

that can then be used to estimate the distribution of sigmoid parameter values in each level of

the hierarchy. The conditional endpoint distribution may be found through multiple instances

of propagating an input value through the network based on the now probabilistic relation-

ships between adjacent nodes. The comparison of the probability density clouds produced by

the model with the experimental data highlight either the modeling misspecification (i.e. a

modeled linear relationship in place of a sigmoidal) or potential errors in the data. The method

is illustrated with a biological pathway that results in a decrease in reproductive output, or an

Adverse Outcome Pathway (AOP), with experimental data obtained from fathead minnow

(Pimephales promelas). The AOP framework is an increasingly accepted approach to link bio-

logical pathways and other non-traditional toxicological data to adverse outcomes [19]. This

framework also provides a useful construct in which to develop predictive models for chemical

hazard [20]. The AOP covers multiple scales of events across multiple timescales, from the

(ant)agonism of receptors (molecular), to the blood plasma concentrations of small molecules

(physiological), to the average fertility of a population of organisms; simulating such a pathway

demonstrates the utility of this approach as a multiscale platform. Here, we demonstrate our

approach using a network of AOPs related to fathead minnow reproduction.

Methods

Correlated pathway modeling

We are interested in modeling the correlated relationship between the continuous quantities

of an experimental input, X, and an associated measureable output, Y. For simplicity, we will

assume that X is correlated to Y through a linear chain of n intermediate variables: {Yi:

i = 1,2,. . .,n}. We model the input, output, and intermediate quantities as random variables,

and use the standard notation which distinguishes between a random variable X and one of its

possible values, X = x. Our goal, then, is to obtain the joint probability, p(x,y)dxdy, between the

input and output, which encodes the variance associated with noise of the underlying stochas-

tic processes in addition to experimental and measurement uncertainty. Our primary model-

ing proposition is that this joint distribution can be decomposed by means of a Markovian
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assumption associated with the intermediate stochastic processes:

pðy; xÞ ¼
R

yi2Yi
� � �
R

y12Y1
dyi � � � dy1 pðyjyiÞpðyijyi� 1Þ � � � pðy1jxÞ:

Although this description is applicable to linear chains, it can be extended to more complex

networks of correlated associations through calculation of the appropriate conditional proba-

bility distributions.

Bootstrapping the interaction regressions

Our goal is to reconstruct the relevant conditional distributions, p(yi|yi−1), from partial sets of

experimental data. To begin, we conceptualize the aforementioned random variables as nodes

of a network determined through examination of bulk molecular data, such as protein phos-

phorylation within a cell culture and hormone concentrations in blood plasma, or aggregate

data from individual organisms, such as the number of eggs spawned from individual fish. It is

often the case, though, that few paired measurements may be available for the nodes and, even

if many measurements were available, it would be noisy, due to biological noise or measure-

ment errors occurring during experiments [3, 8–10]. Assuming that there is an obvious aver-

age mathematical relationship between the nodes, a curve fit to the data would still provide

only an approximation of the data (Fig 1A).

We account for the noise in the data by bootstrapping the regressions. If we had a dataset of

paired experimental values {(xi,yi),i = 1,. . .,n}, for nodes X and Y, we can then fit the function f
(x,{c}) to this data, in which {c} is the set of coefficients necessary for f. This function would be

akin to the black sigmoid presented in Fig 1A. The algorithm determines the 95% confidence

intervals of the coefficients {c} by resampling the residuals with replacement [21]. The set of

residuals of this regression can then be calculated: {ri = yi−f(xi,{c})}. For each bootstrap, we

determine a new set of values fŷi ¼ f ðxi; fcgÞ þ rjg in which rj2{ri} is a randomly selected

value from the set of residuals. Essentially the bootstrapping assumes that the error presented

by the residuals is not specific to that particular point; there are n values of ŷi from which the

bootstrapping procedure can choose (Fig 1B, red dots). We can then fit the function f̂ ðx; fĉgÞ
to the set of paired values fðxi; ŷiÞ; i ¼ 1; . . . ; ng (Fig 1B, black curves). This is repeated m
times; in this work m = 999. For every coefficient c, the original and bootstrapped values are

sorted into ascending order, and the c(m+1)�0.025 and c(m+1)�0.975 values are taken as the esti-

mates of the lower and upper bounds of the 95% confidence interval for the coefficient.

Stochastic simulations using bootstrapped interactions

For each simulation of the model, our approach chooses values for the coefficients for each interac-

tion in the network by selecting it at random from the Gaussian distribution underlying the 95%

confidence intervals determined by the bootstrapping. Given an input activity, the algorithm prop-

agates the activity through the network based on the randomly parameterized interaction func-

tions. This is then repeated any number of times to obtain a sample distribution of activity levels

for every node for the given input. As such, the activity of a node from a single simulation would

be analogous to the fold increase in phosphorylation of a protein in response to an input within a

single cell while the distribution of activity levels of that node across many simulations would be

the fold increase in phosphorylation of the population of cells as measured by Western blotting.

Thresholds for the impact of an input on the system

A central question to analyzing the results of our simulations is at what activity levels does the

input have a significant impact on the output of the system? To address this point, we ran the
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models for 1000 replicates per activity level across a wide range of input activities. We then

sequentially compared each sample population of responses to each activity level to the

responses at the lowest and highest levels. The comparisons were executed using the Kolmogo-

rov-Smirnov test by obtaining the cumulative distribution functions (CDFs) of the responses

and finding the maximum difference (Dn,m) between the CDFs. The null hypothesis that the

response distributions are drawn from the same distribution is rejected at level α = 0.05 if

Dn;m > c að Þ
ffiffiffiffiffiffiffi
nþm
nm

p
; c að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

2
ln a

2

� �q

, where n and m are the sizes of the two distributions.

The first response distributions to reject the null hypothesis as the system moved away from

the lowest and highest input activities were taken to be the bounds of the threshold for input

activities that significantly impact the system’s response. Below the lower bounds the input has

little to no impact on activity when compared to basal while above the upper bounds the sys-

tem exhibits a response to the input that is significantly different than the basal.

Data collection

In this work we demonstrate the usage and analysis of our approach on a curated network of

AOPs related to reproduction in female fathead minnow. The AOP network was compiled from

four AOPs available in the AOPwiki (https://aopwiki.org/aops) that highlight the impact of

androgen receptor agonism, aromatase inhibition or reduction, or estrogen receptor antagonism

with decreasing population trajectories in fathead minnows: “Aromatase (Cyp19a1) reduction

leading to impaired fertility in adult female” (AOP:7), “Androgen receptor agonism leading to

reproductive dysfunction (in repeat-spawning fish)” (AOP:23), “Aromatase inhibition leading to

reproductive dysfunction” (AOP:25), and “Estrogen receptor antagonism leading to reproductive

dysfunction (AOP:30)”. The AOPs were combined by overlapping events common to two or

more pathways, resulting in a network with several feed-forward structures (Fig 2A). This net-

work was manually curated, first by removing indirect edges, such as the relationship between

androgen receptor agonism (AOPwiki event ID 25) to reduction in testosterone synthesis by

theca cells (AOPwiki event ID 274). Events that have similar biological implications, such as aro-

matase inhibition (AOPwiki event ID 36) and reduction in aromatase in ovarian granulosa cells

(AOPwiki event ID 408), were then merged into a single event. This resulted in the event pathway

presented in Fig 2B, with a cascade of reductions in activity in response to 3 molecular initiating

events, androgen receptor agonism, aromatase inhibition, and estrogen receptor antagonism,

leading to a reduction in cumulative fecundity and a decrease in population trajectory.

The events used to define these AOPs, however, are qualitative in nature. In order to simu-

late this pathway quantitatively, we related the network to a cascade of quantitative activities

and concentrations, changes in each of which directly impacts those downstream (Fig 2C).

We found previously published experimental data relating the impacts of various concentra-

tions of trenbolone α, trenbolone β, prochloraz, fenarimol, and fadrozole on androgen recep-

tor activity, aromatase activity, plasma 17β-estradiol and vitellogenin concentrations, and

average fecundity (described in S1 Table) [22–27]. We used this dose response data to popu-

late the relationships between several events in the AOP model (Fig 2C, highlighted nodes).

Fig 1. Example of the algorithm. (A) Consider an interaction between two nodes, X and Y, with measured values of Y in response to various

activities of X presented by the red dots. The sigmoidal curve in black then represents the average response of Y to increasing X. (B) The

algorithm assumes that the shape of the curve is correct, but that the assignment of the residuals is not. The red dots represent the potential

values of responses of Y to X, determined by adding each of the residuals to the average response obtained in panel A. For each bootstrap, the

algorithm selects one of these values for each value of X and fits another sigmoid. Analyzing the values of the coefficients for the sigmoids

across n = 1000 bootstraps provides the 95% confidence intervals for each coefficient. These confidence intervals are then used to

stochastically simulate the interaction between X and Y.

https://doi.org/10.1371/journal.pone.0226687.g001
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Results

Predicting reproductive impacts in fathead minnow model of reproduction

AOPs represent linear causal toxicological pathways leading to an adverse outcome of regula-

tory concern, are useful pathways in which to examine cascading effects across levels of biolog-

ical complexity and can be combined to create networks and more complex biological models.

We compiled a network of AOPs associated with fish reproduction from the AOPwiki, a data-

base of AOPs (https://aopwiki.org/aops) by overlapping events common to each AOP, produc-

ing the union of the sets of events (Fig 2A). Removing indirect interactions and combining

events with similar consequences provided a more transparent, hierarchical network of Key

Events (Fig 2B) (See Methods for details). The resulting network can be condensed into a

“chain” of 11 activities or concentrations, in which parent nodes in the hierarchy affect only

the daughter nodes (Fig 2C). We found data for androgen receptor (fold change), aromatase

activity (fold change), plasma 17β-estradiol concentration (μg/L), plasma vitellogenin concen-

tration (mg/mL), and average fecundity (eggs/female/day) in response to increasing doses of

trenbolone α, trenbolone β, prochloraz, fenarimol, and fadrozole. Each of these chemicals are

known to directly impact either androgen receptor or aromatase activity (Described in S1

Table). We used these data to form an abridged version of the pathway as highlighted in red in

Fig 2C.

Fig 2. Development of the adverse outcome pathway (AOP) network for female fathead minnow reproductive systems. (A) Diagram of the interactions of various

events in the compiled network of 4 AOPs. Blue nodes are molecular initiating events, black nodes are key events, and yellow are adverse outcomes. Numbers represent

the indices of the events in the AOPwiki. Information on each node is available at aopwiki.org/events/xxx, where xxx is the index in the node. (B) Diagram of the curated

AOP network presented in panel A with indirect interactions removed and events with the same functional consequences collapsed into a single node. (C) Diagram of

the quantitative model based on the curated AOP network presented in panel B. Highlighted in red are the nodes for which we have obtained data, with the dose/dose

response relationships indicated by red arrows.

https://doi.org/10.1371/journal.pone.0226687.g002
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We used the bootstrapping procedure, described in the Methods section, to obtain 95%

confidence intervals for the sigmoids:

y xð Þ ¼ ymax

x
K

� �h

1þ x
K

� �h ; or ½1�

y xð Þ ¼
ymax

1þ x
K

� �h ; ½2�

wherein x labels the quantifiable activity of the current node (e.g., flux, concentration), y labels

the predicted activity of an adjacent node, ymax is the maximum observed activity of the next

node, K is an “equilibrium constant” for the interaction, and h is a Hill-type exponent. We

determined which function to use with the value of Kendall’s rank correlation coefficient (tau)

for the data; a tau> 0 denotes a positive trend in the data, which we modeled using Eq 1,

while a tau� 0 denotes a negative or unchanging trend in the data, which we modeled using

Eq 2. The 95% confidence intervals for K and h for each interaction are presented in S2 Table.

In each model execution, parameter values for each sigmoidal interaction are chosen ran-

domly from a Gaussian distribution defined by the mean and standard deviation calculated

from the confidence intervals, with the effects of the input–androgen receptor activity in this

example–propagated through the chain. We calculated average fecundity from 1000 simula-

tions per androgen receptor activity level spanning 0- to 6-fold over the basal levels (Fig 3A).

While the model overpredicts the average fecundity at higher androgen receptor activities, the

general behavior of the system remains consistent with an overall decrease in fecundity given

an increasing androgen receptor activity.

Thresholds in the androgen receptor activity level mark the first statistically significant dif-

ference between fecundity distributions at either end of the data range and androgen receptor

activity levels elsewhere as determined via the Kolmorgov-Smirnov test (Fig 3A, See Methods

for details). At androgen receptor activities below the lower threshold (2.88-fold change) the

model predicts no appreciable effect on fecundity, whereas for activities above the higher

threshold (5.55-fold change), the model predicts a strong impact on fecundity. The region

between these thresholds in androgen receptor activity level reflects a state of weak yet statisti-

cally significant impact on fecundity. In principle, the size of the impact (i.e., no, weak, or

strong impact) depends on factors that drive fluctuations in the measurements of the Key

Events. To determine if either threshold is biologically relevant, we compared them to andro-

gen receptor activities associated with a no observable effect concentration (NOEC), a lowest

observable effect concentration (LOEC), and a point of departure (POD) determined for tren-

bolone β exposed female fathead minnows (Fig 3A, purple, green, and blue lines) [28]. The

NOEC rests firmly below the lower threshold wherein the model predicts no significant impact

on fecundity, whereas the LOEC and POD sit within a region predicting a moderate impact,

supporting the biological relevance of the model predictions.

Impacts of data sparseness, data accuracy, and model specification

One observation to make concerning the fitting of the probability density cloud presented in

Fig 3A is the over-prediction of the average fecundity by the model for androgen receptor

activities above basal (blue vs. red). Given that the model is directly using experimental data to

inform the interactions, one might assume that it would accurately predict the experimental

data each time. The over-predictions, however, reveal an inherent limitation in this method:

the data being inputted into the system must be sufficient to support the type of regression
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being fit to it. We re-ran the protocol given in the previous section, this time inputting only the

response-response data gathered from trenbolone α exposures to demonstrate this limitation in

extremis (Fig 3B). With a sparser dataset to draw from, the model further over-predicts the aver-

age fecundities. This approach, however, is useful in determining interactions for which different

regressions or additional data may be necessary to better understand the system being studied.

Recall that our approach bootstraps the regressions for multiple interactions, not merely

the output vs. input. To illustrate this, we plotted the probability density clouds for plasma

17β-estradiol, plasma vitellogenin, and average fecundity as a functions of the fold change in

androgen receptor activity using the full dataset from the previous section (Fig 4). The red

dots in each panel are the response-response data gathered from the trenbolone-α exposures.

Note the initial increase in estradiol concentrations measured in response to smaller increases

in androgen receptor activity compared to the reported basal concentration (Fig 4A, red). It is

likely the disparity between the basal estradiol concentration and the measurements at low

exposures are the root cause of the fecundity over-prediction, highlighting a potential source

of experimental noise. Higher predicted estradiol concentrations due to these two data points

shifting the regressions would propagate through the model, resulting in higher predictions

for vitellogenin concentration and average fecundity.

One way to improve predictive fidelity is to use source data in favor of summary statistics;

in this example we have used the reported averages from multiple experiments. Effects from

abnormally high or low data fluctuations should get washed away in the bootstrapped regres-

sions easier when using individual data points rather than the averages. This case study, how-

ever, reveals the potential power of this modeling approach in highlighting experimental

results that need increased resolution. By analyzing the model’s predictions against the experi-

mental data, future experiments could be planned to further increase the accuracy of individ-

ual response-response regressions.

Discussion

The veracity of our approach is illustrated using a case study spanning multiple scales of bio-

logical organization, from the molecular represented by receptor interactions, to the popula-

tion scale with average fecundity. In particular, the results of thousands of simulations across

increasing levels of input revealed thresholds of biological activity that partitioned each system

into three distinct regions of no impact, moderate impact, or high impact on an apical end-

point measurement, to fathead minnow fecundity (reproduction-related AOP).

A lack of high-quality data is a pressing problem for modeling biological processes with any

reasonable fidelity. In the AOP example, this “sparse data” problem is compounded not only

by few measured input/output Key Event relationships, but also by few replicates per condi-

tion. For example, whole animal toxicological studies may only report data from as few as 3

biological replicates [29]. Our method can adapt to datasets with fewer biological replicates by

increasing the number of iterations in the bootstrapping procedure (see Methods), but excels

when questions arise regarding the degree of organism level effects can be associated with any

Fig 3. The average fecundity in a group of female fathead minnows in response to increasing levels of androgen

receptor activity. The red circles are the average fecundities measured in response to trenbolone α exposures. The

shades of blue represent the log10 probability of an individual demonstrating a particular average fecundity in response

to the indicated androgen receptor activity. The blue probability density clouds were generated using all available

experimental data (A) or only data gathered from trenbolone β exposures (B). In (A), the orange vertical lines are the

lower and upper bounds of the threshold in which individuals may display a significant decrease in fecundity. The

purple, green, and blue vertical lines are the approximate values for the androgen receptor activity in response to the

measured No Observable Effect Concentration (NOEC), Lowest Observable Effect Concentration (LOEC), and Point

Of Departure (POD) values for trenbolone β [28].

https://doi.org/10.1371/journal.pone.0226687.g003
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of the individual Key Events in the AOP. In our given example, we use the average responses

of plasma 17β-estradiol, plasma vitellogenin, and average fecundity, which were readily avail-

able in the literature. We assumed that the average responses represented an underlying nor-

mal distribution within the bulk data and captured the bootstrapped 95% confidence intervals

for the fitted sigmoid parameters, which we then used to produce each individual run of the

model. The final step is ultimately unnecessary, and was used in this work to highlight the dis-

tribution of response-response curves. The bootstrapped curves could be used instead as indi-

vidual runs of the model, allowing the approach to capture the shape and modalities of any

distributions present in the bulk data.

We used the fold-change in androgen receptor functionalization as the input data. If these

inputs fall within the region we have associated with a moderate impact, then variation in the

measured apical endpoints will be much more uncertain, because lower input values that infre-

quently lead to higher impacts will be conflated with higher input values with effects that are

improbably screened out between levels of the hierarchy. More predictably, “lower” input val-

ues can be associated with a region of no predicted impact, whereas “higher” input values can

be associated with impacts. As a result, this framework can be particularly useful in hazard

screening and prioritization efforts by predicting the potential of chemicals to have an impact

on a physiological scale (here fecundity) using data easily obtained from in vitro assays (e.g.

estrogen receptor or androgen receptor activity) while accounting for biological variability

across multiple scales. Given that there are tens of thousands of chemicals with little or no

information on their potential environmental health effects, new modeling concepts such as

ours are likely to have a great utility.

A primary assumption of the quantitative AOP model developed here is that Key Event

molecules and proteins are organized into the same basic signaling system present within all

individuals of the same species, age group, and gender. Although the considered population of

fathead minnows is primarily composed of sexually mature females approximately 5–6 months

old, it is not representative of wild populations that exhibit more physiological and habitat

diversity. Thus, results from the AOP model are more limited and cannot directly inform

reproductive toxicology or risk assessments of wild populations, which is a primary need driv-

ing AOP research in the field.

The case studies presented here provide insight into how information encoded in molecular

fluctuations could propagate across a multiscale biological pathway. The network of Key

Events associated with the AOP links a molecular initiating event to a macroscopic individual

level outcome. In the AOP model, the output of one Key Event forms the input of the next, to

form a chain of conditional influence between response fluctuations from a Key Event at a

lower level of organization compound with those at a higher level. We might expect this system

to produce a type of stochastic resonance, whereby larger (smaller) fluctuations compound

and thus increase (decrease) the variance seen at higher levels of organization. However, the

fecundity predictions illustrated in Fig 3 are inconsistent with this expectation. Per Eqs [1]

and [2], interpolation of the dose-response data was carried out by curve-fitting to a sigmoid

function, which fundamentally exhibits three regimes of response: two in which the response

is constant for either “high” or “low” input values, and a power-law response that connects

them at intermediate input values. That the dependence of fecundity on aromatase inhibition

exhibits three clear regimes is a mathematical consequence of this compounding procedure:

Fig 4. Responses of each step in the reproductive AOP model with respect to increasing levels of androgen

receptor activity. Using all available data, probability density clouds for plasma 17β-estradiol concentration (A),

plasma vitellogenin concentration (B), and average fecundity (C) were produced for a range of androgen receptor

activities. The red dots are the measurements made in response to trenbolone α exposures.

https://doi.org/10.1371/journal.pone.0226687.g004
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function iteration between sigmoids can be viewed as a Möbius transformation of the complex

plane to yield another sigmoid—a fact that is independent of the number of function itera-

tions/compounding steps. It follows from the sigmoid form that the effects of exceptionally

large or small fluctuations in the input value will be quenched by virtue of falling within one of

the two saturating regimes. The sigmoid relationship is phenomenologically ubiquitous across

biology, possibly because it naturally arises from common occupancy driven processes such as

receptor-ligand binding (e.g., see Ref. [30]).

Finally, the case study demonstrates the applicability of the method across various scales.

The algorithm allows for the fast creation and simulation of models of biological systems based

on existing experimental data. As systems biology evolves and models become more complex,

development of these models will become more labor-intensive and more computationally

expensive to run and analyze using traditional stochastic algorithms. The method thus repre-

sents an efficient means to simulate these larger systems. Future work will include expansion

of the types of interactions (e.g. linear or non-monotonic relationships), the impact of multiple

upstream signals converging on a single biomarker, and testing the algorithm on more com-

plex multiscale systems.
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