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Bundles of stiff filaments are ubiquitous in the living world,
found both in the cytoskeleton and in the extracellular medium.
These bundles are typically held together by smaller cross-linking
molecules. We demonstrate, analytically, numerically, and exper-
imentally, that such bundles can be kinked, that is, have local-
ized regions of high curvature that are long-lived metastable
states. We propose three possible mechanisms of kink stabiliza-
tion: a difference in trapped length of the filament segments
between two cross-links, a dislocation where the endpoint of a
filament occurs within the bundle, and the braiding of the fil-
aments in the bundle. At a high concentration of cross-links,
the last two effects lead to the topologically protected kinked
states. Finally, we explore, numerically and analytically, the tran-
sition of the metastable kinked state to the stable straight
bundle.

semiflexible filaments | bundles | topological defects | elasticity

Semiflexible biopolymer filaments, that is, stiff filaments
whose thermal persistence length is comparable to their

length, form most of the structural elements within cells and
in the extracellular matrix surrounding them in tissues. Com-
mon intracellular examples include the F-actin and intermedi-
ate filaments forming the cytoskeleton, while the extracellular
matrix making up most tissues is composed of other stiff fil-
amentous structures, such as collagen and elastin fibers. The
three-dimensional (3D) structure of these fiber networks is typ-
ically fixed by a variety of specific cross-linking proteins. On a
smaller scale, these filaments often share a similar structural
motif—they form bundles of nearly aligned filaments, which are
often densely cross-linked along their contours.

While bundles might be regarded merely as new and thicker
(thus stiffer) filaments, this analysis is inadequate in detail. For
instance, bundle bending mechanics can dramatically differ from
those of a simple filament because, by having extra degrees of
freedom associated with sliding one constituent filament relative
to another within the bundle, the bundle acquires a length-
dependent effective bending modulus (1, 2). These internal
degrees of freedom also suggest that a nearly parallel group of
filaments, when quenched into a bundle by the addition of cross-
linking agents, may end up in one of many metastable states
in which cross-linking traps a defect, that is, a long-lived struc-
ture distinct from the elastic ground state of straight, parallel,
and densely cross-linked filaments. We focus on these defected,
metastable states and their effect on the low-energy configura-
tions of the bundle. Specifically, we show that there are three
types of defects, two of which correspond to topological defects
in the bundle’s unstressed state—braids and dislocations. These
and a third form of trapped length (loops) are all long-lived
structures due to cross-linking.

As a result of these structural defects within the bundle, the
elastic reference state is no longer straight, even though straight

filament configurations are individually the lowest-energy state
of the constituent filaments. Bundles containing these defects
can minimize their elastic energy by taking on localized bends,
which we call kinks. The presence of kinks allows one to relate
the micron-scale contour of kinked filament bundles to their
nanoscale structure, specifically, the presence of length-trapping
defects. We show that the combination of theory and simulation
of defected bundles can account for the distribution of kinks we
observe in experiment. Over long times, defects slowly anneal
in bundles. This slow relaxation of the bundle’s structure can
be understood in terms of the diffusion and interaction of the
defects on it. Specifically, defects leave the bundle either through
diffusion off the bundle’s ends or by the annihilation of defects
within it.

Not only do defected bundles explain the apparent kinks in
collagen fibers, but the presence of defects also has implications
for the collective elastic response of the bundle. In particular,
we show that kinks are more bending compliant than undefected
lengths of a bundle. As a result, we hypothesize that the collec-
tive mechanics of a network of defected bundles depends on the
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number and position of these quenched defects, which act like
soft hinges in a 3D network of bundles that behave more like
stiff beams.

Topological defects are well known in condensed matter,
including, for example, disclinations in nematic liquid crystals
and dislocations in crystalline solids (3–5). Defect motion plays
a dominant role in the plastic deformation of many solids. Dis-
locations and disclinations are topological defects; their removal
requires a system-sized reorganization of interatomic bonds. The
defects in filament bundles share this feature. They cannot be
removed without breaking a number of cross-links proportional
to the bundle length (we consider the filaments to always be
unbreakable). This feature ensures that the defects are long
lived on the scale of the thermal undulations of the bundles
themselves.

In our observations of collagen networks, we find kinked
bundles, whose contour we quantify by measuring their local
curvature using light microscopy. Due to their connection to
the network, we cannot be certain that these kinks are not in
some way related to elastic stress in the network. To address this
question, we used large-scale Brownian dynamics simulations to
study kinking in quenched filaments with force- and torque-free
boundary conditions, finding that quenched defects produce a
statistical distribution of kinks similar to those observed in the
experiment. Using the simulations, we are also able to mea-
sure the reduction of the bundle’s local bending modulus at the
location of the defects and observe the motion of the defects
along the bundle. Finally, we present theoretical calculations
using a simple model of semiflexible filaments that demonstrate
the relationship between defects and kinks in the bundle. More-
over, we analytically determine (and test via simulation) the
time evolution of the number of defects in a bundle as they
slowly anneal through defect–defect annihilation or by diffusion
off the ends.

We first report our observations from light microscopy of kinks
in collagen bundles and compare these kinks with those from
numerical simulations. We then present a general discussion of
the three types of defects and demonstrate that the minimum
energy state of the defected bundle can be kinked. We explore

defect dynamics, estimating the lifetime of a kink and the num-
ber of kinks in a bundle as a function of time, which we compare
to simulation. To properly describe interaction of braiding type
defects, we use the theory of the braid group; some relevant
background is provided in SI Appendix, section 3.

Results
Experiment. The nanoscale structure of collagen is quite com-
plex (6, 7). Small fibrils bind together to form larger fibrils,
which, in turn, bind together to form fibers, which we observe
in light microscopy. Given that these fibers associate rapidly and
strongly with local bonds, collagen fibers are a good place to
look for quenched defects in bundles and kinks, if such sharp
bends of the bundle indeed result from those defects (8). In
fact, kinked collagen bundles have been observed previously
(9–11) using electron microscopy. These observations leave the
possibility that the kinks observed in a single snapshot of a
dynamic, flexible structure may be consistent with thermal undu-
lations about a straight equilibrium state, rather than long-lived
sharp bends (12). To address this question, we made multiple
observations of collagen bundles in an aqueous environment
to determine whether the time-averaged state of the bundles
includes kinks.

We reconstituted pepsin-extracted type I bovine collagen and
fluorescently labeled and imaged individual bundles. In Fig. 1A,
we show 50 superimposed images of a single bundle (white on
a black background) taken 0.5 s apart and showing three per-
sistent kinks, which confirms that they are indeed long-lived
structures. Green lines indicate the measurement of a kink angle.
We measure the 2D projection onto the microscope’s focal plane
of the physical kink angle in three dimensions. We accept kink
observations only when at least about 3 microns of bundle is
observable on either side of the kink. In order for the image
of the bundle to extend away from the kink on both sides, our
reported kinks must lie in a plane making, at most, a small
angle with respect to the focal plane. As a result, the discrepancy
between our observed kink angle distribution and the physi-
cal one is quite small. We find less than 10% discrepancies
between the projected and 3D, physical angle distribution when

A

B
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Fig. 1. Measurements of collagen bundles using fluorescence microscopy (A–C) and simulations (D–F). (A) Fluorescence image of a collagen bundle with
noticeable kinks. Green traces show a measurement of the kink angle, given as angular deviation from straight. (B) Mean curvature (black) of a collagen
bundle over 50 images. Red lines show the spread of curvature in time (1 SD). Blue arrows mark the locations of high curvature. (C) Histogram of mean kink
angles for all measured bundles (n = 74). (D) A 2D simulation of bundles with reversible cross-linkers showing the bundle centerline (black dashed line),
individual filaments (blue and red), and braids (black dots). (E) Mean of the curvature over 100 configurations (black). Red lines indicate 1 SD. (F) Kink angles
from simulation for two-filament bundles in two dimensions and seven-filament bundles in three dimensions measured in the same way as in C.
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testing this procedure with simulated data—see SI Appendix,
section 1.

Seventy-four kink angle measurements from 43 bundles are
summarized in Fig. 1C. The trace of the local curvature versus arc
length along the bundle shown in Fig. 1B quantifies the points of
high persistent curvature as indicated by the blue arrows. These
local curvatures were computed by discretizing the contour using
the intensity pixels in each image and computing the curvature
from a cubic spline fit to these data. More details are given in
SI Appendix, section 1. Repeating this procedure for other bun-
dles, we observed kinks and determined their mean kink angles
by averaging again over up to 50 repeated measurements of each
kink angle. They showed temporal fluctuations with a nonzero
mean. We present the distribution of kink angles for 74 kinks in
Fig. 1C. There were larger variations between kink angles mea-
sured across multiple bundles than in the thermal fluctuations of
a given kinked bundle. The distribution of these time-averaged
kink angles has a mean at 26◦ and includes a range of typical
angles between 7◦ and 55◦. We observed one high-angle kink
with a bend of 74◦.

Many of the experimentally observed kinks appeared to be
flexible. As a typical example, the kink angle of the bundle shown
in SI Appendix , Fig. S1 had a mean of 29◦, but fluctuated between
21◦ and 38◦. Because the bundle’s ends were constrained by the
network, we cannot use these thermal fluctuations of the kink
angle as a true measure of the kink’s bending compliance.

Numerical Simulation. To better explore the nanoscale structure
of the cross-section of the kinked bundles and to study the sys-
tem with simpler, free boundary conditions, we turn to Brownian
dynamics, finite-element simulations.

Our numerical model describes the semiflexible filaments as
elastic objects via geometrically exact beam theory, and includes
viscous dissipation (local drag), thermal forces, and the random
binding and unbinding of cross-links (13–15). Bound cross-links
are treated as short elastic beams making locally normal con-
nections to the filaments to which they are bound. As a result,
they act like so-called bundling cross-linkers that elastically con-
strain the angle between the bound filaments. Such linkers are
well known in F-actin networks (16–18). The details of colla-
gen intrabundle cross-linking are more poorly understood. In
the absence of detailed models for these cross-linkers, we chose
this simple linker model to promote bundling. Initially, all fil-
aments were straight and parallel without any cross-links. To
form bundles, a fixed concentration of cross-linkers was added
to the finite-temperature (stochastic) simulation. The interaction
of the thermally undulating filaments with transient cross-linkers
leads to rapid bundle self-assembly (see SI Appendix, Fig. S4)
with a number of quenched defects. Further details of the model
and the setup of the computational experiments are provided in
Materials and Methods and SI Appendix, section 2.

Observation and characterization of defects. A seven-filament
bundle is shown in Fig. 2A from a simulation in three dimensions.
Its contour deviates quite drastically from the trivial equilib-
rium shape of straight and parallel filaments, which are regularly
cross-linked along their entire length. These metastable configu-
rations of the bundle with localized bends—kinks—persist over
long times as compared to the typical time scale of the angu-
lar fluctuations of the mean local tangent of the bundle. Over
still longer times, the locations of the kinks move along the
bundle, as described below. A movie of the bundle dynamics
showing the shorter time scale bundle undulations can be found
in Movie S1.

We observe two distinct classes of defects in the quenched
bundles, which are all related to a mismatch between amount of
filament arc length taken up per fixed unit length of the bundle.
These are 1) braids, that is, rearrangements of filaments within
the bundle, and 2) loops where one filament stores excess length
by looping out of the bundle and then reattaching to it. Both
braids (actually pseudo-braids, as described below) and loops are
shown in Fig. 2B from a 2D simulation of two filaments where the
filaments are allowed to cross each other but cannot untwist. This
special setup is motivated by the fact that it is the smallest system
capable of supporting a loop or a pseudo-braid. The pseudo-
braid is a projection of a braid onto two dimensions and is the
mechanical analog of a true braid in three dimensions. As will
be shown in Kinking Theory, the energetics of the two-filament
pseudo-braid is equivalent to that of a true 3D braid of three fil-
aments when the two filaments making up the pseudo-braid have
different bending moduli. The simplest system that supports true
braiding defects is a three-filament bundle in three dimensions,
shown in Fig. 2C. Fig. 2 A, Inset shows the typical structure of a
loop in a larger bundle. There is also a third type of defect, 3)
a dislocation in which a filament end appears within the bundle.
This defect was not created in our simulations, due to the fact
that we started the system with equal length filaments whose ends
were initially aligned at one end of the simulation box. In the sim-
ulations, we concentrate on braids and loops. Defects observed
in the 3D simulations were found to trap torsional as well as
bending energy. The torsional torques measured in simulation
were smaller than the bending torques that lead to kinking. We
revisit this point in the discussion of our analytical model in The
model. In the following sections, we first analyze the curvature
of the bundle centerline as well as the kink angles resulting from
braid and loop defects, and then investigate the dynamics of the
defects, that is, how they move along the bundle and potentially
interact with each other.
Curvature and kink angles of defected bundles. Fig. 1D shows a
typical configuration of the minimal bundle setup with two fila-
ments (blue and red) in two dimensions. The bundle centerline
(black dashed line) is computed as the average of the two fil-
ament centerlines, and braids (black dots) are detected by the

Fig. 2. Typical bundle shape and defects observed in numerical simulations of the bundle formation process, starting from initially straight and parallel
filaments without any initial cross-links. (A) Example images show the entire bundle consisting of seven filaments (green) in three dimensions and approx-
imately 1,600 cross-links (pink). (Inset) A magnified part. (B) Braids and loops observed in simulations with a minimal setup of two filaments (green) and
transient cross-links (pink) in two dimensions. (C) Schematic of a braid (Left) and a loop (Right) as described in our analytical model.
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crossings of the filament centerlines. A movie of the bundle’s
dynamics can be found in Movie S2. The curvature of the bun-
dle’s centerline as a function of centerline arc length is plotted
in Fig. 1E, showing both the mean (black) and the standard
deviation range (red lines) of the curvature computed from 100
simulation snapshots with a time interval of 1 s. Close to the
midpoint of the bundle in the range of arc lengths 10 µm< s <
12 µm, we observe two peaks in the curvature that are clearly
visible as a double kink in the bundle configuration shown in
Fig. 1D. These can be explained by the braid and loop defects
there. The standard deviation of the curvature is increased by
about one order of magnitude in this defected region, indicat-
ing a local increase in angular fluctuations at this point. This is
a direct measure for the decreased effective bending modulus of
the bundle in these defected, non–cross-linked regions. Using the
relation between the thermal fluctuations of the local curvature
and the bending modulus, we estimate a decrease in the effective
bending modulus of about two orders of magnitude. Apart from
the locally decreased bending modulus, such a defect most likely
also leads to an anisotropy in the bundle’s bending mechanics,
which breaks another basic assumption of the ideal bundle as a
single, thick filament. Similar features in the curvature data are
observable for the second braid of this bundle at approximately
s = 6 µm of this bundle. More examples are found in the other
simulation runs. Additional results showing the curvature along
the bundle at different time points are provided in SI Appendix,
Fig. S5.

The histogram of measured kink angles over a total of 12 simu-
lations is shown in Fig. 1F. Here, we applied the same procedure
for the angle measurements as described for the experimentally
obtained microscopy images in SI Appendix, section 1. The 3D
simulation results were rotated such that the bundle centerline
tangents left and right of the kink lie approximately within the
image plane. The distribution of 72 kink angles for the two-
filament bundle has a mean of 27◦, with a standard deviation of
14◦ and values ranging from 4◦ to 77◦. The kink angle distribu-
tion for larger bundles with seven filaments in three dimensions
demonstrates a trend toward smaller angles and a more narrow
distribution with 20±8◦ (mean ± standard deviation). Big bun-
dles with up to 225 filaments will be investigated in more detail
below.

Dynamics and interactions of defects. We now use our simula-
tions to study dynamics on longer time scales, where we expect to
see the motion of defects along the bundle and their annealing
as the metastable, defected bundle slowly relaxes. To facilitate
these observations, we need to speed up the motion of the
defects by doubling the linker unbinding rate in our simulations
to koff = 6 s−1. At this rate, the motion of defects is still much
slower than the undulatory fluctuations of the bundle, but now
defect motion is moved into a time scale accessible by simulation,
which covers 1,000 s.

Fig. 3 shows an example of how the (defected) configuration
of a two-filament bundle evolves over time. We plot the posi-
tion (measured by arc length) of braids (red dots) and cross-links
(blue dots) along the bundle horizontally, with time increas-
ing vertically. The resulting red tracks record the world lines of
the braids over a simulated period of 500 s. The white vertical
scars show cross-linker gaps in the otherwise densely cross-linked
bundle. Due to a small offset between the filaments, there is a
nearly persistent gap in cross-linking at the left end of the bun-
dle where one filament stops. Cross-linkers appear in this gap
because one filament slid far enough past the other to wrap
around and briefly cross-link to the other one due to the peri-
odic boundary conditions of the simulation box. We observe a
pair of braids located near the bundle midpoint first emerge after
∼ 20 s during the initial quench of the bundle. This time scale for
the formation of the quenched bundle is typical and consistent
with observation of the initial growth of the number of doubly
bound cross-linkers; that number rapidly increases from zero at
the beginning of a simulation and plateaus around 20 s, indicat-
ing the maturation of the defected bundle—see SI Appendix, Fig.
S4 for further details on bundle self-assembly. Once the bun-
dle has formed, the two braids in the middle approach each
other and appear to annihilate, leaving a low cross-linker den-
sity region within the bundle during the time period of 100 s<
t < 270 s. After that time, a new pair of braid defects form.
These slowly separate as more and more cross-links are formed
between them.

The single braid close to the bundle’s right end diffuses until
it approaches the far right end of the bundle at s ≈ 19 µm
and at time t ≈ 280 s. Here it vanishes by diffusing off the
open end. The filaments simply uncross, and new cross-links are

Fig. 3. Dynamics and interactions of defects observed in 2D numerical simulation. The position of braids (red dots) and cross-links (blue dots) along the
(first, i.e., blue) filament is tracked over time. Insets (green frames) show the corresponding configuration of the two filaments (blue and red lines) and the
braids (black dots) in the bundle at three different time points. See Movie S2 for an animation.

4 of 10 | PNAS
https://doi.org/10.1073/pnas.2024362118

Slepukhin et al.
Topological defects produce kinks in biopolymer filament bundles

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2024362118/video-2
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2024362118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2024362118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2024362118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2024362118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2024362118/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2024362118/video-2
https://doi.org/10.1073/pnas.2024362118


PH
YS

IC
S

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

established between the unbraided filaments. Looking more
carefully, one may observe a similar phenomenon on the left
edge of the bundle. Immediately after the quench, there are actu-
ally four braids on the bundle, as indicated by the picture of the
system at time slice t = 34 s. Almost immediately after this time
and long before the next bundle configuration image at t = 200 s,
that leftmost braid diffuses off the left end of the bundle. The
final state of the bundle at t = 500 s shows a bent configuration
where the localized bend near the center of the bundle is due to
the two interacting braids that remain in the system. For these
parameter values, the typical lifetime of a defect is hundreds
of seconds.
Big bundles. Motivated by the fact that the number of fila-
ments in a biopolymer bundle is likely to vary from O(1) to
O(103), we explored simulations of very big bundles in three
dimensions. Fig. 4A shows a self-assembled bundle with 225 fila-
ments (white) and approximately 16,000 cross-links (pink). To
rule out the influence of the initial arrangement of filaments
in plane perpendicular to the bundle’s mean tangent, we ran
simulations with filament end points placed on a square grid
in addition to the hexagonal grid. We observed no significant
differences.

The large bundle’s structure is hierarchical; one can iden-
tify more-tightly bound subbundles that form loops and braids
with each other along the bundle’s length. As observed already
in 25-filament bundles, its centerline remains rather straight,
while the subbundles show the characteristic kinks observed in
the smaller bundles. One possible explanation for the rather
straight form of the big bundles is their smaller aspect ratio
as compared to the small bundles; in other words, very large
bundles may well show kinks over longer distances, since such
kinks require higher energy and are thus statistically less prob-
able or more sparsely distributed defects. Simulations of big
bundles with the same aspect ratio as the smaller ones remain
computationally prohibitive. We observe, in the large bundle,
a large hole created by a subbundle loop defect. Its appear-
ance is strikingly similar to our experimental images of col-
lagen bundles in Fig. 4B. Those parts of the images showing
the hole defect are magnified and compared side by side in
Fig. 4, Insets.

Fig. 4. Hole defect observed in simulation and experiment. (A) A 3D simu-
lation of a big bundle with 225 filaments (white) and approximately 16,000
cross-links (pink). (B) Fluorescent confocal laser scanning image of a collagen
bundle. Those parts of both images showing the hole defect are magnified
and compared side by side in Insets.

Kinking Theory.
The model. We now examine the energetics of kink formation
using a simple model consisting of a bundle of n inextensible,
semiflexible filaments connected by cross-links. The filaments’
elasticity is controlled by a single bending modulus κ. The fil-
aments are arranged so that their mean tangent directions are
parallel along the x̂ axis. In a cross-section normal to this direc-
tion (the yz plane), the filaments’ centers lie on a triangular
lattice with a lattice constant equal to the size of the cross-
linkers. The cross-linkers are assumed to locally constrain both
the distance between the cross-linked filaments and their cross-
ing angle, so that the cross-links are normal to the filaments
to which they bind. We further assume that the cross-linking is
reversible; that is, they bind and unbind from the filament bun-
dle so that the cross-linker density within the bundle remains
in chemical equilibrium with a solution of free cross-linkers at
a fixed chemical potential. Previous work has shown that ther-
mal undulations of the filaments induce Casimir forces between
cross-links (19, 20) and cause the transition between states of free
filaments and a densely cross-linked bundle to be a discontinuous
or first-order phase transition rather than a smooth crossover.
Here we work at chemical potentials above this transition so
that we may assume dense cross-linker coverage; hereafter,
we neglect Casimir interactions and other fluctuation-induced
effects.

If all the bundle’s filaments have the same length, the energetic
ground state is a straight bundle with as many cross-links as pos-
sible. However, if at least one of the filament’s length differs from
those of others, the straight bundle configuration will necessarily
have a defect where a filament’s end occurs within the bundle.
That dislocation defect may, in fact, be unstable toward form-
ing a kink in the bundle’s interior, leading to a kink in the elastic
ground state of the system (we explore this point in Dislocations).

When we consider metastable states, there are many more
options. If removing a defect in the structure of cross-linked
straight filaments requires uncoupling a large number of cross-
links, the lifetime of that defect may exceed the time of the
experiment. We divide such defects into two groups: defects due
to the deviation of the filament from its straight state (loop) and
the effects due to the permutations of the filaments (braiding).
We study the simplest cases of these effects in Loops and Braids,
respectively.

In all these cases, the energy of the bundle can be written as
the sum of two terms: the bending energies of the n constituent
filaments and the energy of their chemical interactions with the
cross-links,

E =

n∑
i=1

∫
ds
{κi

2

(
∂s t̂i

)2 +µ
}

, [1]

where t̂i is unit tangent vector of filament i . The integral is taken
over the piece of the filament ` without cross-links, which gener-
ates the term µ` equal to the work of unbinding the cross-links in
this piece, where µ is a linker binding energy per unit length. Eq.
1 implicitly assumes a linear elastic response of the material to
bending deformation in that the bending torque is proportional
to the bending angle. The parameterization of local curvature,
however, is exact, even for large bending. In essence, we use the
usual assumption (21) that, due to the thinness of the filaments,
there are no large strains within the filament cross-section even
at large curvatures, so constitutive bending nonlinearities may be
neglected even for highly deformed filaments.

Since we assume that the cross-links completely fix both angle
and positions of the filaments, the piece of the filament with
cross-links is straight and parallel to the whole bundle. We now
minimize the bundle’s energy subject to boundary conditions
that enforce the presence of one or more defects. If a kinked
configuration minimizes this energy, we conclude that elasticity
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theory predicts a kink. This calculation will also determine the
optimal size (length) and bending angle of the kink, which we
report below. All such calculations assume that the defects do
not trap filament torsion. We note, from simulation, that typ-
ical defects include some torsional deformations. As a result,
our calculations represent the minimum energy configurations of
each defect. We anticipate there to be a continuous spectrum of
excited defect states associated with increasing torsional energy.
We now perform this minimization for the three different types
of defects.
Loops. We start with the simplest case of a two-filament bun-
dle, forming a loop defect by demanding that the filaments have
disparate lengths L1 6=L2 between consecutive cross-links. What
results is the bending of the whole bundle to form a kink (Fig.
2B). This approach generalizes to n-filament bundles, and can be
adapted to large bundles in which two subbundles form a loop.
To simplify this calculation, we take the size of the cross-links
and the filaments’ diameter (whose sum is a) to be zero. In case
of loops, the excess trapped length in the defect is not principally
controlled by that length, so, in this case, the a = 0 limit both
is reasonable and simplifies the calculation. Then the boundary
conditions for the position of the ends of the filament are integral
conditions on the tangent vector,∫ L1/2

−L1/2

dst̂1(s) =

∫ L2/2

−L2/2

dst̂2(s), [2]

and boundary conditions for the tangent vector determine the
kink angle φ, which is the total bend of the tangent across the
structure. We pick a reference frame so that these boundary
conditions are symmetric,

t̂1(±L1) = t̂2(±L2) =

(
cos(φ/2)
sin(φ/2)

)
. [3]

Minimizing the energy from Eq. 1 in the limit of small filament
bending (t̂y� 1), we obtain a lengthy self-consistent equation for
the angle φ (see SI Appendix, section 3), which can be simplified
in the case of the equal bending moduli κ1 =κ2 =κ to

φ= γ

(
∆L

√
µ

κ

)
1/3, [4]

with the numerical constant γ≈ 0.93, and ∆L=L2−L1 6= 0. We
verified these results by minimizing the energy numerically (Fig.
6A). Loops produce a continuous spectrum of kink angles that
grow as the cube root of their length mismatch. As expected, an
increase in the bending modulus suppresses this kink angle, while
an increase in the linker binding energy increases it by shrinking
the extent of the gap in the cross-linking. We now turn to braids.
Braids. The simplest model of braiding in three dimensions
requires three filaments. Braiding of two filaments in three
dimensions can be undone by twisting the bundle about its long
axis; it is not topologically protected (the relationship between
braiding and rotation is discussed in more detail in SI Appendix,
section 3). The minimum energy configuration of three cross-
linked filaments with the same length will be a right prism with
an equilateral triangle as its base. We choose a coordinate system
so that the x axis lies parallel to the filaments, filaments 2 and 3
are in the xz plane, and filament 1 is above that plane. To intro-
duce a braid, we require filament 1 to go from above to below
the xz plane (Fig. 2C). This configuration is metastable, since we
need to decouple all the cross-links on one side to get to the min-
imal energy configuration. There is no rotation of an end of the
bundle that will eliminate the braid.

Since the cross-links fix both relative angle and position of the
filaments, filament 1 cannot be connected to filaments 2 and 3

by the cross-links in the defect core; however, filaments 2 and
3 can remain cross-linked. Thus, filaments 2 and 3 behave as
one combined filament 2′ with double the bending stiffness, and
remain in the xy plane like filament 1. As a result, a true three-
filament braid in three dimensions is energetically equivalent to
a two-filament pseudo-braid, as introduced in our simulations.

The boundary conditions on the vector t̂ are the same as in the
previous case, Eq. 3, but the displacement boundary condition
differs, incorporating the finite filament radius and cross-linker
length a , which is necessary for the braid to trap excess length.
We find∫ L1/2

−L1/2

dst̂1(s) =

∫ L2/2

−L2/2

dst̂2(s) + 2a cos (φ/2)ŷ . [5]

Unlike in looping, we do not fix the filament length mis-
match ∆L=L2−L1, but instead allow it to vary to relax the
braid’s energy. It is conceivable that one may encounter higher-
energy braids in which braiding and an excess of trapped length
(looping) coexist. We do not study this case here.

We observe that braids should generate local bending, at least
in the limit of a sufficiently soft bending modulus. The bind-
ing free energy (chemical potential difference between free and
bound linkers) acts as an effective tension on the bundle. Setting
the bending modulus to zero and fixing the length of the braided
region, the solution for the filament contours inside the braid
will be straight lines. In this configuration, linker-induced tension
generates a torque that increases the kink angle of kinked con-
figurations (Fig. 5A). To stabilize this angle at a finite value, we
must include finite bending compliance. We do so now, turning
to the full calculation.

Calculating the energy of the braid as a function of the kink
angle φ, we find that kinking is controlled by the dimensionless
parameter

ζi =
µa2

κi
, [6]

where µ is the cross-linker binding energy per unit length, κi

is the bending modulus of filaments of type i , and the length
a is the normal distance between the centerlines of a pair of

Fig. 5. (A) Braid in the limit of zero bending. Forces F1, F2, F3, F4 (black
arrows) have equal magnitude, but F2 and F4 create a larger torque (rel-
ative to the middle of the corresponding cross-link; black dots). This torque
leads to the rotation of the left piece of the bundle counterclockwise and
of the right piece clockwise, that is, it increases the angle of the kink. (B)
Dislocation in the limit of zero bending. The least-energy configuration is
a straight bundle, with one filament rearranging at the right angle when
filament 4 (chartreuse) stops, immediately taking its place. However, if we
increase the bending to nonzero, this segment under the right angle tries
to straighten, producing repulsive forces (black arrows). These forces create
an uncompensated torque at the left and right parts of the bundle, leading
to a kink.
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bound filaments. This length can be interpreted to be the sum
of the radii of the filaments and the length of the cross-linking
molecule. ζ is the ratio of the linker binding energy per unit
length µ to an energy per length set by bending on the scale of
the interfilament separation, κ/a2. In general, we expect larger ζ
values to lead to kinking. Below, we verify this intuition. Larger
values of the linker binding energy and interfilament separation
increase filament bending in the defected region. This bending,
which is opposed by κ, provides the torques necessary to produce
the kinks. The nonphysical limit of zero interfilament distance
(a→ 0) implies that braids involve no filament bending and thus
generate no bending moments necessary for kinking.

We prove, in SI Appendix, section 3, that, for small values of ζi ,
the energy is minimized at φ= 0; that is, there are no kinks. For
large values of ζi , the minimum energy states are kinked (φ> 0).
We examine this transition in more detail for the case κ1 =κ2.
We assume symmetric bending, α1(s) =−α2(−s), noting that
numerical solutions of the minimization show that the symmetric
solution based on this ansatz indeed identifies the global energy
minimum. We obtain (see SI Appendix, section 3)

λ2 sin2 (φ/2)=
8κ2

a4
(ζ − 2), [7]

where we introduced a Lagrange multiplier λ to enforce the ŷ
component of Eq. 5, which plays the role of the tensile force in ŷ
direction. When ζ increases to two, there is a second-order tran-
sition at which the kink angle grows continuously from zero as
ζ increases. Near the critical point ζ = 2 + ε, φ≈

√
ε. Numerical

minimization of the energy from Eq. 1 leads to the same result
(Fig. 6B). In that figure, we also see (red dots) that, when the
two filaments have differing bending moduli, there is a first-order
kinking transition where the kink’s angle jumps discontinuously
from zero at the critical value of ζ.
Dislocations. The simplest dislocation requires a bundle of four
filaments in three dimensions where one of the four ends within
the bundle. The stable state of four filaments is a right prism
formed by a base of two equilateral triangles sharing one edge,
as shown in Fig. 5B. We label these triangles as 1-2-4 and 2-
4-3; only filaments 1 and 3 are not cross-linked to each other.
If either filament 1 or 3 ends within the bundle, the config-
uration remains stable because the other three form a stable
three-filament prism. But, if another filament ends, for example,
filament 4, the remaining filaments must deform to recreate a
cross-section with an equilateral triangle (Fig. 5B). Due to cross-
linker constraints, the distortion associated with the defect must
locally remove cross-linkers between two of the filaments. With-
out loss of generality, we demand that filaments 2 and 3 remain
cross-linked. Calculating the energy associated with this defect is
complicated by the fact that there is no mapping to a 2D version
of the distortion. To gain immediate insight, it is helpful to con-
sider, momentarily, the unphysical case of zero filament bending
modulus. Then filaments 2 and 3 remain straight, but filament
1 makes two right-angle bends at the defect to move to the loca-
tion of the missing filament 4 and thereby maximize cross-linking.
If we now reintroduce a finite bending modulus, this localized
dislocation will spread out along the bundle to decrease bend-
ing energy at the expense of reducing the maximal cross-linking
shown in Fig. 5B. A force pair is also introduced by filament 1’s
bending (shown in the figure as black arrows) which produces a
torque causing the entire bundle to kink. We perform numeri-
cal minimization of the energy assuming that filaments 2 and 3,
being cross-linked everywhere, form a ribbon that can bend in
the direction perpendicular to its plane with bending modulus
κribbon = 2κ, but is absolutely rigid in the direction parallel to
its plane. The results of our qualitative analysis above are con-
sistent with the quantitative energy minimization (Fig. 6C)—the
maximum of the kink angle is observed to be at a finite value of

Fig. 6. Kink angle φ as a function of a dimensionless parameter for (A)
loops, (B) braids, and (C) dislocations showing both numerical solutions to
the energy minimization (circles), and the analytic predication (solid line).
We show two cases, κ1 =κ2 (blue) and κ1 = 2κ2 (red). (A) Numerical results
agree with the small angle theoretical prediction even up to φ≈π/2. (B)
For the symmetric case κ1 =κ2, the angle φ produced by the braid grows
as
√
ζ− ζ∗ with ζ∗ = 2. The coefficient of proportionality for the analytical

curve was chosen to best fit the data. For the asymmetric case, there is a
discontinuous (first order) jump in φ at ζ∗≈ 12.25. (C) For dislocations, the
angle reaches a maximum at a finite value of ζ and goes to zero at ζ= 0
and ζ=∞.

ζ. Zero and infinite values of that parameter lead to a zero kink
angle.

Defect Dynamics. Over times significantly longer than those asso-
ciated with the undulations of the bundle, defects can move
along the bundle and interact. These dynamics require multiple
cross-linker binding/unbinding events. As a result of these events,
defects move diffusively and may eventually fall off the ends of
the bundle. In the case of dislocations and braids, defects may
combine or annihilate. For the latter type, these interactions are
controlled by the structure of the braid group.

Consider two braids—a braid/antibraid pair—separated by N
cross-links. Since these defects would annihilate if the interven-
ing cross-links were removed, we may expect this pair might
vanish if their separation becomes sufficiently small. The braids
are motile, with a diffusion constant set by the linker detachment
rate koff , and do not strongly interact when separated by lengths
greater than the defect core size. The probability density p(n, t)
of there being n cross-links separating the two defects at t then
obeys a diffusion equation,

∂p(n, t)

∂t
= 2koff

∂2p(n, t)

∂n2
. [8]

Using a well-known result for the first mean passage time (22),
the mean lifetime of this braid/antibraid pair is
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T =
3 N 2

koff
. [9]

For the simulations presented in Fig. 3, we have koff = 6 s−1, N ≈
15 to 35. Then Eq. 9 predicts T ≈ 100 to 500 s, while, in Fig. 3,
we obtain T ≈ 200 s, within the predicted range.

For a three-filament bundle, the dynamics of N braids is equiv-
alent to the diffusion of N particles (braids) of three types, which
are randomly distributed after a quench. The braid group (see SI
Appendix, section 3) requires that a particle of one type can anni-
hilate only with particles of one other type. If particles encounter
each other and cannot annihilate, we assume they stick, since,
by merging their defected regions, the net number of cross-
linkers on the bundle increases. Using these dynamical rules,
we studied the annealing of braided bundles using Monte Carlo
simulations—results are shown in SI Appendix, section 3.

Simple combinatorics shows that annihilation events are less
common than braid combination (sticking), since the former
requires braid/antibraid adjacency. Since the number of different
braid group operators grows linearly with the number of fila-
ments in the bundle, the probability for braid/antibraid adjacency
decreases with increasing braid size. When considering large
bundles, we can neglect annihilation. Doing so and using a mean-
field approximation, we let ρ(x , t) be the braid density, implying
that the average distance between neighboring braids is 1/ρ. The
time to halve the number of braids will then be t1/2∝ 1/ρ2koff

according to Eq. 9. The same logic implies that the continuous
rate of decrease of the braid density will obey

dρ

dt
=−αρ3, [10]

where α is a phenomenological parameter accounting for the
probability of braids combining upon close approach. Solving
Eq. 10, we find ρ∝ t−1/2, which is a general result for sticky
(or annihilating) random walkers (23). The predictions of this
mean-field model are consistent with our Monte Carlo simula-
tions and with the Brownian dynamics simulations of the full
bundle model—see SI Appendix, Fig. S6.

We briefly mention the dynamics of loop and dislocation
defects. Complete annihilation of loop defects is highly unlikely,
as it would require the amount of trapped length in the two loops
to match. We expect loop defects to diffuse along the bundle
and, in larger bundles, to pass through each other. Dislocations
should also diffuse by a type of repetitive motion (as in poly-
mer melts) in which the filament end detaches within the bundle,
forms a loop, and reattaches. Thus, dislocations in an otherwise
ordered bundle should retract toward the bundle edge with more
filaments in it. After loops are formed, the dislocation should
perform a biased random walk, due to the fact that the energy of
loop defects will suppress further retractions of the dislocation
core toward the bundle’s end.

Discussion
Biopolymer filament bundles are kinked despite the fact that
the elastic ground state of their constituent filaments is straight,
as clearly seen in our experiments on collagen bundles. In this
article, we quantified these kinks and proposed that their exis-
tence can be attributed to defects quenched into the bundles
during cross-linking. These defects come in three classes: loops,
braids, and dislocations. This proposal is supported both by
analytic calculations of the energy-minimizing contour of bun-
dles containing these defects and by finite-element Brownian
dynamics simulations of the quenched bundles of 2 to 200 fil-
aments. The mechanical connection between these defects and
kinks (high-curvature regions) of the bundle is straightforward—
defects generate a local distortion of the filaments driven by
cross-linking. The entire bundle may bend, producing a kink in

order to compensate for that distortion. This mechanism is rem-
iniscent of the relaxation of a flexible hexatic membrane in the
vicinity of a disclination (24). There, a topological defect relaxes
local strain via a puckering of the membrane that produces long-
ranged Gaussian curvature. Here the distortion of the bundle
may be entirely localized in a sharp bend.

In our experiments, we found that 4% of the observed collagen
bundles had one or more kinks and that these kink angles had
a mean of 26◦, but were quite varied, ranging up to 74◦ in the
sample of 74 kinks studied. When we consider that loop defects
can produce a continuous distribution of kink angles, it seems
natural to suppose that this defect is the predominant cause of
kinking. The number of observed kinks is likely an underesti-
mate of the real system, due to the limitations of our imaging that
shows only those bundles lying in the imaging plane. Only kinks
oriented so that the bundle bends within the imaging plane are
observable.

The kinks associated with both braids and dislocations are
expected to be narrowly distributed at angles set by the number
of filaments in the bundle, since these defects produce fixed kink
angles that depend only on that number, the cross-linker binding
energy, and bending moduli of the filaments. For a fixed number
of filaments, both dislocations and braids produce kink angles
that depend on only a single dimensionless number ζ =µa2/κ.
In the case of braids, the kink angle grows from zero at a crit-
ical value of ζ, which depends on the number of filaments but
is roughly of order unity. Looking at stiff F-actin cross-linkers
like α-actinin, we find that ζ ≈ 0.1; it is too small for braids to
generate kinks. We do, however, expect braids to be associated
with kinks in softer filament systems such as DNA condensed by
polyvalent counter ions (25, 26) or cross-linked intermediate fila-
ments (27, 28) where ζ ≈ 10 to 100. Currently, our understanding
of collagen bundle cross-linking is less precise; our estimate in
this system is that ζ ≈ 0.1 (see SI Appendix, section 1). This sug-
gests that loops certainly should produce kinks and that braids
should not. However, given the large uncertainty in our estimate
of ζ, it is conceivable that braids are also kink-generating defects.
Of course, even if braids do not produce kinks, we expect them
to be present and to produce high-flexibility “hinges” in the bun-
dle. Dislocations always generate kinks, but the kink angle is
appreciable only when ζ ≈ 1. We surmise (with the same caveats
regarding the uncertainty of ζ) that dislocations are unlikely to be
responsible for the experimentally observed kinks in the collagen
bundles.

Another argument for loop-controlled defects in collagen is a
presence of z-shaped double kinks (see SI Appendix, Fig. S7 for
the examples), which can be attributed to slippage between two
filaments in a bundle such that they produce a pair of loops. The
lengths stored in this pair are such that, after the two loops, the
filaments once again have no length mismatch.

The lifetime of these defects appears to be significantly larger
than the characteristic time of thermal undulations of the fila-
ments and longer than the typical observation time in experi-
ment. This is supported by the experimental data, where kink
annihilation or diffusion to the ends is never observed. When
we study kink dynamics via simulation on the time scales signifi-
cantly longer than those covered by experiment, we observe their
diffusion, sticking, and annihilation, which one expects from the
theory. Specifically for braids, we find that their motion is consis-
tent with particles diffusing in one dimension, with interactions
obeying the rules of the braid group. We speculate that bun-
dles under compression may relieve stress by the pair production
of braid/antibraid pairs in a manner resembling the Schwinger
effect (29, 30).

Examining Fig. 4 leads us to speculate that very large bundles
of many filaments might be considered to be smaller bundles
composed of more weakly bound subbundles, which are them-
selves composed of the original filaments. If we may consider
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this hierarchical approach, we can replace a in ζ by the sub-
bundle radius and write the bending modulus in terms of that
radius as well, using κ≈Ea4, where E is the Young’s modulus
of the material (typically in the 1 GPa range for proteins). In
that case, we see that ζ ≈ (µ/E)a−2, so that, as the radius of the
subbundles increases, ζ decreases rapidly. As a result, we expect
that kinks in larger bundles will be dominated by loop defects
regardless of the value of ζ for the original filament system.

When considering very large bundles, one may ask whether
cross-linkers deep in the bundle’s interior remain in equilibrium
with the cross-linker concentration in the surrounding fluid. Due
to steric hindrance, these internal linkers may diffuse slowly out
of the bundle, leading to a linker chemical potential gradient
across the bundle’s radius on measurable time scales. We do not
incorporate such effects in our simulations, and we do not expect
them to be relevant in the case of our collagen bundles where we
do not have exogenous linkers. But this nonequilibrium effect,
where relevant, may introduce intriguing viscoelastic effects in
the bending dynamics of very large bundles.

Many biopolymer filaments are chiral, and their chirality is
known to affect their packing into tight bundles (31–33). In
particular, chirality introduces a form of geometric frustration
in these tightly packed bundles. We suspect that the defects
discussed here may play a role in reducing the elastic stress-
associated chirality-induced packing frustration, and thus may be
important for understanding the long length-scale structure of
such chiral bundles.

We note that defects rather generally produce weak links in
the bundle where, due to the absence of cross-linking, the effec-
tive bending modulus of the bundle is reduced by at least an
order of magnitude. This suggests that the collective mechanics
of a rapidly quenched bundle network might be dominated by
these defects, which introduce a set of soft joints into the oth-
erwise quite stiff bundles. As a result, rapidly quenched bundle
networks may be anomalously compliant as compared to their
annealed state. It is interesting to note that these defects pro-
vide soft hinges in the network (rather than universal joints) and
that there may well be many more such soft hinges than there
are kinks, since not all defects generate kinks, but all disrupt
the local cross-linking. Currently, there are no kinetic theories
of bundling that allow us to estimate the number of such soft
hinges in a network of filament bundles and then attempt to
predict the mechanics of the defected network. Of course, fila-
ment bundle networks produced by transient cross-linkers have a
complex rheological spectrum, including a low-frequency power
law regime (34, 35). Understanding the mechanical effect of

these soft hinges on that low-frequency rheology remains an
interesting direction for future studies.

Materials and Methods
Experiments. Type I bovine pepsin extracted collagen (PureCol 5005-100 ML
lot 7503, Advanced BioMatrix) was reconstituted according to Doyle (36).
Reconstituted collagen solution was diluted to 0.2 mg/mL with phosphate-
buffered saline and was incubated at 37 ◦C overnight. The collagen was
fluorescently labeled (Atto 488 NHS ester 41698-1MG-F lot BCBW8038,
Sigma-Aldrich) and then imaged with Olympus Fluoview1200 laser scanning
confocal microscope using a 60×1.45NA oil immersion objective. To con-
struct a trace of the bundle, Matlab was used to determine the position of
bundle in each row of the image defined as the mean of the Gaussian fit
of the pixel intensity across each row. A cubic spline is used to estimate the
curvature along the bundle. The kink angles were measured using imageJ.
Further details can be found in SI Appendix, section 1.

Simulations. In our numerical model, the individual semiflexible filaments
are described via nonlinear, geometrically exact, 3D Simo–Reissner beam
theory (37, 38) and discretized in space by suitable finite element formu-
lations (39, 40). Their Brownian dynamics is modeled by including random
thermal forces and viscous drag forces along the filament (13, 14). We apply
an implicit Euler scheme to discretize in time, which allows us to use rel-
atively large time step sizes (13, 14). Cross-links are modeled as additional,
short beam elements between distinct binding sites on two filaments, which
bind and unbind randomly based on given reaction rates and binding cri-
teria (15). In particular, the latter include a preferred distance between
binding sites and a preferred angle between filament axes that need to
be met such that a linker molecule switches from the free to the singly
bound state or from the singly to the doubly bound state. Altogether, this
finite element Brownian dynamics model turns out to be a highly efficient
numerical framework, which enables large-scale simulations with hundreds
of filaments over hundreds of seconds and has been used in several previ-
ous studies (15, 20, 35, 41–43). We used the existing C++ implementation in
our in-house research code BACI (44), which is a parallel, multiphysics soft-
ware framework. In addition, we used self-written Matlab (45) scripts for
the data analysis and used Paraview (46) for the visualization of the system.
Further details about the numerical model, including all parameter values
and the detailed setup of the computational experiments, can be found in
SI Appendix, section 2.

Data Availability. Raw images and simulation results can be found on
Dryad (47).
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