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al reconstruction method for
discrimination of bacterial species with low signal-
to-noise ratio Raman measurements

Shanshan Zhu, a Xiaoyu Cui,ad Wenbin Xu,b Shuo Chen*ad and Wei Qianc

Raman spectroscopy is a label-free and non-destructive spectroscopic technique that has been explored

for bacterial identification. However, noise often interferes with the interesting Raman peaks because the

Raman signal is inherently weak, especially for bacterial samples. Although this problem can be solved by

increasing the exposure time or the power of the excitation laser, a longer acquisition time is required or

the risk of sample damage is increased. In contrast, short exposure time and low laser power often lead

to inadequate acquisition of Raman scattering, in which the Raman spectra with low signal-to-noise

ratio (SNR) is difficult to be further analyzed. In order to quickly and accurately characterize biological

samples by using low SNR Raman measurements, a weighted spectral reconstruction based method was

developed and tested on Raman spectra with low SNR from 20 bacterial samples of two species.

Principal component analysis followed by support vector machine was applied on the reference Raman

spectra and the spectra recovered from the low SNR Raman measurements by the proposed method,

the traditional spectral reconstruction method, and four other commonly used de-noising methods for

the discrimination of bacterial species. The results showed that a classification accuracy of 90% was

achieved based on our method, which was comparable to that of the reference Raman spectra and

showed significant advantages over other spectral recovery methods. Therefore, the weighted spectral

reconstruction method can preserve the most biochemical information for the bacterial species'

identification while removing the noise from the low SNR Raman spectra, in which the advantages of

lesser sample damage and shorter acquisition time would promote wider biomedical applications of

Raman spectroscopy.
Introduction

The quick identication and discrimination of bacterial species
have been a hot point of concern especially for clinicians, which
is critical for the treatment of infections.1,2 These concerns are
highly relevant in the area of medical applications and aim at
fast and precise diagnosis and treatment. Different approaches
for bacterial identication include morphological and
biochemical tests, such as Gram staining, enzyme activity tests,
antibiotic susceptibility proles as well as 16S ribosomal deox-
yribonucleic acid or 16S ribosomal ribonucleic acid analysis.3,4

The conventional examinations can be applied only on pure,
isolated bacteria derived from culture plates.5 However, bacte-
rial culture and purication are oen time-consuming and
complicated, and usually require several days for the clinicians
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to get the nal laboratory report aer the sample collection
from patients. Although genotypic methods are faster and more
accurate than the traditional biochemical tests, DNA extraction
from pure cultures and consumption of expensive reagents are
still needed.4 Due to the low efficiency of the current bacterial
identication methods, empirical therapy usually has to be
performed while awaiting laboratory results, which leads to
a low treatment effect on the infection and loss of the optimal
time for appropriate treatment, even resulting in deterioration
of the infection or mortality. Tumbarello et al. indicated that
20.1% patients with bloodstream infections caused by Escher-
ichia coli do not receive proper antimicrobial therapy and have
a higher proportion of extended-spectrum b-lactamase blood-
stream infections (74.0% versus 15.8%) and higher 21 day
mortality rates (40.7% versus 5.6%) compared with patients who
receive the appropriate therapy from the beginning.6 Werarak et
al. demonstrated that although carbapenem is the most
frequently used treatment for hospital-acquired pneumonia
and ventilator-associated pneumonia, the patients who are
treated by carbapenem in the beginning of infection have more
severe complications and high mortality rate.7 Hence, a rapid
This journal is © The Royal Society of Chemistry 2019
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and accurate identication of the bacterial pathogens is critical
for the precise treatment of patients.

In recent years, Raman spectroscopy has been explored in
the detection and identication of bacteria as a fast, non-
destructive, and label-free spectroscopic technique based on
measuring the inelastic scattering of photons by vibrating
molecules or crystal lattices.8,9 Based on the specic vibrational
modes of the molecules, a large amount of qualitative and
quantitative biochemical information enables the identication
and differentiation of bacterial biochemical components.10,11

Unfortunately, noise oen interferes with the interesting
Raman peaks because the Raman signal is inherently weak,
especially for bacterial samples.12,13 Although this problem can
be solved by increasing the exposure time or the power of the
excitation laser, a longer acquisition time is required or the risk
of sample damage is increased. If a short exposure time and low
laser power is applied during the Raman measurement, inad-
equate acquisition of Raman scattering would lead to low
signal-to-noise ratio (SNR) measurements, which makes the
further spectral data processing and analysis difficult. There-
fore, a method to quickly and accurately discriminate the
bacterial species by using low SNR Raman measurements with
low laser power and short exposure time can potentially solve
the above problems.

In this study, a weighted spectral reconstruction based
method was newly developed and tested on Raman spectra with
low SNR equal to 0.98 from 20 bacterial samples of two species,
i.e., Pseudomonas aeruginosa and Staphylococcus aureus. For
identifying the different bacterial species, principal component
analysis (PCA) followed by support vector machine (SVM) was
applied on the reference Raman spectra (high SNR), low SNR
Raman spectra, and low SNR Raman spectra processed by the
proposed method, traditional spectral reconstruction method,
and four other commonly used de-noising methods, i.e.,
Savitzky–Golay (SG) algorithm, wavelet transform, nite
impulse response (FIR) ltration, and factor analysis.
Compared with other methods, the proposed method demon-
strated signicant improvement in the spectral recovery and
higher accuracy in the discrimination of bacterial species, in
which the classication accuracy of the Raman spectra recov-
ered by the proposed method was even comparable to that of
the reference Raman spectra with high SNR. Therefore, our
method demonstrated signicant potential in the rapid and
accurate bacterial species' identication based on low SNR
Raman spectra, wherein the sample damage was lesser and
a shorter acquisition time was required.

Experimental
Sample preparation

The bacterial samples of the two species, i.e., Staphylococcus
aureus (ATCC 29213) and Pseudomonas aeruginosa (ATCC 9027),
were cultured overnight at a xed temperature of 35 �C in
Tryptic Soy Agar Plates. Thereaer, few bacterial colonies were
selected and placed in the phosphate buffered saline to reach
a nal concentration of 1 � 108 CFU mL�1, followed by centri-
fugation at 10 000 rpm for ve minutes to concentrate and
This journal is © The Royal Society of Chemistry 2019
purify the bacterial samples. The bacterial samples were rinsed
and immersed twice in distilled water to wash away the culture
medium, and nally resuspended in 100 mL distilled water. To
prepare the samples for Raman measurements, 2 mL of the
suspension was repeatedly dropped and air dried at the same
location on an aluminum foil, in which the bacterial samples
were concentrated and a relatively higher Raman signal could
be achieved.14

Raman spectra acquisition

Twenty pairs of Raman spectra, i.e., 10 pairs of Raman
measurements from Pseudomonas aeruginosa and 10 pairs of
Raman measurements from Staphylococcus aureus, were ob-
tained in the wavenumber range from 600 cm�1 to 1600 cm�1 by
a confocal Raman microscope (inVia, Renishaw, UK). A 633 nm
diode laser was used for excitation and the spectral resolution
was 2 cm�1. In each pair of Raman measurements, both the low
SNR and high SNR Raman spectra were collected from the exact
same position. The exposure time for low SNR Raman
measurement was 1 s and accumulated once, whereas that for
the corresponding high SNR Raman measurement was 10 s and
accumulated 30 times, so that the actual acquisition time for
the high SNR Raman measurements was 300 times of that for
the low SNR Raman measurements. In this study, the high SNR
Raman spectra were treated as the reference to evaluate the
proposedmethod. The noise level was quantied by a published
method,15 i.e., by dividing the maximum intensity of the
normalized reference Raman spectrum by the root mean square
error (RMSE) between the normalized low SNR Raman spec-
trum and the normalized reference Raman spectrum, in which
the normalization for each Raman spectrum was performed by
dividing the Raman intensity at each wavenumber by the
summation of the Raman intensities at all wavenumbers. Thus,
the SNR of the low SNR Raman spectra used in this study was
0.98.

Spectral recovery methods

Twenty Raman spectra with low SNR were de-noised by the
traditional spectral reconstruction method, weighted spectral
reconstruction method, and four other commonly used de-
nosing methods, i.e., SG algorithm, wavelet transform, FIR
ltration, and factor analysis. The corresponding high SNR
Raman spectra were treated as the reference Raman spectra to
evaluate the performance of each method.

Traditional spectral reconstruction was performed to
retrieve the Raman spectra from the low SNR Raman
measurements,15–17 in which a calibration data set was required,
as shown in Fig. 1. In the calibration data set, both the reference
Raman spectra and the narrow-band measurements derived
from the low SNR Raman spectra were included, whereas the
test data set contained only the low SNR Raman spectra. The
narrow-band measurements were numerically calculated by the
inner production of low SNR Raman spectra and the trans-
mittance of the non-negative PC based lters,18 in which the
rst six non-negative principal component (PC) based lters
were used. In the calibration stage, the Wiener matrix W was
RSC Adv., 2019, 9, 9500–9508 | 9501



Fig. 1 The flowchart of the traditional spectral reconstruction method.
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calculated based on the calibration dataset to extract the rela-
tion between the narrow-band measurements Ccal and the
reference Raman spectra Rref, as shown in eqn (1).

W ¼ E(RrefCcal
T)[E(CcalCcal

T)]�1 (1)

where E( ) represents the ensemble average, T represents the
matrix transpose, and �1 represents the matrix inverse. In the
test stage, the reconstructed high SNR Raman spectra can be
retrieved by the multiplication of the Wiener matrix and the
corresponding narrow-band measurements in the test data set.

The weighted spectral reconstruction was a newly developed
method and different from the traditional spectral reconstruc-
tion method, in which the ensemble average was replaced by
the weighted average when constructing the weighted Wiener
matrix Ŵ , as shown in eqn (2).

Ŵ ¼
Xn

i¼1

riRrefðiÞCcalðiÞ
T
Xn

i¼1

�
riCcalðiÞCcalðiÞ

T
��1

(2)

where ri refers to the weight for the i-th set of the calibration
data. The weight can be calculated based on the similarity of the
narrow-band measurements according to eqn (3), in which the
calibration data with higher similarity to the test data would
contribute more to the weighted Wiener matrix.

ri ¼
Si

Pn
i¼1

Si

(3)

where Si is the similarity between the narrow-band measure-
ments of the low SNR Raman spectra from the test data set and
the i-th set of the narrow-band measurements in the calibration
data set, and can be calculated according to eqn (4).

Si ¼ Di
m

Pn
i¼1

Di
m

(4)

where Di is the difference between the narrow-band measure-
ments from the test data and the i-th set of the narrow-band
measurements in the calibration data, and m is the power to
adjust the contribution of Di. The reason for using the differ-
ence of the narrow-band measurement instead of the difference
of the low SNR Raman spectra is that the difference of the
9502 | RSC Adv., 2019, 9, 9500–9508
narrow-band measurement can more precisely represent the
similarity between the test data and calibration data, in which
the narrow-band measurement is the integration of the Raman
intensities along the wavelength dimension and its SNR should
be much higher compared to its corresponding low SNR Raman
spectrum. In contrast to the traditional spectral reconstruction
method, the weighted reconstructed high SNR Raman spectra
were retrieved by the multiplication of the weighted Wiener
matrix and the narrow-band measurements in the test stage, as
shown in Fig. 2. Since both the weighted spectral reconstruction
and the traditional spectral reconstruction methods were
supervised learning methods in nature, the leave-one-out cross
validation method was used by selecting one sample for testing
and the rest for training until all the samples were tested.19

Besides the traditional spectral reconstruction and weighted
spectral reconstruction methods, SG algorithm, wavelet trans-
form, FIR ltration, and factor analysis were applied on the
same set of low SNR Raman spectra for comparison. For the SG
algorithm, each part of the original spectrum with a selected
window size was tted to a polynomial function for smoothing
purpose.20 In contrast, the wavelet transform, FIR ltration, and
factor analysis commonly remove noise by ltering techniques.
For the wavelet transform,21,22 the spectral data were decom-
posed into the wavelet domain by various wavelet basis and
reconstructed aer noise removal by certain thresholds. The
FIR ltration is a linear ltration technique, in which a window-
based FIR lter is designed based on the frame size and cut-off
frequency and was subsequently used for noise removal in this
study.23 For factor analysis,24 the original spectral information is
projected into the linear combination of a certain number of
subspectra, and those subspectra related to the noise can be
subsequently removed. The parameters of each de-noising
method and the range of the parameters are shown in Table 1.

Aer the low SNR Raman spectra were de-noised, the broad
and slowly varying uorescence background was estimated by
using the h order polynomial tting and subtracted from the
original spectra.25 Normalization was subsequently performed
on each Raman spectrum by dividing the Raman intensity at
each wavenumber by the summation of the Raman intensities
at all the wavenumbers. In order to evaluate the accuracy of the
recovered Raman spectra, the above uorescence background
This journal is © The Royal Society of Chemistry 2019



Fig. 2 The flowchart of the weighted spectral reconstruction method.
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removal algorithm and normalization were applied on the cor-
responding reference Raman spectra as well and the mean
relative RMSE26 was used as the metric.
PCA-SVM based classication methods

Aer obtaining the recovered Raman spectra from the low SNR
Raman spectra by each of the above methods, principal
component analysis (PCA) followed by support vector machine
(SVM) was applied on the reference Raman spectra, low SNR
Raman spectra, and the recovered Raman spectra for bacterial
species' discrimination. As a multivariate statistical method,
PCA can reduce the large original spectral data into small
number of independent variables named as PC scores, which
can effectively carry the most important information of the
Table 1 Parameters of each de-noising method and the range of the
parameters

Method Parameter Parameter range

Traditional
spectral
reconstruction

Number of non-
negative PC scores
based lters

6

Weighted
spectral
reconstruction

Number of non-
negative PC scores
based lters

6

Power �0.1 to �10
SG algorithm Window size 3 to 729

Polynomial degree 1 to 9
Wavelet
transform

Wavelet basis Common wavelet lters built
in Matlab

Decomposition level 1 to 10
Threshold So threshold or hard

threshold: threshold value
were selected according to the
Birge–Massart strategy

FIR ltration Frame size 2 to 243
Cut-off frequency 1 � 10�10 to 1

Factor analysis Number of subspectra 1 to 20

This journal is © The Royal Society of Chemistry 2019
corresponding spectra. Thus, PCA can be used to group the
spectra by choosing different combinations of the PC scores to
build a new coordinate system.27 In order to achieve a fair
comparison of the different spectral recovery methods in this
study, the rst four PC scores were chosen for bacterial species'
discrimination because the highest classication accuracy was
achieved based on the reference Raman spectra with high SNR
when using the rst four PC scores. Support vector machine is
a state-of-the-art supervised machine learning method espe-
cially suited to classify and identify different bacterial
species.28,29 SVM belongs to the group of maximum margin
classiers and can efficiently nd the optimal solution for the
given parameters. In this paper, a classication model was built
by inputting the rst four PC scores for SVM to identify the
bacterial species. The leave-one-out method was used for cross
validation and the performance of the different spectral
recovery methods was compared in terms of accuracy, sensi-
tivity, and specicity in identifying the different bacterial
species. In addition, the integrated area under the receiver
operating characteristic (ROC) curve was used to quantify the
performance of the classication model on different groups of
Raman spectra.
Results and discussion

Fig. 3 shows the comparison among the average spectra aer
the uorescence background removal and normalization based
on the different spectral recovery methods between Pseudo-
monas aeruginosa and Staphylococcus aureus samples. It was
found that both the traditional spectral reconstruction method
(see Fig. 3(c)) and weighted spectral reconstruction method (see
Fig. 3(d)) showed excellent agreement in the Raman peaks and
the spectral shape compared to the reference Raman spectra
(see Fig. 3(a)). The excellent performance of the spectral
reconstruction based methods can be attributed to two factors.
One is that the Raman measurements are integrated along the
wavenumber dimension in the procedure of synthesizing the
RSC Adv., 2019, 9, 9500–9508 | 9503



Fig. 3 Comparison of (a) the mean reference Raman spectrum, (b) the mean low SNR Raman spectrum, and the mean recovered Raman
spectrum based on (c) the traditional spectral reconstruction method, (d) the weighted spectral reconstruction method, (e) SG algorithm, (f)
wavelet transform, (g) FIR filtration, and (h) factor analysis for Pseudomonas aeruginosa and Staphylococcus aureus.
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narrow-band measurements from the low SNR Raman spectra,
thus, the SNR can be signicantly improved by eliminating the
shot noise in Raman measurements.30,31 The other factor is that
the spectral reconstruction based methods contain prior
information about the samples, in which the high SNR Raman
spectra are used to associate with the narrow-band measure-
ments in the calibration stage. Furthermore, the weighted
spectral reconstruction method shows the best performance in
spectral recovery among all the methods, and improves 4.3% in
the mean relative RMSE compared to the traditional spectral
reconstruction method, as shown in Table 2. The reason is that
the weighted spectral reconstruction method takes the advan-
tage of collecting more effective information from the samples
with higher similarity when constructing the weighted Wiener
matrix. However, the time efficiency of the weighted spectral
reconstruction is lower because different weighted Wiener
matrices have to be created for each test sample, whereas the
traditional spectral reconstruction method only requires
a single Wiener matrix when the calibration dataset is xed.
Although the SG algorithm is a commonly used smoothing
method for de-noising Raman spectra, the spectral shape was
distorted and some of the peak locations were shied, as shown
in Fig. 3(e), because those weak features in the Raman spectra
are comparable to the noise level, and thus, can be easily
smoothed out during noise removal.20 the wavelet transform
(see Fig. 3(f)) and FIR ltration (see Fig. 3(g)) methods showed
good performance in noise removal, at the cost of losing some
Table 2 Comparison of the mean relative RMSE between the reference
recovered from low SNR Raman measurements using the traditional spe
wavelet transform, FIR filtration, and factor analysis

Low SNR Raman
spectra

Traditional spectral
reconstruction

Weighted sp
reconstructi

Mean relative RMSE 1.98 � 10�1 8.21 � 10�2 7.86 � 10�2
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important spectral shape information, e.g., the central wave-
lengths and bandwidths of the peaks.21 Unfortunately, the
factor analysis did not work well when the SNR was extremely
low, which could not even smoothen out the noise and lost
plenty of useful information during bacterial discrimination, as
shown in Fig. 3(h). The reason might be that the factor analysis
loses the ability to decompose the noise and signal when the
SNR is extremely low because the noise contributes similarly or
even more to the Raman spectra compared with the signal.24

Table 3 shows the comparison of the classication accuracy,
sensitivity, and specicity of Pseudomonas aeruginosa and
Staphylococcus aureus from the Raman spectra aer uores-
cence background removal and normalization of the reference
Raman spectra, low SNR Raman spectra, and Raman spectra
recovered by using the traditional spectral reconstruction
method, weighted spectral reconstruction method, SG algo-
rithm, wavelet transform, FIR ltration, and factor analysis. For
identifying Pseudomonas aeruginosa and Staphylococcus aureus,
the Raman spectra recovered by both traditional and weighted
spectral reconstruction methods can achieve a classication
accuracy of 90%, which was exactly the same as that of the
reference Raman spectra and showed signicant advantages
over the other commonly used de-noising methods as well as
the results of the low SNR Raman spectra. Furthermore, the
weighted spectral reconstruction method also successfully
demonstrated exactly the same sensitivity and specicity
compared to the reference Raman spectra, whereas the
Raman spectra with low SNR Raman spectra and the Raman spectra
ctral reconstruction, weighted spectral reconstruction, SG algorithm,

ectral
on SG algorithm Wavelet transform FIR ltration Factor analysis

1.47 � 10�1 1.45 � 10�1 1.54 � 10�1 1.48 � 10�1

This journal is © The Royal Society of Chemistry 2019



Table 3 Comparison of the classification accuracy, sensitivity, and specificity of bacterial species identification based on the reference Raman
spectra, low SNR Raman spectra, and Raman spectra recovered from the low SNR Raman measurements using the traditional spectral
reconstruction, weighted spectral reconstruction, SG algorithm, wavelet transform, FIR filtration, and factor analysis

Reference
Raman
spectra

Low SNR
Raman
spectra

Traditional
spectral
reconstruction

Weighted
spectral
reconstruction

SG
algorithm

Wavelet
transform

FIR
ltration

Factor
analysis

Classication
accuracy

90% 75% 90% 90% 70% 85% 70% 35%

Sensitivity 90% 80% 80% 90% 70% 90% 50% 40%
Specicity 90% 70% 100% 90% 70% 80% 90% 30%

Paper RSC Advances
traditional spectral reconstruction failed. Although the speci-
city of the traditional spectral reconstruction is the highest, it
sacrices the sensitivity, as shown in Table 3, and we believe
some improper prior information is used during the spectral
recovery process of the traditional spectral reconstruction.
Thus, the higher spectral recovery accuracy of the weighted
spectral reconstruction method is indeed critical for better
performance in the following spectral data analysis. In practical
applications, the choice of the traditional spectral reconstruc-
tion and weighted spectral reconstruction should be mainly
dependent on its specic applications, in which the compro-
mise between time efficiency and spectral recovery accuracy
should be considered. Interestingly, the classication accuracy
did not fully comply with the mean relative RMSE, i.e., the
agreement between the recovered Raman spectra and the
reference Raman spectra. The reason might be that most of the
information is preserved whereas some critical information for
bacterial identication is lost during the noise removal, espe-
cially for the SG algorithm, FIR ltration, and factor analysis
methods. The classication results of these three methods are
even lower than that of the low SNR Raman spectra, indicating
that more information is lost compared to the information
gained during the spectral recovery by these three methods.
This can be attributed to the fact that the importance of the
information cannot be distinguished by these commonly used
de-noising methods. For the SG algorithm, the weak features in
the Raman spectra comparable to the noise level can be easily
smoothed out during noise removal, resulting in some shied
Raman peaks and the distorted spectral shape.20 By the FIR
ltration method, some important spectral shape information
is lost simultaneously, while the noise is well removed.
Although the Raman spectra de-noised by the SG algorithm and
FIR ltration methods retain some important information
about the peak locations and the spectral shape, the informa-
tion regarding the discrimination of the two bacterial samples
might be removed during noise removal, resulting in relatively
low classication accuracy of only 70%. The classication
accuracy of the factor analysis method was the lowest among all
the methods, whereas the mean relative RMSE was not the
worst. The reason is that factor analysis loses the ability to
decompose the noise and signal when the SNR is extremely low,
thus, plenty of important Raman peaks for bacterial discrimi-
nation as well as the noise are smoothed out simultaneously.24
This journal is © The Royal Society of Chemistry 2019
To further evaluate the performance of the PCA-SVM-based
classication model for bacterial species, the ROC curves were
generated at different threshold levels for different groups of
Raman spectra, respectively. The integrated area under the ROC
curve (AUC) is a quantitative indicator used to represent the
classier performance, in which the larger AUC value usually
means that the classier has higher prediction accuracy.32

According to the results in Fig. 4, the integrated areas under the
ROC curves (AUC) are 0.96, 0.79, 0.98, 0.99, 0.66, 0.86, 0.78, and
0.32 for the reference Raman spectra, low SNR Raman spectra,
and Raman spectra recovered from the low SNR Raman
measurements using the traditional spectral reconstruction,
weighted spectral reconstruction, SG algorithm, wavelet trans-
form, FIR ltration, and factor analysis, respectively. Thus, the
Raman spectra recovered from the low SNR Raman measure-
ments using the weighted spectral reconstruction method
demonstrates the strongest ability of bacterial species' identi-
cation with high sensitivity and specicity, and even outper-
forms the reference Raman spectra with high SNR. The reason
might be that the spectral reconstruction procedure can remove
some of the useless information within the reference Raman
spectra, which may provide negative impacts on the bacterial
species' identication.

Fig. 5 shows the average Raman spectra based on the refer-
ence Raman spectra and Raman spectra recovered by the
spectral reconstruction method of Pseudomonas aeruginosa and
Staphylococcus aureus, respectively. By the visual inspection of
the reference Raman spectra (red curve) and the Raman spectra
aer spectral reconstruction (blue curve) in Fig. 5(a) and (b), it
can be noted that the major Raman features were at 853 cm�1

(tyrosine ring breathing vibration of protein), 1003 cm�1

(phenylalanine ring vibration of protein), 1126 cm�1 (C–N, C–C
stretching of protein and C–C lipid stretch), 1447 cm�1 (CH2,
CH3 lipid, and protein), and 1556 cm�1 (C]C vibration of
protein).33,34 Moreover, the Raman peaks at 725 cm�1 and
751 cm�1 can be identied and assigned to the adenine and
thymine ring breathing vibrations of DNA. From Fig. 5(c), it can
be seen that the intensity of these bands were consistently lower
in Pseudomonas aeruginosa compared to Staphylococcus aureus,
indicating a signicant reduction in both the DNA and RNA
concentrations in Pseudomonas aeruginosa. In addition, the
Raman peaks at 1298 cm�1 and 1447 cm�1, which are assigned
to the CH2 and CH3 bending modes were found primarily in
proteins and lipids. The intensity of these two peaks notably
RSC Adv., 2019, 9, 9500–9508 | 9505



Fig. 4 The ROC curves obtained by using the PCA-SVM-based spectral classification based on (a) the reference Raman spectra, (b) the low SNR
Raman spectra, and Raman spectra recovered from low SNR Raman measurements using (c) the traditional spectral reconstruction, (d) the
weighted spectral reconstruction, (e) the SG algorithm, (f) the wavelet transform, (g) the FIR filtration, and (h) the factor analysis.
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decreased in Pseudomonas aeruginosa compared to those in
Staphylococcus aureus, as shown in Fig. 5(c), which may indicate
the decrease of the membranous lipids in Pseudomonas aerugi-
nosa.14 The proteins have a prominent peak at 1556 cm�1, which
was assigned to the C]C vibration.35 As in Fig. 5(c), the inten-
sity at this wavenumber increased in Pseudomonas aeruginosa
compared to that in Staphylococcus aureus, which indicated the
difference in the protein level between these two bacterial
samples.35 Although the recovered Raman spectra retained the
information about most of the Raman peaks, some Raman
information were still lost or overlapped, especially for Raman
Fig. 5 Average Raman spectra based on the reference Raman spectra (
weighted spectral reconstruction method: (a) Pseudomonas aeruginosa

9506 | RSC Adv., 2019, 9, 9500–9508
peaks at around 751 cm�1 (thymine ring breathing vibration of
DNA) and 1251 cm�1 (amide III of protein and adenine ring
breathing vibration of DNA), as shown in Fig. 5(c). It was found
that the difference in the spectra of the two bacterial species at
these two peaks aer spectral reconstruction were much closer
to zero than that of the reference spectra, which demonstrated
that some Raman information of DNA and proteins was lost or
overlapped by the surrounding peaks. Even though the infor-
mation in these bands andmodes of bacterial components were
lost or overlapped, it has very minor impact on the nal clas-
sication results between Pseudomonas aeruginosa and
red curve) and the recovered Raman spectra (blue curve) by using the
, (b) Staphylococcus aureus, and (c) the difference between them.

This journal is © The Royal Society of Chemistry 2019
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Staphylococcus aureus (see Table 3). In other words, these bands
and modes may not be the key biomarkers responsible for the
discrimination in these two bacterial species.

Although only twenty pairs of Raman spectra of Pseudomonas
aeruginosa and Staphylococcus aureus were tested in this study,
many studies based on a large amount of bacterial samples have
veried the feasibility of using Raman spectroscopy as
a powerful tool for bacterial species' identication with
acceptable Raman signals.34,36,37 In this study, we mainly
focused on the information preservation by the proposed
weighted spectral reconstruction method during the noise
removal from the low SNR Raman spectra. The recovered
Raman spectra by the proposed weighted spectral reconstruc-
tion method show closest relative RMSE, accuracy, sensitivity,
specicity, and AUC value compared to those of the reference
Raman spectra, which demonstrates the proposed method's
excellent preservation of the most useful spectral information
such as Raman peaks and the spectral shape for bacterial
species' identication. Thus, we believe that the proposed
method can still work well or even better for bacterial species'
identication when the amount of bacterial samples increases.
In the future study, a large size of sample data set and even
other bacterial species will be investigated to validate and
conrm these conclusions.

Conclusions

In this study, a weighted spectral reconstruction based method
was developed and tested on low SNR Raman spectra from
bacterial samples for the discrimination of two bacterial
species. PCA combined with SVM classier was used to identify
different bacterial species. Based on the results, it was found
that the proposed method could recover the Raman spectra in
excellent agreement with the reference Raman spectra and
reach a comparable classication accuracy of 90% for bacterial
species' identication, which shows signicant advantages over
other spectral recovery methods. Therefore, the weighted
spectral reconstruction based method can excellently recover
the Raman signal from the low SNR Raman spectra and
preserve the most important information, in which the lesser
sample damage and shorter acquisition time would promote
the wider application of Raman spectroscopy in biomedical
applications.
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