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Pulmonary artery hypertension (PAH) is an incurable disease associated with the prolifer-
ation of pulmonary artery smooth muscle cells (PASMCs) and vascular remodeling. The
present study examined whether TRAM-34, a highly selective blocker of calcium-activated
potassium channel 3.1 (Kca3.1), can help prevent such hypertension by reducing prolifer-
ation in PASMCs. Rats were exposed to hypoxia (10% O2) for 3 weeks and treated daily
with TRAM-34 intraperitoneally from the first day of hypoxia. Animals were killed and ex-
amined for vascular hypertrophy, Kca3.1 expression, and downstream signaling pathways.
In addition, primary cultures of rat PASMCs were exposed to hypoxia (3% O2) or normoxia
(21% O2) for 24 h in the presence of TRAM-34 or siRNA against Kca3.1. Activation of cell
signaling pathways was examined using Western blot analysis. In animal experiments, hy-
poxia triggered significant medial hypertrophy of pulmonary arterioles and right ventricular
hypertrophy, and it significantly increased pulmonary artery pressure, Kca3.1 mRNA lev-
els and ERK/p38 MAP kinase signaling. These effects were attenuated in the presence of
TRAM-34. In cell culture experiments, blocking Kca3.1 using TRAM-34 or siRNA inhibited
hypoxia-induced ERK/p38 signaling. Kca3.1 may play a role in the development of PAH by
activating ERK/p38 MAP kinase signaling, which may then contribute to hypoxia-induced
pulmonary vascular remodeling. TRAM-34 may protect against hypoxia-induced PAH.

Introduction
Pulmonary artery hypertension (PAH), defined as elevated pulmonary artery pressure, occurs in several
diseases, such as idiopathic PAH, end-stage chronic obstructive pulmonary disease (COPD), asthma, and
lung fibrosis. PAH is diagnosed using hemodynamic measurements obtained via right heart catheteriza-
tion or echocardiography; the condition is defined as mean pulmonary artery pressure �25 mmHg at rest
or �30 mmHg during movement [1].

Despite its diverse causes, PAH appears to be driven usually by vasoconstriction [2,3] and vascular
remodeling. Various stimuli, including hypoxia, may contribute to PAH initiation: small-animal stud-
ies have associated PAH with proliferation of pulmonary artery smooth muscle cells (PASMCs) in small
intrapulmonary arteries; leading to inflammatory cell infiltration into the lung, ultimately inducing the
release of numerous mediators of pulmonary vessel remodeling [4]. Although PAH has been associated
with pathways mediated by endothelin, nitric oxide, and prostacyclin [5], targetted pathways’ drugs of-
ten fail to alleviate the gradual increase in pulmonary pressure [6]. Lung transplantation is an option for
only a fraction of patients [7]. Thus, despite therapeutic advances against PAH in small animals [8,9] and
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humans [10], standard treatments cannot cure the disease and improve quality of life or prognosis. Researchers con-
tinue to search for antihypertensive and antiproliferative treatments that can prevent or reverse medial thickening as
well as PASMC hypertrophy and hyperplasia [11].

One possibility is to block K+ channels, since cell proliferation requires increased expression of such channels
[12-14]. Calcium (Ca2+)-activated K+ channel 3.1 (Kca3.1) is widely expressed in non-neuronal tissues, including
epithelia, endothelia, and smooth muscle, where it regulates intracellular Ca2+ concentration and membrane poten-
tial [15]. Blocking Kca3.1 with the highly selective blocker TRAM-34 [16] can reduce cell proliferation in cancer
[17], angiogenesis, post-interventional arterial restenosis, atherosclerosis, and asthma [18]. Our group has shown
that treating PASMC cultures with TRAM-34 can inhibit hypoxia-induced proliferation [19]. In the present study, we
wanted to examine whether this in vitro effect would translate into therapeutic effects against hypoxia-induced PAH
in vivo.

In addition, we wanted to begin to understand the molecular pathways by which hypoxia and TRAM-34 ex-
ert opposite effects on the pulmonary artery, as well as clarify how Kca3.1 fits into this picture. We focussed on
mitogen-activated protein kinases (MAPKs) because they regulate cell proliferation and differentiation after exposure
to hypoxia. Hypoxia reduces intracellular Ca2+ concentrations, which may activate MAPKs and lead to cellular prolif-
eration and differentiation [20]. In particular, p38 and ERK1/ERK2 kinases participate in vascular and non-vascular
smooth muscle cell contraction [21], and p38 MAPK regulates ET-1-induced contraction of pulmonary artery in dogs
[22,23]. Inhibiting p38 MAPKs reverses hypoxia-induced dysfunction in pulmonary artery endothelium [24].

Given this literature, we hypothesized that hypoxia activates the Kca3.1 channel and downstream ERK/p38 MAPK
signaling, leading to PAH. We also hypothesized that TRAM-34 would partially reverse these effects, thereby ame-
liorating hypoxia-induced PAH.

Methods
Animals and treatments
Animal experiments were approved by the Animal Ethics Committee of Sichuan University, and procedures con-
formed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Thirty-six male Sprague–Dawley rats (350–400 g) were equally divided into six groups (A: normoxia, B: normoxia
in the presence of 300 μg/kg TRAM-34, C: normoxia in the presence of 600 μg/kg TRAM-34, D: hypoxia, E: hypoxia
in the presence of 300μg/kg TRAM-34, F: hypoxia in the presence of 600μg/kg TRAM-34) and then exposed to room
air (21% O2) or chronic hypoxia (10% O2) for 3 weeks using a ProOx P110 oxygen controller (BioSpherix, NY, U.S.A.).
The concentration of O2 was maintained at 10% by regulating the flow of compressed nitrogen (N2). Starting on the
first day of hypoxia, a subset of animals in each type of atmosphere received intraperitoneal injections of TRAM-34
daily (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, Sigma–Aldrich, St. Louis, MO) at doses of either 300 or 600
μg/kg.

Measurement of pulmonary artery pressure and cardiac chamber size
Animals were anesthetized using pentobarbital sodium, the right internal jugular vein was surgically separated, and a
home-made polyethylene pressure transducer was cannulated into the pulmonary artery through the right ventricle.
Pulmonary artery pressure was measured and once pressure waveforms had stabilized, the pressure was measured
continuously using a BL420 Data Acquisition and Analysis System (Chengdu TME Technology, Chengdu, China).

At the end of the experiment, rats were killed with pentobarbital sodium anesthesia, and the hearts were collected.
The right ventricle, left ventricle, and septum were carefully separated and weighed. A right ventricular hypertrophy
index (RVHI) was calculated from the formula [25]: RVHI = right ventricle weight/(left ventricle weight + septum
weight).

Lung histology
The right lung was processed for histology and the left lung for biochemistry (see section on ‘Western blot analysis’
below). We ligated the left main-stem bronchus, instilled the right lung with 4% polyformaldehyde (pH 7.4) for 30
min, and then clipped the right lung. All right lungs were fixed in 4% polyformaldehyde, paraffin-embedded, sliced
into sections 4-μm thick, and stained with Hematoxylin and Eosin. The left lung was cut and preserved in liquid
nitrogen for biochemical analysis.

To evaluate the morphology of muscularized pulmonary artery, the medial wall thickness (MWT) with vessel di-
ameter of 100 μm was assessed by the formula: MWT = (medial thickness × 2/external diameter) × 100% [26].
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Culturing PASMCs
Primary PASMCs were isolated as described [27]. Briefly, intrapulmonary arteries were separated and excised, and
endothelial cells were removed by scraping. The pulmonary arteries were cut into pieces and incubated in Dulbecco’s
minimum Eagle’s medium (DMEM) containing 10% FBS, 100 U/ml penicillin, and 0.1 mg/ml streptomycin. Tis-
sue explants were discarded after 7 days, and the remaining PASMCs were incubated in culture medium containing
20% FBS until they reached 90% confluence. Cells were digested with 0.05% trypsin in PBS, then subcultured in
medium containing 10% FBS. PASMCs were identified based on immunostaining with a polyclonal antibody against
rat α-smooth muscle actin.

Exposure of PASMCs to hypoxia
PASMC cultures from passages 5–7 were starved in DMEM containing 0.2% FBS for 24 h, then subjected for 24 h
either to normoxia (21% O2 and 5% CO2) or hypoxia (3% O2 and 5%CO2). Oxygen concentration in the chamber was
verified using an oxygen sensor (BioSpherix). Our hypoxia conditions were similar to those of other studies, which
typically exposed the cells to 0–10% O2 for 4–24 h.

Treatment of PASMCs with TRAM-34 or Kca3.1 siRNA
When PASMCs reached 90% confluence, cells were cultured in six-well dishes. PASMCs were treated with TRAM-34
at doses of 100 or 200 nM for 24 or 48 h. For siRNA transfection, cells were transfected with purified fragment siRNA
targetting Kca3.1 (5′-GCCAAACUAUACAUGAACA-3′, synthesized by Ribobio, China) at different concentrations
(25, 50, or 100 μM) and action times (24, 48, or 72 h). Transfection was carried out using INTERFERin (Polyplus,
France) according to the manufacturer’s instructions.

Assay of Kca3.1 expression
RNA was extracted from PASMC cultures and left lungs of rats that had been treated or transfected as described
above. Extraction was performed using TRIzol (Invitrogen, Carlsbad, CA, U.S.A.), and cDNA was synthesized by
MMLV reverse transcriptase (MBI Fermentas, Ontario, Canada). This cDNA was quantitated by PCR in a Bio–Rad
iCycler CFX using SYBR1 GreenER qPCR SuperMix (Bio–Rad, U.S.A.) and primers targetting regions in the genes
encoding Kca3.1 and β-actin. Primers and PCR conditions were as described in [19].

Western blot analysis of MAPK levels
Total protein was extracted from right lung tissue from rats and PASMC cultures treated or transfected as described
above, and resulting protein concentrations were assayed using the BCA method. Equal amounts of protein (20 μg)
were electrophoresed on an SDS/polyacrylamide gel (12% gel), and then electroblotted on to PVDF membrane. Mem-
branes were blotted with primary antibodies (CST, U.S.A.) against t-p38 MAPK (1:2000), p-p38 MAPK (1:1000),
t-ERK MAPK (1:2000), or p-ERK MAPK (1:1000). As a loading control, membranes were blotted with antibody
against tubulin (1:2000; Epitomics, U.S.A.). Then membranes were blotted with a horseradish peroxidase–conjugated
secondary antibody (1:4000; Epitomics, U.S.A.) and stained using the Clarity ECL Western Blot Substrate (Bio–Rad,
U.S.A.).

Statistical analysis
Values are expressed as mean +− S.D., and data were analyzed statistically using SPSS 13.0 (Chicago, U.S.A.). Differ-
ences between treatment groups were assessed for significance using one-way ANOVA and Tukey’s HSD test. The
threshold for significance was defined as P<0.05.

Ethics
The animal experiments in the present study were approved by the Animal Ethics Committee of Sichuan University.
Procedures conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals, as well
as to all relevant institutional and national guidelines and regulations.
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Figure 1. Lung sections from rats exposed for 3 weeks

To (A) normoxia, (B) normoxia in the presence of 300 μg/kg TRAM-34, (C) normoxia in the presence of 600 μg/kg TRAM-34, (D) hypoxia,

(E) hypoxia in the presence of 300 μg/kg TRAM-34, or (F) hypoxia in the presence of 600 μg/kg TRAM-34. Sections were stained with

Hematoxylin and Eosin. In all the images, vessel diameter was 100 μm. Magnification: 20×.

Figure 2. Hypoxia-induced changes

In (A) RVHI, (B) pulmonary artery pressure, and (C) MWT. Rats were exposed to normoxia or hypoxia in the absence or presence of 300

μg/kg TRAM-34 or 600 μg/kg TRAM-34. #P<0.05 compared with normoxia group; ##P<0.05 compared with hypoxia group.

Results
TRAM-34 administration attenuated hypoxia-induced pulmonary artery
remodeling, pulmonary artery pressure, and RVHI in rats
Exposure to hypoxia for 3 weeks led to thick-walled pulmonary arteries with media hyperplasia, which was not ob-
served in control animals (Figure 1). Hypoxia also significantly increased RVHI (Figure 2A); it increased pulmonary
artery pressure, consistent with severe PAH (Figure 2B); and it increased medial wall thickness of arterioles, indicat-
ing pulmonary artery remodeling (Figure 2C). However, TRAM-34 intervention could ameliorate hypoxia-induced
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Figure 3. Kca3.1 mRNA levels after TRAM-34 and Kca3.1 siRNA intervention

(A) Kca3.1 mRNA expressions were measured in rats treated as described in Figure 2. (B) Kca3.1 mRNA levels after TRAM-34 intervention

at dose of 100 or 200 nM in PASMCs. (C) Kca3.1 mRNA expressions after 50 μM Kca3.1 siRNA transfection. #P<0.05 compared with

normoxia group; ##P<0.05 compared with hypoxia group.

PAH, decrease RVHI, and inhibit MWT in rats, and these results showed that Kca3.1 played important role in PAH
pathogenesis.

Up-regulation of Kca3.1 expression in hypoxia-exposed lungs and
PASMCs
To evaluate that Kca3.1 is involved in hypoxia-induced pulmonary artery remodeling and PAH, levels of Kca3.1
mRNA were compared between lungs from hypoxia-exposed rats and control animals. Kca3.1 mRNA levels were
higher in hypoxia-exposed animals (Figure 3A).

Our recent results showed that TRAM-34 could ameliorate PASMCs proliferation at doses of 100 and 200 nM after
24 h of hypoxia exposure [19], then we used these dosages and action times for in vitro experiments. The results
showed that Kca3.1 mRNA levels decreased after TRAM-34 intervention (Figure 3B).

For the siRNA transfection, the pre-experiments found that PASMCs transfected with 50 μM Kca3.1 siRNA for 24
h could significantly inhibit cell proliferation. Kca3.1 mRNA levels were decreased after siRNA transfection (Figure
3C).

TRAM-34 administration reduced hypoxia-induced ERK MAPK signaling
in rat lungs
To determine whether MAPKs are involved in hypoxia-induced PAH, we compared levels of ERK/p38 MAPK signal-
ing in lungs of hypoxia-exposed rats and control animals. Hypoxia was associated with higher levels of p-ERK and
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Figure 4. Signaling proteins expression in rat lungs after TRAM-34 intervention (dosage: 300 or 600 μg/kg)
#P<0.05 compared with normoxia group; ##P<0.05 compared with hypoxia group.

p-p38, while levels of t-ERK and t-p38 remained unchanged (Figure 4). These increases in p-ERK and p-p38 were
much smaller in the presence of TRAM-34, which did not affect levels of t-ERK and t-p38. These results suggest that
Kca3.1 regulates hypoxia-induced pulmonary artery proliferation via the p-ERK/p38 signaling pathway.

Inhibition of Kca3.1 using TRAM-34 or siRNA-reduced, hypoxia-induced
ERK/p38 MAPK signaling in PASMC cultures
Since proliferation of PASMCs is a dominant contributor to PAH, rat primary PASMCs were isolated and cultured for
proliferative experiment. To further validate the role of Kca3.1 in hypoxia-induced pathology, TRAM-34 and Kca3.1
siRNA were administered separately to PASMCs for 24 h simultaneously. Kca3.1 siRNA transfection for 24 h could
suppress Kca3.1 mRNA in PASMCs under both hypoxia and normoxia conditions (Figure 3C). Both pharmacological
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Figure 5. Signaling proteins expression in PASMCs after TRAM-34 intervention (dosage: 100 or 200 nM) and 50 μM Kca3.1

siRNA transfection
#P<0.05 compared with normoxia group; ##P<0.05 compared with hypoxia group.

and siRNA interventions decreased p-ERK and p-p38 expression, with no effect on t-ERK and p-p38, consistent with
the results observed in vivo (Figure 5).

Discussion
The results of the study mainly demonstrated that hypoxia exposure significantly increased the wall thickness of rat
pulmonary arterial, PAP, and RVHI as well as Kca3.1 mRNA and protein levels. TRAM-34 intervention markedly
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reduced the pulmonary artery remodeling, PAP, and RVHI that were caused by hypoxia exposure. Furthermore,
TRAM-34 decreased p-ERK and p-p38 expression induced by hypoxia.

We have already demonstrated that TRAM-34 decreases hypoxia-induced rat PASMC proliferation and
hypoxia-stimulated Kca3.1 expression in vitro [19]. Consistent with our in vitro study results, Kca3.1 expression
were significantly higher in the hypoxia group than in the normoxia group. Both TRAM-34 and Kca3.1 siRNA could
decrease hypoxia-induced p-ERK and p-p38 overexpression. Our results suggest a possible role of TRAM-34 in the
attenuation of hypoxia-induced pulmonary artery remodeling and PAH.

It has been reported that in rats exposed to chronic hypoxia for 3 weeks, there was an increase in right ventricular
systolic pressure (RVSP) and enhanced muscularization of small pulmonary arteries [28]. Similarly, elevated RVSP
and increased pulmonary vessels muscularization have also been detected in rats after 3 or 5 weeks of hypoxia expo-
sure. Both RVSP and PAP were major indexes for evaluation of elevated PAH [7-9]. Consistent with these findings,
in our study, 3 weeks of hypoxia exposure induced remarkable thickness of the pulmonary artery medial wall and
significantly increased PAP in rats. These results suggest that hypoxia may act as a leading role in pulmonary artery
remodeling and PAH.

Potassium channels are widely distributed in artery walls, and are essential for membrane potential mainte-
nance, cell volume, migration, proliferation, and apoptosis [12]. Calcium-activated potassium channels is a group
of potassium channels, including large conductance Ca2+-activated K+ channels (Bkca), intermediate conductance
Ca2+-activated K+ channels (Kca3.1), and small conductance Ca2+-activated K+ channels (Skca) [15]. Calcium acti-
vated potassium channels contribute to the pathogenesis of PAH, especially the Kca3.1 [29]. It has been found that
Bkca on smooth muscle cells are transformed to Kca3.1 to promote cell migration and proliferation [29]. Kca3.1 acts
as a regulator in the proliferative switch. For example, human endometrial cancer could be inhibited by blocking the
Kca3.1 [16]; balloon catheter delivery of TRAM-34 locally could prevent coronary artery VSMC phenotypic switch-
ing and reduce subsequent restenosis [30]; benign prostatic hyperplasia could be suppressed by blockage of Kca3.1
[31], and renal fibrosis is significantly attenuated by targetted interference of Kca3.1. TRAM-34 is a derivative of
triarylmethane clotrimazole, and exerts highly selective block role to Kca3.1 [13]. Since Kca3.1 plays a key role in
converting proliferation, we hypothesized that hypoxia exposure may increase Kca3.1 expression, and blocking the
Kca3.1 channel could suppress hypoxia-induced PAH. In the present study, we found a marked elevation in Kca3.1
expression both in vivo and in vitro compared with those from the control group. Administration of TRAM-34 intra
peritoneal injections decreased hypoxia-induced PAP, RVHI, and vascular remodeling.

Kca3.1 is an important regulator of the Ca2+-dependent proliferation mechanisms in VSMC [32]. Recently, it is
becoming increasingly clear that control of ion channels in the transcriptional process contributes to the pheno-
typic modulation of both the differentiated and the proliferative phenotype in VSMC [33,34]. Up-regulation of the
intermediate-conductance Ca2+-activated K+ channel, Kca3.1, and store-operated Ca2+ channels have been linked
with the proliferative phenotype [35,36]. Blockage of Kca3.1 with TRAM-34 prevents down-regulation of myocardin
and smooth muscle myosin heavy chain, thus promoting the differentiated phenotype and suppressing the pro-
liferative one [36,37]. In recent work [19], we showed that both TRAM-34 and siRNA against Kca3.1 decrease
hypoxia-induced PASMC proliferation in vitro, consistent with the in vivo experiments.

Since Kca3.1 helps to determine intracellular Ca2+ concentrations and this is important for Ras/ERK and
Ras/Raf/MEK/ERK signaling pathways [14,38], we examined whether the ERK/p38 MAPK pathway may mediate
the observed ability of TRAM-34 to alleviate PAH in rats. We found that hypoxia elevated levels of p-ERK and p-p38,
while TRAM-34 reduced them. Our results suggest that ERK/p38 MAPK signaling plays an important role in PAH
and is a promising therapeutic target. Our findings are consistent with the known role of these kinases in regulating
cell proliferation and differentiation in response to stimuli such as hypoxia, and in regulating contraction of vascu-
lar and non-vascular smooth muscle cells [21]. In fact, one study suggests that p38 MAPK mediates the sustained
pulmonary artery contraction induced by hypoxia in rats [24].

The effect of acute hypoxia on vascular remodeling is investigated by the culture of PASMCs. Hypoxia is generally
conducted for 4–24 h in 0–10% O2 with measurement of cell proliferation [38]. Hypoxia (1–5% O2) was positively
correlated with acute hypoxia and PASMC proliferation [39]. Accordingly, we chose 3% O2 for 24 h for PASMC
hypoxia. Both TRAM-34 and siRNA administration could decrease hypoxia-induced proliferation, and these results
are concomitant with those of an animal experiment.

In summary, hypoxia exposure significantly induced pulmonary artery remodeling, PAP elevation, and in-
creased expression of Kca3.1. TRAM-34 administration effectively attenuated the hypoxia-induced pulmonary ar-
terial remodeling and PAH, and reduced p-ERK and p-p38 expression. Kca3.1 transfected with siRNA in vitro de-
creased rat PASMC proliferation induced by hypoxia exposure. These results suggest that TRAM-34 could attenuate
hypoxia-induced PAH through the ERK/p38 MAPK pathway.
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