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Biological products of importance in food (e.g., milk) and medical (e.g., donor blood-derived products) sciences often cor-
respond to mixtures of samples contributed by multiple individuals. Identifying which individuals contributed to the mix-
ture and in what proportions may be of interest in several circumstances. We herein present a method that allows to do this
by shallow whole-genome sequencing of the DNA in mixed samples from hundreds of donors. We show the efficacy of the
approach for the detection of cows with subclinical mastitis by analysis of farms’ tank mixtures containing milk from as
many as 500 cows.

[Supplemental material is available for this article.]

Mastitis, namely, the inflammation of the udder, is the most im-
portant health issue in dairy cattle. It is estimated to cost
European farmers more than 1 billion euros per year in treatment
and milk loss (Hogeveen et al. 2011). Upon inflammation, im-
mune cells migrate into the udder and milk. Although milk from
healthy cows typically contains less than 100,000 cells per millili-
ter of milk, these numbers (referred to as somatic cell counts
[SCCs]) typically increase into the millions in case of mastitis.
Before themanifestation of overt clinical symptoms, SCCs progres-
sively increase in the milk of cows developing mastitis: SCCs≥
200,000 are typically considered to be a sign of pre- or subclinical
mastitis. Both yield and quality of the milk of cows with subclini-
cal mastitis is reduced (Schukken et al. 2003). Mastitis is routinely
managed by periodically counting the SCC inmilk samples to pre-
emptively identify cows developing subclinical udder inflamma-
tion. As profit margins decrease, farmers tend to forgo milk
testing, thereby compromising health management. Cost-effec-
tive alternatives for rapid detection of cows with subclinical masti-
tis are hence needed (Viguier et al. 2009).

The milk obtained from individual cows is typically collected
in one ormore large “milk tanks” on the farmbefore being shipped
to dairy factories.We previously proposed that SCCs in themilk of
individual cows could be estimated by measuring the allelic fre-
quencies in the tankmilk for sufficient numbers of SNPs, provided
that all cows contributing milk to the tank be genotyped once for
the corresponding variants. Thus, the proposed method would al-
low the identification of a minority of cows with subclinical mas-
titis by regularly analyzing a single sample containing amixture of
milk from all the cows on the farm, hence considerably reducing
costs (Blard et al. 2012). Before around 2010, the estimation of
breeding values to select the best dairy sires and dams used pedi-
gree-based estimates of kinship. Since then, selection methods in-
creasingly use genome-wide SNP information in a process referred

to as “genomic selection” (GS) (Georges et al. 2019). As GS is be-
coming routine in dairy cattle (including for dams), herds that
are fully genotyped with genome-wide SNP arrays are becoming
standard, and the proposed method now feasible. However, as
GS typically relies on the use of low-density SNP arrays, the basic
method proposed by Blard et al. (2012) is only effective for small
farms (100 or fewer cows). We herein show that by combining
low-density SNP genotyping or shallow sequencing of the cows
and tank milk’s DNA with in silico genotype imputation, individ-
ual SCCs can be accurately determined and cows with subclinical
mastitis effectively identified even in the largest farms (500 or
more cows). The proposed method has the potential to improve
the monitoring of udder health in dairy farms and to allow the
tracing of the origin of bulk animal food products other thanmilk.

Results

Principle of the proposed method

Assume that cows and tank (i.e., the reservoir in which the milk of
the cows is collected) milk are genotyped for a collection of SNPs.
Assume that the interrogated SNPs are biallelic, each characterized
by an A (say the allele of the reference genome) and a B allele (say
the alternate allele). If all cows contribute identical amounts of
DNA to themilk, the expected proportion of the B allele (common-
ly referred to as “B-allele frequency” when analyzing SNP array
data particularly to search for copy number variants) in the tank
milk corresponds to the frequency of the B allele in the farm’s
cow population. The actual DNA amount contributed by each
cow depends on the volume of milk that she produced and its
SCC. Unequal DNA contributions will cause slight departures
from the expected B-allele frequencies in the tank milk.
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Integrating these shifts over a large number of SNPs in conjunction
with the known genotypes of individual cows allows for the esti-
mation of the relative DNA contribution of each cow. This can,
for instance, be achieved using a set ofm linear equations in which
the “B-allele frequency” of each SNP j (ofm) is modeled as the sum
(over n cows) of the products of the dosage of the B allele in the ge-
notype of cow j (dij, known from her SNP genotype) multiplied by
the proportion of DNA contributed by cow i (fi) to the milk. The
proportions of DNA contributed by each cow can then be estimat-
ed using, for instance, least square methods. Accounting for indi-
vidual milk volumes and for the SCCs in the tank milk allows for
the estimation of SCCs for individual cows (see Methods) (Fig. 1).

Evaluating the proposed method by simulation

We first evaluated the proposed method by simulation (see
Methods). Genotyping the cows and the tank milk using 10,000
SNP arrays (i.e., low-density [LD] arrays as generally used in the
context of GS) allowed for the accurate estimation of individual
SCCs for farms with up to 100 cows (r ≥0.9, where r is the correla-

tion between real and estimated SCCs; scheme I). However, farms
with more than 100 cows are increasingly common. Medium-
(MD; e.g., 50,000) and high-density (HD, e.g., 700,000) SNP
arrays would be needed for the approach to be effective in farms
with 250 or more or 500 or more cows, respectively. Yet—being
too expensive—this is presently not a viable proposition (Fig. 2A;
Supplemental Table 1). We therefore envisaged a second scheme
(II) in which the cowswould still be genotypedwith LD SNP arrays
(as performed in practice) yet imputed (Marchini andHowie 2010)
to thewhole genome (8million [M] SNPs in the simulations) using
a sequenced reference population (e.g., Daetwyler et al. 2014),
whereas the DNA of the tankmilk would be genotyped by shallow
whole-genome sequencing (SWGS). We found that in this sce-
nario, sequencing the tank milk at a depth of 0.25× was sufficient
for farms with 100 cows, 0.5× for farms with 250 cows, and 2× for
farms with 500 cows (Fig. 2B). Accuracies were not significantly af-
fected by the density of the SNP arrays, that is, the method per-
formed as well with LD as with MD arrays (Supplemental Fig. 1).
Anticipating further advances in sequencing technology, we also
envisaged a scheme (III) in which both cows and tank milk would

Figure 1. Estimating somatic cell counts (SCCs) in the milk of individual cows by analyzing a sample of milk from the farm’s tank. Cows 1 to n contribute
different amounts of milk (buckets of various sizes in the figure) to the farm’s tank. The milk contains somatic cells (shown as small spheres in the milk col-
ored by cow) whose numbers reflect the health status of the cow’s udder. Cow 1 has higher a SCC, an indicator of subclinical mastitis. SCCs are unknown
upon milking (indicated by a question mark). Cows are individually genotyped once. In scheme I, this is performed using SNP arrays (illustrated by the
mesh), yielding genotype information for the limited number of interrogated SNPs (high bars) that can be summarized by the B-allele frequency as shown
(white: 0; half-colored: 0.5; fully colored: 1). SNP genotypes of individual cows are coded in the same colors as the SCCs. In scheme II, the genotypes of the
interrogated SNPs are augmented by imputation (illustrated by the computer rack), yielding dosage information (B-allele frequency) for many more SNPs
(small bars). In scheme III, cows are genotyped individually by shallow whole-genome sequencing (SWGS; illustrated by the sequencer). Sequence reads
(gray lines) are aligned to the reference genome, and alternate alleles at SNP positions are highlighted as color-coded tics. The B-allele frequency at specific
SNP positions ismeasured as the ratio of the number of readswith the B allele versus the total number of reads. In scheme IV, the genotype information from
SWGS is augmented by imputation improving the accuracy of the B-allele frequency estimates for millions of SNPs (small bars). A small sample of milk (tank
milk [TM]) is periodically (e.g., monthly or weekly) collected from the farm’s tank. DNA is extracted from the TMand genotyped using SNP arrays (scheme I)
or SWGS (schemes II, III, and IV). B-allele frequency for SNP j in themilk (B̂AFj ) is estimated from the ratio of fluorescence intensities when using SNP arrays or
from the proportion of reads with B allele in SWGS. The SCCs of individual cows are estimated from a set of linear equations modeling B̂AFj as the sum of
B-allele dosage (dij) multiplied by the proportion of the DNA in the tank contributed by cow i (fi). The estimated proportions of DNA contributed by each
cow correspond to the values of fi’s thatminimize the sum of squared errors (ɛj) over all SNPs. The SCCs for individual cows, per se, can be estimated as SCCi
= SCCtank×Vtank× fi/Vi, where SCCtank is the SCC measured in the farm’s tank, and Vi/Vtank is the proportion of the milk volume contributed by cow i.
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be genotyped by SWGS. We found that a 1× sequencing depth of
the tank milk would be sufficient when combined with a 0.25×
depth for 100 cows, whereas a 5× sequencing depth of the tank
milk would be needed in combination with 0.25× depth for 250
cows and 1× depth for 500 cows (Fig. 2C,D). In scheme III, allelic
dosage in the cows is directly measured from the number of alter-
native and reference alleles in the sequence reads. We further ex-
plored the effectiveness of augmenting the cow genotype
information from SWGS by imputation (scheme IV). This proved
to be effective, reducing the required sequence depth to 0.25×
for tank milk and 0.25× for 100 cows, to 1× for tank milk and
0.25× for 250 cows, and to 5× for tank milk and 0.25× for 500
cows (Fig. 2E,F). The previous simulations make a number of as-
sumptions thatmaynot apply in the real world: (1) SNPswere sam-
pled from a uniform distribution (i.e., rare and common SNPs
equally represented); (2) SNPs were assumed to be in linkage equi-
librium; (3) cows on the farm were assumed to be unrelated; and
(4) milk volumes were assumed to be known without error. To
more accurately mimic real conditions, we repeated the simula-
tions by (1) sampling genotypes from a phased data set of 750
Holstein-Friesian whole-genome sequences (hence properly ac-
counting for true MAF distribution, true linkage disequilibrium
[LD], and relatedness; many of the sequenced animals were related
as parent offspring or full- or half-sibs) and by (2) adding a normal-
ly distributed error with mean 0 and standard deviation of 5 L to
the simulated milk volumes (assumed to be normally distributed

with mean of 30 liter and standard devi-
ation of 10 L). This error rate corresponds
approximately to that expected when
having to estimate the daily milk volume
from the total lactation yield using a
standard lactation curve (Atashi et al.
2019). We assumed in these simulations
that the genotypes of the cows were
known without error and that the milk
was sequenced at a depth ranging from
0.25× to 5× as before. MAF, LD, and relat-
edness jointly had a relatively modest
impact on the accuracy of the method,
which could be compensated for by in-
creasing the sequencing depth of the
milk to fivefold and still allowing for ac-
curate estimates even in farms with 500
cows. Estimating the milk volume with
error had a more pronounced impact on
the accuracy, making it difficult to reach
a correlation reaching 0.9 in farms with
500 cows (Fig. 2G,H).

Real-world application of the proposed
method

To test the feasibility of our method in
the real world, we first collected cow
(blood) and tank (milk) samples from
a farm milking 133 Holstein-Friesian
cows. When only using genotypes from
the Illumina LD arrays (17,000 SNPs)
for both cows and tank milk (scheme I),
correlations between predicted and mea-
sured SCCs were 0.91 (or 0.79 when ig-
noring one cow with SCC>3 million).

We then imputed the cows to whole genome (13 M SNPs) using
a reference population of approximately 750 whole-genome se-
quenced Holstein-Friesian animals, and sequenced the tank milk
at ∼3.5× depth. The corresponding correlations (scheme II) were
0.97 (0.95) when using all sequence information or 0.96 (0.92)
when down-sampling sequence information as low as 0.1× depth
(Fig. 3A). We next performed a similar experiment on a farmmilk-
ing 520 Holstein-Friesian cows. The correlation between predicted
andmeasured SCCs was 0.78 (or 0.42 when ignoring 23 cows with
SCC>3 million) when only using information from the LD array
for both cows and tank milk (scheme I). When imputing the
cows to whole genome (13 M SNPs) and sequencing the milk at
∼3.5× depth (scheme II), the correlation increased to 0.89 (0.83).
Down-sampling the sequence information to 0.1× depth reduced
the correlation to 0.79 (0.57) (Fig. 3B).

As shown in both farms, correlation estimates are affected by
SCC spread: Small numbers of cows with very high SCCs tend to
inflate r. We therefore computed accuracies, computed as the pro-
portion of correctly classified cows for different SCC thresholds,
which is how farmers would likely use the information. It can be
seen that for a threshold value of, for example, 500,000 SCCs, ac-
curacies >0.85 were obtained when sequencing (scheme II) the
tank milk at, respectively, 0.1× (133 cows) and 3.5× depth (520
cows). Thus—as predicted by the simulations—scheme I provided
adequate precision for the farmwith 133 cows but not for the farm
with 520 cows. However, in this large farm, combining SWGS of
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Figure 2. Evaluating the efficiency of the proposed approach by simulation. (A) Reference scheme I in
which individual cows and tank milk are genotyped with the same array interrogating 10,000 (LD),
50,000 (MD), or 700,000 (HD) SNPs. (B) Scheme II in which individual cows are genotyped with a LD
10,000 SNP array and imputed to whole genome (8 M SNPs), whereas the tank milk is whole-genome
sequenced at depth ranging from 0.25× to 5×. (C) Scheme III in which individual cows (0.25×) and
tank milk (range: 0.25× to 5×) are genotyped by SWGS. (D) Same as C except that individual cows are
sequenced at 1× depth. (E) Scheme IV inwhich individual cows are genotyped by SWGS (0.25×) followed
by imputation to whole genome (8 M SNPs), and tank milk is genotyped by SWGS (range: 0.25× to 5×).
(F) Same as E except that individual cows are sequenced at 1× depth. (G) Scheme in which the cow ge-
notypes are sampled from a real data set and hence conform to reality with regard to distribution ofMAF,
LD, and relatedness. Genotypes of the cows are assumed to be known (very similar to II and IV) and tank
milk genotyped by SWGS (range: 0.25× to 5×). (H) Same as G except that the milk volume is estimated
with error. The color code used to quantify the correlations between predicted and real SCCs is shown.
Corresponding numerical values are provided in Supplemental Table 1.
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the tank milk with whole-genome imputation of the cows (i.e.,
scheme II) was indeed effective (Fig. 3).

As costs per base pair continue to decline, sequencing is like-
ly to replace array-based genotyping in the future. To test the fea-
sibility of schemes III and IV (i.e., genotype the cows by SWGS
rather than with SNP arrays, without (III) and with (IV) imputa-
tion), we collected samples from a farm with 120 Holstein-
Friesian cows. All cows were genotyped with the Illumina LD ar-
ray (17,000) as well as sequenced at average 1.08× depth (range:
0.26–1.73). The milk was sequenced at ∼3.5× depth. The correla-
tion between predicted and measured SCCs was 0.97 (or 0.96
when ignoring one cow with SCC>3 million) under scheme
I. Under scheme III, correlations were 0.82 (0.83) when sequenc-
ing the milk at 3.5× and 0.75 (0.76) when down-sampling the
milk to 0.1×. We then imputed the sequenced cows to HD
(770,000 SNPs) using a population of 800 reference animals gen-
otyped with the HD array (scheme IV). The correlation increased
to 0.93 (0.94) when sequencing the milk at 3.5× and to 0.83 (0.77)
when down-sampling the milk to 0.1× (Fig. 3C). Accuracies at
SCC threshold of 500,000 were 0.96 (scheme I), 0.95 (3.5×) and
0.80 (0.1×) (scheme II), 0.82 (3.5×) and 0.81 (0.1×) (scheme III),
and 0.95 (3.5×) and 0.88 (0.1×) (scheme IV) (Fig. 3C). In sum-
mary, (1) combining cow genotyping using SNP arrays with ge-
nome-wide imputation with SWGS of tank milk allows for cost-
effective identification of cows with subclinical mastitis even in

farms with as many as 500 cows per
milk tank, and (2) as sequencing costs
continue to decline, arrays-based target-
ed SNP genotyping of the cows could
be replaced by genotyping by SWGS
and yield comparable results.

Monitoring SCC dynamics with the
proposed method

Farmers typically measure individual
SCCs once a month or less. Yet, SCCs
may rapidly change. The SCC measured
on the milk testing date may not be a re-
liable indicator of the cow’s udder health
during the intervening period. To exam-
ine the SCC dynamics over time, we col-
lected 20 tank milk samples over a 100-d
period (day −84 to +17 from day of milk
testing) for the farm with 120 cows.
Milk samples were genotyped using the
Illumina LD array and individual SCCs
estimated using scheme I. Figure 4A
shows the SCCs predicted every 5 d on
average for the 120 cows, sorted by
SCCs measured on day 0 (milk testing
day). Of note, the correlation between
the SCCs measured on day 0 and the av-
erage of the SCC estimates for the 21 col-
lection dates was low (r =0.52) (Fig. 4B)
and decreased rapidly with the number
of days from milk testing day (Fig. 4C).

Discussion
We herein show that by combining ar-
ray-based SNP genotyping and whole-ge-

nome imputation for the cows with SWGS of the tank milk, it is
possible to accurately estimate SCCs for individual cows andhence
effectively identify animalswith subclinicalmastitis even for tanks
collecting milk for more than 500 cows, and this by performing a
single analysis for the entire herd. Reagent costs to sequence a
mammalian genome at onefold depth are now less than 20 euros,
thus making this a cost-effective proposition. As a matter of fact,
the method is being deployed in the field in several countries.

Implementing themethod requires all cows on the farm to be
genotyped. This will increasingly correspond to reality as genotyp-
ing costs continue to decrease and GS is more and more used for
the selection of cows. In 2016, more than 1.2 million dairy cows
had been reportedly genotyped in the US alone (Wiggans et al.
2017), and present worldwide numbers are likely 3 million or
more. In addition, a reference population of a few hundred ani-
mals of the breed of interest that are either HD genotyped
(700,000) or better whole-genome sequences are required for accu-
rate imputation. Such reference populations are already available
for the most important dairy cattle breeds (Daetwyler et al. 2014;
Charlier et al. 2016) and could be easily generated for the remain-
ing ones.

We show that SCCs are dynamic and rapidly change over
time. SCCs measured on day 0 are poor indicators of SCC in previ-
ous and futureweeks: Cowswith high SCCs on the day ofmilk test-
ing may have low SCCs a few days later (or earlier) and vice versa.

E F

BA

C D

Figure 3. Correlation between predicted and measured SCCs in the milk of individual cows (A,C,E), as
well as accuracies in classifying cows with SCCs above and below a chosen threshold value (B,D,F), in
farms with 133 (A,B), 520 (C,D), and 120 (E,F ) cows, using scheme I (blue), scheme II (red), or scheme
IV (green). (Scheme I) Cows and tankmilk genotypedwith LD SNP arrays (17 K), no imputation. (Scheme
II) Cows genotyped with LD array and imputed to 13 M SNPs; tank milk sequenced 3.5× (red) or 0.1×
(orange). (Scheme IV) Cows genotyped by WGS (1×) and imputation to HD; tank milk sequenced at
3.5× (dark green) or 0.1× (light green).
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The proposed method would allow tighter monitoring of SCCs,
hence improving udder health management. More frequent mon-
itoring of SCCs for large number of cows may reveal interindivid-
ual differenceswith regard to SCCdynamics thatmay be correlated
withmastitis resistance, heritable andhence amenable to selection
including by GS.

Sequencing of the DNA in the tankmilk allows simultaneous
characterization of the tank’smicrobiome. As amatter of fact,∼1%
of reads in this study mapped to bacterial genomes. This informa-
tion may be very useful both from a farm health management
point of view as well as from a downstream dairy processing point
of view. Whole-genome sequence data of bulk milk also informs
about the herd frequency of functional variants such as casein var-
iants affecting consumer health or processing properties (Brooke-
Taylor et al. 2017) or variants causing inherited defects or embry-
onic lethality in cows (Georges et al. 2019). In many countries, it
is not allowed to addmilk from cows being treated with antibiotics

to the tank. As suggested before, the proposed approach can be
adapted to verify whether a specific cow did contribute milk to
the tank or not (e.g., by testing the significance of the correspond-
ing cow effect in the linear model) (Blard et al. 2012). The de-
scribed method may have applications in tracing the origins of
bulk animal food products other than milk, as well as in monitor-
ing the composition of mixed-donor blood-derived transfusion
products.

Methods

Simulated data

Reference scheme (I)

We simulated farms with n (25, 50, 100, 250, and 500) cows con-
tributing milk to the tank. Cows were genotyped with SNP arrays
form (10,000, 50,000, or 750,000)markers without error.Minor al-
lele frequencies (MAFs) were sampled from a uniform [0, 0.5] dis-
tribution, and genotypes from the corresponding Hardy–
Weinberg distributions. SCCs of individual cows (SCCi) were sim-
ulated by sampling values from a Weibull distribution with scale
parameter α=1 and shape parameter β=2 and by multiplying
the ensuing value by 200,000. Exact B-allele frequencies of individ-
ual SNPs (BAFj) in the milk were determined for each SNP j based
on the combination of cellular contribution of the n cows to the
milk and of their genotype. It was assumed that B-allele frequen-
cies were estimated with a normally distributed error N(0,
0.0025) (i.e., SE =0.05), yielding m B̂AFj.

Scheme II

Same setting as in the reference scheme with the following addi-
tions. For cows genotyped for 10,000 or 50,000 SNPs, we simulated
imputation by augmenting the data to 8 M genotypes using an er-
ror model mimicking real, MAF-dependent imputation accuracy.
The error model was constructed using a real data set for 800 unre-
lated Holstein-Friesian individuals that were genotyped for the
Illumina 777K array. This data set was split into a set of 200 and
a set of 600 individuals. The set of 200 was reduced first to the ge-
notypes interrogated by the Illumina 10K (LD) array and then to
the genotypes interrogated by the Illumina 50K SNP arrays. The re-
duced SNP sets were imputed back to the content of the Illumina
777K (HD) SNP array using the 600 individuals as reference popu-
lation. The frequencies of imputing a given genotype depending
on the real genotype were scored for MAF bins of 0.01 separately
for the LD and 50,000 array data. We simulated genotyping-by-se-
quencing of tank milk as follows. For each of the 8 M SNP posi-
tions, we sampled local read depth (r∈ integers) from a Poisson
distribution with mean C, where C is the average genome-wide
coverage (0.25, 0.5, 1, 2, or 5). We then sampled r reads, each
with a probability =BAFj (computed as above) of being the B allele.

Scheme III

Individual SNP genotypes and tankB-allele frequencies (BAFj) were
generated as in scheme I (genotypes at 8 M SNP positions). It was
assumed thatmilk tankwas genotyped by SWGS at an average cov-
erage ofC (0.25, 0.5, 1, 2, or 5), and cowswere genotyped by SWGS
at average coverage of C (0.25, 0.5, or 1). Genotyping-by-sequenc-
ing of individual cows was simulated by (1) sampling, for each of 8
M SNP positions, local read depth (r∈ integers) from a Poisson dis-
tribution withmean C and (2) sampling r reads with probability 0,
0.5, or 1 to be the alternate allele (B) depending on the genotype of
the cow (AA, AB, or BB). Genotyping-by-sequencing of the tank
milk was performed as in scheme I.

B

A

C

Figure 4. Evaluating SSC dynamics. (A) SCCs predicted using scheme I
for 21 tank milk samples collected over a 100-d period from 125 cows to-
tal. Small gray circles indicate 20 predictions per cow; large gray circles, av-
erage of 21 measurements per cow; red square, SCCs measured on day 0;
green triangle, SCC predictions on day 0. (B) Relationship between SCC
values measured on day 0 and average of 21 predictions sampled over a
100-d period (days −84 to +17). (C) Correlations between measured
(day 0) and predicted (day x) SCCs as a function of the number of days
from day 0.
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Scheme IV

Scheme IV was identical to scheme III except that cow genotypes
were generated at 8 M SNP position using a MAF-dependent and
sequence depth–dependent imputation error model. The error
model was constructed using available SWGS data down-sampled
to 1× (176 cows) or 0.25× coverage (192 cows). The cows were im-
puted to HD (777,000 SNPs) using a reference population of 800
unrelated Holstein-Friesian individuals that were genotyped with
the Illumina 777K array. At each of the 777,000 SNP positions,
the likelihood of the sequence data under the three possible geno-
types (AA, AB, and BB), was computed following the method of
Chan et al. (2016), as

L(nrA, nrB|′′AA′′, 1) = nrA + nrB
nrB

( )
× (1− 1)nrA × 1nrB ,

L(nrA, nrB|′′AB′′, 1) = nrA + nrB
nrB

( )
× 0.5(nrA+nrB),

L(nrA, nrB|′′BB′′, 1) = nrA + nrB
nrB

( )
× (1− 1)nrB × 1nrA ,

where nrA (respectively, nrB) is the number of A (respectively, B
reads), and ɛ is the sequencing error rate set at 0.01. The corre-
sponding log10 L was used as input for BEAGLE 4.0 (Browning
and Browning 2009). Variant positionswithout sequence coverage
in any of the 176 (192) cows (hence not imputed by BEAGLE 4.0)
were dealt with in a second round of imputation using BEAGLE 5.0
(Browning et al. 2018). The imputation accuracy was evaluated in
0.01 MAF-bins by comparing imputed and real genotypes at the
approximately 17,000 variant positions interrogated by the
Illumina LD array.

Real data

Data set 1

We obtained a sample of tank milk from a farm in France milking
133 Holstein-Friesian cows. All had been genotyped with an
Illumina LD array interrogating 17,000 SNPs using standard proce-
dures. For all cows, genotypes were imputed to the whole genome
using a reference population of 743 Holstein-Friesian animals se-
quenced at average depth of 15× (range: 4–48) and the BEAGLE
software (v5.0) (Browning and Browning 2009), yielding allelic
dosages for a total of 13M SNPs. Individualmilk records, including
volume and SCCs (cells/mL) measured on the day of the sample
collection, were obtained for all cows that had contributed milk
to the tank. DNA was isolated from 1.5 mL tank milk using the
NucleoMag kit (Macherey-Nagel). The tank milk DNA was first
genotyped using the Illumina LD array interrogating 17,000
SNPs. An Illumina compatible NGS library was then prepared
with 50 ng of genomic DNA using the KAPA HyperPlus kit
(Roche). Sequencing was performed on a NextSeq 500 instrument
(Illumina), yielding 63million paired end reads of 2 ×75 bp, corre-
sponding to a genome coverage of 3.5×. Reads were mapped to the
bosTau8 genome build using BWA-MEM (Li 2013). Reference (R)
and alternate (A) alleles were counted at 13 M SNP positions of
the HD array using the Bam-ReadCount tool (https://github
.com/genome/bam-readcount.git) for reads with aminimummap-
ping quality of 30.

Data set 2

We obtained samples of tank milk from a Belgian farm, including
milk from 520 Holstein-Friesian cows. Milk volume and SCCs
(cells/mL) measured on the same day were obtained for all cows
that had contributed milk to the tank. All cows were genotyped
with the Illumina LD array interrogating 17,000 SNPs using stan-

dard procedures and imputed to the whole genome using whole-
genome sequence data (average depth: 15×; range: 4×–48×) from
743 Holstein-Friesian animals as a reference and the BEAGLE soft-
ware (v5.0) (Browning and Browning 2009), yielding allelic dosag-
es for a total of 13 M SNPs. DNA extraction from the tank milk
samples and genotyping with the Illumina LD (17,000) array
were conducted as for data set 1. For sequencing of the tank
milk, an Illumina-compatible sequencing library was prepared us-
ing 12 ng of DNA and the Riptide high-throughput rapid library
prep kit (iGenomx). The library was sequenced on an Illumina
NextSeq 500 2×150 paired-end flow cell at 4× coverage.

Data set 3

We obtained samples of tank milk from a Belgian farm, including
milk from 120 Holstein-Friesian cows. Milk volume and SCCs
(cells/mL) measured on the same day were obtained for all cows
that had contributed milk to the tank. All cows were genotyped
with the Illumina LD array interrogating 17,000 SNPs using stan-
dard procedures, and imputed to the whole genome using
whole-genome sequence data (average depth: 15×; range: 4–48)
from 743 Holstein-Friesian animals as a reference and the
BEAGLE software (v5.0) (Browning and Browning 2009), yielding
allelic dosages for a total of 13 M SNPs. We additionally prepared
an Illumina-compatible NGS library for each cow, using 12 ng of
genomic DNA and the Riptide high-throughput rapid library
prep kit (iGenomx). Libraries were sequenced on an Illumina
NovaSeq S4 2150 paired-end flow cell at average 1.08× depth
(range: 0.26–1.73). Cowgenotype-by-sequencing datawere imput-
ed to HD (777,000) density using a reference population of 800
Holstein-Friesian animals genotyped with the bovine HD
Illumina array (777,000 SNPs) and the BEAGLE software (v5.0)
(Browning and Browning 2009), yielding allelic dosages for a total
of 777,000 SNPs. DNA extraction from the tankmilk samples, gen-
otypingwith the Illumina LD (17,000) array, and sequencing (cov-
erage 4×) were conducted as for data sets 1 and 2.

Data set 4

In addition to obtaining a sample of tank milk on the day of the
milk recording (i.e., yielding the SCC measured using with a cell
counter) for the Belgian farm with 120 cows, we weekly collected
an additional 11 tank milk samples before and 9 samples after,
spanning a total period of∼3mo. The correspondingDNA samples
were genotyped using the Illumina LD (17,000) array.

Statistical models

We defined a set of m linear equations of the form

B̂AFj =
∑n
j=1

fi × dij + 1j,

in which fi is the proportion of the DNA in the tank milk contrib-
uted by cow i, dij is the “dosage” of the alternate allele A for
cow i andmarker j, and ɛj is the error term for marker j. When gen-
otyping the tankmilk with arrays, B̂AFj corresponds to the B-allele
frequency estimated by Genome Studio (Illumina). When geno-
typing the tankmilk by SWGS, B̂AFj corresponds to the proportion
of A reads at the corresponding genome position. For cow geno-
types obtained with arrays, dij corresponds to 0, 0.5, or 1 for
genotypes AA, AB, and BB, respectively. For cow genotypes
obtained by imputation, dij is the dosage of the B allele
estimated by BEAGLE. For cow genotypes obtained by SWGS,
dij = 0.5× P(′′AB′′|nrA, nrB, qj)+ P(′′BB′′|nrA, nrB, qj), where nrA (re-
spectively nrB) is the number of A (respectively, B reads) for marker
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j and cow i, and qj is the population frequency of the B allele of
marker j.

P(′′AB′′|nrA, nrB, qj) =

2qj(1− qj)× 0.5nrA × 0.5nrB × (nrA + nrB)!
nrA!× nrB!

(1− qj)
2 × 1nrA × 0nrB + 2qj(1− qj)× 0.5nrA × 0.5nrB

× (nrA + nrB)!
nrA!× nrB!

+ q2j × 0nrA × 1nrB

P(′′BB′′|nrA, nrB, qj) =
q2j × 0nrA × 1nrB

(1− qj)
2 × 1nrA × 0nrB + 2qj(1− qj)× 0.5nrA × 0.5nrB

× (nrA + nrB)!
nrA!× nrB!

+ q2j × 0nrA × 1nrB

For SNPs j without usable information for cow i (e.g., genotyping
failure or no covering reads) dij was set at B̂AFj.

The fis were estimated by least square analysis, namely, by

minimizing
∑m
j=1

12j . When the tank milk was genotyped by SWGS,

we also performed a weighted least square analysis; namely, we es-

timated fis by minimizing
∑m
j=1

wj1
2
j , where wj is the coverage (nrA+

nrB).
The SCCis were calculated from the fis

SCCi = SCCtank × Vtank × fi/Vi,

whereVtank andVi are the volumes ofmilk in the tank and contrib-
uted by cow i, respectively.

The accuracies of the predictions were measured by (1) the
correlation (r) between real and estimated SCCi, and/or (2) the abil-
ity to discriminate animals with SCCs above versus below a certain
threshold value measured as (TP+TN)/n, where TP stands for the
number of true positives, TN for the number of true negatives,
and n for the total number of cows.

To test the effect of sequence depth on accuracy, we sampled
reads overlapping SNP positionswith probability x, such that E(C×
x) =D, where D is the desired sequence depth.

Data access
All sequence (FASTQ files) and genotype (VCF files) data used in
this study have been submitted to the European Nucleotide
Archive (ENA; https://www.ebi.ac.uk/ena/browser/home) under
accession number PRJEB38123/ERP121506 and to the European
Variation Archive (EVA; https://www.ebi.ac.uk/eva/) under acces-
sion number PRJEB38336. Additional information to rerun the
analyses are provided as Supplemental Table 2.
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