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Abstract

Introduction: Targeted therapy for NSCLC is rapidly evolving. EGFR-TKIs benefit NSCLC patients with sensitive EGFR
mutations and significantly prolong survival. However, 20–30% of patients demonstrate primary resistance to EGFR-
TKIs, which leads to the failure of EGFR-TKI treatment. The mechanisms of primary resistance to EGFR-TKIs require
further study.

Methods: Targeted sequencing was used for the detection of genomic alterations among patients in our center.
Regular cell culture and transfection with plasmids were used to establish NSCLC cell lines over-expressing MDM2
and vector control. We used the MTT assays to calculate the inhibition rate after exposure to erlotinib. Available
datasets were used to determine the role of MDM2 in the prognosis of NSCLC.

Results: Four patients harboring concurrent sensitive EGFR mutations and MDM2 amplifications demonstrated
insensitivity to EGFR-TKIs in our center. In vitro experiments suggested that MDM2 amplification induces primary
resistance to erlotinib. Over-expressed MDM2 elevated the IC50 value of erlotinib in HCC2279 line and reduced the
inhibition rate. In addition, MDM2 amplification predicted a poor prognosis in NSCLC patients and was associated
with a short PFS in those treated with EGFR-TKIs. The ERBB2 pathway was identified as a potential pathway
activated by MDM2 amplification could be the focus of further research.

Conclusion: MDM2 amplification induces the primary resistance to EGFR-TKIs and predicts poor prognosis in NSCLC
patients. MDM2 may serve as a novel biomarker and treatment target for NSCLC. Further studies are needed to
confirm the mechanism by which amplified MDM2 leads to primary resistance to EGFR-TKIs.
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Introduction
Lung cancer ranks first among all malignancies in
cancer-related mortality, and the 5-year overall survival
(OS) is lower than 20% in China (Allemani et al. 2018).
Non-small-cell lung cancer (NSCLC) consists of nearly
85% of lung cancer cases (Hou et al. 2019a) and targeted
therapeutics based on driver mutations of NSCLC, such
as mutations of epidermal growth factor receptor
(EGFR) (Santoni-Rugiu et al. 2019) and anaplastic

lymphoma kinase (ALK) (Golding et al. 2018), have sig-
nificantly prolonged the survival of patients. Approxi-
mately 50% of Asian NSCLC patients harbor EGFR
mutations, while 11–16% of patients in Western coun-
tries (Recondo et al. 2018) benefit from treatment with
first-generation EGFR-TKIs. Mutations were detected in
exons 18 to 21 of EGFR, while the majority of EGFR
mutations are exon 19 deletions and exon 21 substitu-
tions of leucine for arginine (L858R) (Recondo et al.
2018; Castellanos et al. 2017). First-generation EGFR-
TKIs, including gefitinib and erlotinib, have benefited
NSCLC patients, especially Asian patients. According to
the IRESSA Pan-Asia Study, patients treated with
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gefitinib demonstrated longer progression-free survival
(PFS) than those treated with standard chemotherapy
regimens, including carboplatin and paclitaxel (9.5
months versus 6.3 months) (Mok et al. 2009).
Unfortunately, patients may develop resistance to first

generation EGFR-TKIs, which leads to treatment failure.
In addition to acquired resistance, multiple genomic al-
terations have been proven to be associated with primary
resistance to EGFR-TKIs, such as the pre-existing
T790M mutation (Inukai et al. 2006; Lee et al. 2014), in-
sulin-like growth factor 1 receptor (IGF1R) mutation
(Sharma et al. 2010), MET amplification (Turke et al.
2010), hepatocyte growth factor (HGF) mutation (Yano
et al. 2008) and mutations leading to sustained activated
signaling in other pathways, including the PI3K/AKT
pathway (Tan et al. 2015). In our previous review, we
identified the potential relationship between murine
double minute 2 (MDM2) amplification and primary re-
sistance to EGFR-TKIs. MDM2 amplification may acti-
vate the bypass signaling pathways, inhibit tumor cell
apoptosis, promote the epithelial to mesenchymal transi-
tion (EMT) process and tumor angiogenesis and contrib-
ute to primary resistance to EGFR-TKIs (Hou et al.
2019b). Therefore, we performed this study to confirm
our hypothesis that MDM2 amplification contributes to
the primary resistance to first-generation EGFR-TKIs in
NSCLC.

Methods
Clinical cases and targeted sequencing
Patients with advanced NSCLC (stage IIIB to IV) seen at
our center from July 2015 to March 2018 were selected
for targeted sequencing with the patients’ consent (n =
141). The detailed sequencing procedure has been de-
scribed in our previous study (Hou et al. 2018a). Patients
harboring concurrent EGFR sensitive mutations and
MDM2 amplification were included in this study. All
patients were treated with first-generation EGFR-TKIs
selected by the patient. The disease evaluation followed
Response Evaluation Criteria in Solid Tumors 1.1
(RECIST 1.1). The research was admitted by the Ethics
Committee of the Affiliated Hospital of Qingdao Univer-
sity, and the investigations all followed the rules of the
Declaration of Helsinki. Written informed consent was
signed by all patients when the research began, and all
experiments were carried out following the guidelines of
the National Health and Family Planning Commission of
the PRC.

Cell lines and cell culture
NSCLC (adenocarcinoma) cell lines were purchased
from the cell bank from the Chinese Academy of Sci-
ences (Shanghai, China). EGFR mutations were verified
in these cell lines (Gandhi et al. 2009; Li et al. 2007).

The cell lines were cultured in Roswell Park Memorial
Institute (RPMI)-1640 medium with 20% fetal bovine
serum (FBS) as well as 1% P/S (100 IU/ml penicillin and
100 IU/ml streptomycin) in a 37 °C humidified atmos-
phere with 5% CO2. All cell lines were tested for myco-
plasma and chlamydia, and all subsequent experiments
were used the selected cell lines within six generations.

Transfection
The cell line was divided into two groups and trans-
fected with plasmids expressing MDM2 (LVRU6GP-
MDM2, Fulengene, Guangzhou, China) or empty vector
(LVRU6GP-Vector, Fulengene, Guangzhou, China) using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA). The
transfection process lasted for 48 h, and then the cells
were harvested for subsequent experiments.

RNA extraction and quantitative real-time PCR (qPCR)
TRIzol (Invitrogen, Carlsbad, CA) was used to extract
the total RNA from the cultured cells. PrimeScript™ RT
Kit (TaKaRa, Otsu, Japan) was used to perform the
cDNA synthesis. The qPCR was performed by an FTC-
3000p Realtime PCR system (Funglyn Biotech, Shanghai,
China) using SYBR Premix EX Taq™ (TaKaRa, Otsu,
Japan). The expression levels of RNA were determined
by the comparative 2−ΔΔCT method as described in the
previous work of our lab (Wang et al. 2015). The PCR
primers used in this study are listed in Table S1.

Western blotting
Cell lysates were centrifuged at 12,000 g for 20 min at
4 °C, and the BCA protein assay reagent kit (Beyotime,
Shanghai, China) was used to determine the protein
concentrations of the supernatants. The supernatants
were mixed with 5 × SDS loading buffer and heated at
95 °C for 5 min. Twenty milligrams of total protein from
each sample was separated by SDS-PAGE and trans-
ferred to 0.22-μm nitrocellulose (NC) membranes. The
membranes were blocked with 5% nonfat dry milk in
TBST for 2 h and incubated overnight with the primary
antibody. After being washed three times for 30 min
with TBST, the membrane was incubated with HRP
conjugated secondary antibodies for 2 h at room
temperature. We used the ECL reagent (Pierce, Rock-
ford, IL, USA) to visualize the immunoreactive blots.
The information of antibody information was concluded
in Table S1.

MTT assay
Transfected cells were seeded (5000 cells/well) in 96-
well plates overnight and exposed to proportionally di-
luted erlotinib HCl (OSI-744) purchased from Selleck
ranging from 1 μM to 128 μM. After 24 h incubation, 20
ml of MTT solution (5 mg/ml) was added to the
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medium, and the cells were incubated at 37 °C for an-
other 4 h. Then we discarded the culture medium and
added 150 ml of DMSO to each well. Absorbance (A)
was measured at 570 nm using an ELISA plate reader,
with background subtraction measurements done at
630 nm. The inhibition rate was calculated as de-
scribed in our previous study (Hou et al. 2018b): In-
hibition rate = 1-[(A570-A630) of treated cells/(A570-
A630) of control cells].

Bioinformatic analyses
Survival analyses were performed online with cBioportal
for Cancer Genomics and GEPIA (Tang et al. 2017). In
addition, we divided lung adenocarcinoma (LUAD)
patients from The Cancer Genome Atlas (TCGA) into
two groups, MDM2-high (MDM2-H) and MDM2-low
(MDM2-L), and performed Gene Set Enrichment Ana-
lysis (GSEA) to acquire the altered signaling pathways
between the two groups of patients. (Patients informa-
tion available at: http://xena.ucsc.edu).

Statistical analyses
All figures and statistical results in our study were gen-
erated by GraphPad Prisma 8.0 software and Corel-
DRAW 2019. Survival curves were plotted using the
Kaplan–Meier method and compared using the log-rank
test. P values were two-tailed examined for all tests, and
P < 0.05 was used to define statistical significance.

Results
Case reports
In total, 4 patients with stage IIIB to IV NSCLC were re-
ported in this study. Targeted sequencing for these pa-
tients revealed that all 4 patients harbored concurrent
MDM2 amplification and sensitive EGFR mutations, ei-
ther deletions of exon 19 or the L858R mutation of exon
21. Patients all selected gefitinib (250 mg, qd) as their
first-line treatment given the genomic alterations of
EGFR. However, all patients did not reach the promised
PFS values in clinical trials including Asian patients, the
mean PFS (mPFS) was 6.25 months, ranging from 5.1
months to 8.1 months, and progressive disease was de-
tected in all patients through CT or MRI scans. Patient
1 was a 62-year-old man diagnosed with stage IV LUAD
on May 16, 2016, whose disease progressed after 5.2
months of gefitinib treatment. Multiple brain metastases
were found by MRI scan, as shown in Fig. 1a. Patient 2,
patient 3 and patient 4 had PFS values of 6.9 months,
8.1 months and 5.1 months, respectively. The maximum
diameter of the tumor increased by 20% over the base-
line level, and tumor markers were elevated. The change
in carcinoembryonic antigen (CEA) level over time in
patient 3 is shown in Fig. 1b, and CT scans for patient 2
are shown in Fig. 1a as well. Initial targeted sequencing

of the four patients revealed that all patients harbored
MDM2 amplification, therefore, we hypothesized that
MDM2 amplification may induce primary resistance to
EGFR-TKIs and result in a poor prognosis of NSCLC
patients harboring sensitive EGFR mutations. The results
of targeted sequencing and detailed information of the
four patients are listed in Table 1.

MDM2 amplification induces primary resistance to EGFR-
TKIs
We estimated the expression of MDM2 in three NSCLC
cell lines harboring EGFR sensitive mutations, including
HCC2279, NCI-H3255 and HCC4006 cell lines and
HCC2279 cell line were eventually selected for subse-
quent experiments. The western blotting results for the
evaluation of MDM2 expression are shown in Fig. 2a.
After transfection with plasmids, we harvested the cells
and estimated the relative RNA expression levels of
MDM2 between the two groups in HCC2279 cell line.
Cells transfected with plasmids expressing MDM2 dem-
onstrated higher expression levels than the vector con-
trol group, as shown in Fig. 2d.
After exposure to erlotinib, we compared the inhibition

rate of the MDM2 group and vector group in the
HCC2279 cell line, as shown in Fig. 2e. As shown in Fig.
2e, the MDM2 group demonstrated the ability to induce
primary resistance to EGFR-TKIs, represented by signifi-
cantly low inhibition rates while exposed to different doses
of erlotinib (1 μM, 2 μM, 4 μM, 8 μM, 32 μM, 64 μM and
128 μM). According to previous studies (Li et al. 2007;
Yoshida et al. 2015), 10 μM erlotinib inhibits the Tyr845
(Src-dependent phosphorylation) and Tyr1068 (autophos-
phorylation) phosphorylation of EGFR. Therefore, the
MDM2 group demonstrated significant resistance to erlo-
tinib compared with the vector group in the HCC2279 cell
line before and after the inhibition of EGFR phosphoryl-
ation by erlotinib. In addition, MDM2 amplification
significantly elevated the IC50 values of erlotinib in the
HCC2279 cell line from 36.5 μM (43.4 μM - 79.6 μM) to
57.6 μM (24.1 μM - 58.7 μM).
The western blotting results in Fig. 2b verified the

transfection process and the expression level of target
proteins. MDM2 expression was significantly elevated by
transfection. In addition, we examined the expression
levels of EGFR, ERK1 and ERK2. The expression of
EGFR showed no significant change after transfection.
However, ERK1 and ERK2 showed a positive correlation
with the elevation of MDM2 expression. The quantified
results of western blotting are shown in Fig. 2c.

MDM2 amplification predicts a poor prognosis in NSCLC
MDM2 amplification induces resistance to EGFR-TKIs
in NSCLC cell lines, and we further researched the rela-
tionship between MDM2 amplification and the
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prognosis in NSCLC. As shown in Fig. 3a, 20% of LUAD
patients harbored genomic alterations in EGFR, and 6%
of LUAD patients harbored genomic alterations in
MDM2. MDM2 amplification is the major alteration and
accounts for 85.98% of all genomic alterations of
MDM2. In addition, 1.42% of LUAD patients harbored
concurrent EGFR mutations and MDM2 alterations. As

shown in Fig. 3 B1, the concurrent genomic alteration of
EGFR and MDM2 demonstrated weak ability in predict-
ing the disease free survival (DFS) of LUAD patients (the
survival curve of DFS may discriminate the patients but
no statistical significance was found) but patients har-
boring concurrent genomic alterations of EGFR and
MDM2 demonstrated poor OS (P < 0.001) according to

Fig. 1 Basic information for selected patients harboring concurrent alterations of EGFR sensitive mutations and MDM2 amplification. a CT and MRI
scans of patients before and after the progression of the disease: new lesions in central nervous system of patient 1 were detected; the primary lesion
of patient 2 was evaluated as progressive disease according to RECIST 1.1; b the carcinoembryonic antigen (CEA) change of patient 3 during the
treatment process: CEA of patient 3 elevated drastically after approximately 2 months of gefitinib treatment
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the survival curves shown in Fig. 3 B2. In fact, MDM2
expression itself is a biomarker for predicting the poor
DFS (P = 0.007) and OS (P < 0.001) in NSCLC, as shown
in Fig. 3 C1 and C2. The mean DFS in the MDM2-L
group was 38.13 months versus 22 months in the
MDM2-H group, and the mean OS was 175 months in
the MDM2-L group versus 68.67 months in the MDM2-
H group.

MDM2 serves as a potential regulator by affecting EGFR-
TKI resistance pathways
To determine the potential pathway altered by MDM2
expression and provide more information for further re-
search, we performed GSEA based on data from the
TCGA database, as shown in Figure S1A1 to Figure
S1A4. These results revealed that MDM2 may activate
the ERBB2 pathway and induce primary resistance to
EGFR-TKIs via this pathway. In GSEA, the expression of
PI3K (nominal P value = 0.018) and SCH1 (nominal P
value = 0.034), members of the ERBB2 signaling pathway,
was up-regulated, and cell motility regulated by ERBB2
(nominal P value = 0.020) was activated in the MDM2-H
group. In addition, the platelet-derived endothelial
growth factor (PDGF)-ERK pathway, which also serves
as one of the EGFR-TKI resistance pathways, was also
activated in the MDM2-H group (nominal P value =
0.002). MDM2, which is a ubiquitinase of P53, is associ-
ated with the ubiquitination of the molecules shown in
Fig. S1B through the detection of gene-cloud of biotech-
nology information (GCBI), including MET and IGF1R,
which are tightly associated with the resistance to
EGFR-TKIs described above. The protein-protein inter-
action (PPI) plot is shown in Fig. S1C. We further per-
formed enrichment analysis based on these genes

through Metascape (an online tool for enrichment ana-
lyses), as shown in Fig. S1D. These genes were closely
related to pathways inducing EGFR-TKI resistance, in-
cluding positive regulation of kinase activity (GO:
0033674) and activation of the EGFR-TKI resistance
pathway (hsa01521).

Discussion
EGFR-TKIs benefit NSCLC patients harboring sensitive
EGFR mutations and prolong survival. However, 20–30%
of NSCLC patients harboring sensitive EGFR mutations
exhibit primary resistance to EGFR-TKIs (Xu et al. 2016;
Zhang et al. 2019). Further research is needed to investi-
gate the mechanisms of primary resistance to EGFR-
TKIs. As far as we are concerned, our study is the first
to confirm the relationship between MDM2 amplifica-
tion and resistance to first-generation EGFR-TKIs. Four
NSCLC patients in our study harboring EGFR sensitive
mutations and MDM2 amplification had significantly
shortened PFS, which drew our attention towards the
initial targeted sequencing done before EGFR-TKI treat-
ment. According to the survival analyses based on data
from the TCGA database, MDM2 predicts poor progno-
sis in NSCLC patients, especially a short OS in patients
harboring concurrent EGFR mutations and MDM2 al-
terations. MDM2, which serves as the biological negative
regulator of P53, may be a potential target for further
NSCLC treatment.
In vitro data in our study suggested that HCC2279

cells over-expressing MDM2 demonstrated the ability to
develop primary resistance to EGFR-TKIs regardless of
the EGFR phosphorylation. MDM2 overexpression con-
fers resistance to EGFR-TKIs in NSCLC cell lines, and
low expression of MDM2 leads to sensitivity to EGFR-

Table 1 Basic characteristics and NGS examination of four patients

Patient 1 Patient 2 Patient 3 Patient 4

Age 62 60 59 67

Gender male female female male

Race Asian Asian Asian Asian

TNM stage IV IV IV IIIB

Pathology Moderately differentiated
adenocarcinoma

Invasive
adenocarcinoma

Poorly differentiated
adenocarcinoma

Invasive
adenocarcinoma

EGFR-TKIs Gefitinib Gefitinib Gefitinib Gefitinib

Regimen 250mg, qd 250mg, qd 250mg, qd 250mg, qd

PFS (months) 5.2 6.9 8.1 5.1

Genomic
alterations

EGFR Exon 21 L858R
MDM2 Amplification
TP53 D208G
ERBB4 L770V
BLM D997N

EGFR Exon 19
Deletion
MDM2 Amplification
CDK4 Amplification
ARID1B Q1312K
NKX2–1 G115S
PTCH1 G1136
RET R475W

EGFR Exon 19 Deletion
MDM2 Amplification
EGFR Amplification
CDK4 Amplification
CTIF R77L
APC L1564

EGFR Exon 21 L858R
MDM2 Amplification
FLT3 P336T
FYN L411M
FANCL M89I
NCOR1 P347T
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Fig. 2 MDM2 amplification induces the primary resistance to erlotinib. aWestern blotting results for the evaluation of MDM2 expression level among NSCLC
cell lines: the HCC2279 cell line was selected for the subsequent experiments for the medium expression of MDM2; bWestern blotting results for the target
proteins in HCC2279 cell line: β-actin is the protein encoded by the house-keeping gene and balances the protein concentrations between 2 groups; MDM2
expression was upregulated after the transfection of the plasmids; EGFR expression demonstrates no significant difference between 2 groups; ERK proteins
including ERK1 and ERK2 were all upregulated in HCC2279-MDM2 group; c Quantified results for western blotting; d The verification of transfection in HCC2279
cell line: the transcription level of MDM2 gene was highly upregulated in HCC2279-MDM2 group; e The curve of the inhibition rate after exposure to erlotinib
with different concentration through the examination of MTT assays in the MDM2 amplification group and vector control group of HCC2279 cell line: 10uM
erlotinib was set as the medium concentration in this experiment, dramatic resistance to erlotinib could be found in HCC2279-MDM2 group in 1uM, 2uM, 4uM,
8uM, 32uM, 64uM and 128uM erlotinib. The inhibition rates were measured via the formula as follow: Inhibition rate = 1-[(A570-A630) of treated cells/(A570-
A630) of control cells]
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TKIs. In this study, the MDM2-overexpressing cell line
elevated the IC50 value of EGFR-TKIs and significantly
reduced the inhibition rate. This phenomenon led us to
investigate the potential pathways altered by MDM2 ex-
pression that may be associated with primary resistance
to EGFR-TKIs. ERBB2 amplification was proven to be
closely associated with resistance to EGFR-TKIs (Take-
zawa et al. 2012; Kim et al. 2019). In vitro experiments
revealed that ERBB2-overexpressing cell lines were re-
sistant to erlotinib. In addition, ERBB2 amplification was
detected in human samples that demonstrated resistance
to EGFR-TKIs. Through GSEA based on MDM2 expres-
sion, we found that the ERBB2 signaling pathway was

significantly activated in the MDM2-H group, which in-
dicated that MDM2 amplification may induce primary
resistance to EGFR-TKIs via the ERBB2 signaling path-
way. In addition to effects on the ERBB2 signaling path-
way, PDGF was significantly up-regulated in the
MDM2-H group. In our previous review (Hou et al.
2019b), MDM2 overexpression up-regulated the expres-
sion of PDGF and vascular endothelial growth factor
(VEGF), which contributed to sustained cancerous
angiogenesis and induced resistance to EGFR-TKIs.
Therefore, MDM2 amplification activates multiple path-
ways and enables tumor cells to develop resistance to
EGFR-TKIs. Admittedly, some limitations exist in our

Fig. 3 MDM2 amplification predicts a poor prognosis in NSCLC patients. a The genomic signatures of NSCLC patients derived from cBioportal for
Cancer Genomics: 20% NSCLC patients were detected harboring EGFR alterations and 6% of them were detected harboring MDM2 alterations; B1-
B2. The survival analyses of NSCLC patients grouped by genomic signatures of EGFR and MDM2 (DFS: disease free survival; OS: overall survival):
NSCLC patients harboring the concurrent alterations of EGFR and MDM2 have a poor OS (P < 0.001); C1-C2. The survival analyses of NSCLC
patients grouped by MDM2 expression: NSCLC patients with higher expression of MDM2 demonstrate poor DFS (P = 0.0067) and OS (P < 0.0001)
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study, and the pathways activated by MDM2 amplifica-
tion that contribute to resistance to EGFR-TKIs remain
to be further studied.
Several studies support our perspective. Kim et al.

(Paez et al. 2004) confirmed that advanced NSCLC pa-
tients harboring sensitive EGFR mutations and MDM2
amplification had a shorter PFS during EGFR-TKIs
treatment than patients without MDM2 amplification
(6.6 versus 10.4 months; P = 0.025). Importantly, MDM2
amplification is one of the most frequent concurrent al-
terations in NSCLC patients harboring EGFR mutations
(Yu et al. 2018). MDM2 may serve as a novel target for
NSCLC treatment. Another study proved that the com-
bination treatment of EGFR-TKIs and MDM2 inhibitors
can inhibit the proliferation of tumor cells and enhance
the anti-tumor effect of EGFR-TKIs (Bianco et al. 2004).
In addition to resistance to EGFR-TKIs, MDM2 amplifi-
cation was also confirmed to be associated with the in-
sensitivity to radiotherapy (Feng et al. 2016; Koom et al.
2012) and the hyperprogressive disease (HPD) associated
with cancer immunotherapy (Kato et al. 2017). In con-
clusion, MDM2 amplification is related to resistance to
multiple cancer therapeutics and may serve as the novel
biomarker and treatment target in the future.

Conclusion
MDM2 amplification induces resistance to first-
generation EGFR-TKIs in NSCLC patients harboring sen-
sitive EGFR mutations. In vitro experiments suggested
that MDM2 overexpression endowed HCC2279 cells with
primary resistance to erlotinib, as represented by an ele-
vated IC50 value and the reduced inhibition rate. Accord-
ing to GSEA based on MDM2 expression, the ERBB2 and
tumor angiogenesis pathways activated by MDM2 amplifi-
cation may serve as important pathways inducing primary
resistance to EGFR-TKIs. The pathways activated by
MDM2 amplification require further study.
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