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Introduction: The flexibility and tunability of metal organic frameworks (MOFs), crystal-

line porous materials composed of a network of metal ions coordinated by organic ligands,

confer their variety of applications as drug delivery systems or as sensing and imaging

agents. However, such properties also add to the difficulty in ensuring their safe implementa-

tion when interaction with biological systems is considered.

Methods: In the current study, we used real-time sensorial strategies and cellular-based

approaches to allow for fast and effective screening of two MOFs of prevalent use, namely,

MIL-160 representative of a hydrophilic and ZIF-8 representative of a hydrophobic frame-

work. The two MOFs were synthesized “in house” and exposed to human bronchial

epithelial (BEAS-2B) cells, a pertinent toxicological screening model.

Results: Analysis allowed evaluation and differentiation of particle-induced cellular effects

as well identification of different degrees and routes of toxicity, all in a high-throughput

manner. Our results show the importance of performing screening toxicity assessments

before introducing MOFs to biomedical applications.

Discussion: Our proposed screening assays could be extended to a wider variety of cell

lines to allow for identification of any deleterious effects of MOFs, with the range of toxic

mechanisms to be differentiated based on cell viability, morphology and cell–substrate

interactions, respectively.

Conclusion: Our analysis highlights the importance of considering the physicochemical

properties of MOFs when recommending a MOF-based therapeutic option or MOFs imple-

mentation in biomedical applications.
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Introduction
Metal organic frameworks (MOFs) are crystalline porous materials with ultrahigh

surface areas,1–3 consisting of metal ions or clusters linked with organic ligands via

coordination bonds.4–6 The large number of combinations of metal ions and organic

ligands available during such material synthesis confers a high degree of tunability

of MOF's geometry, size, porosity and functionality, respectively.5,6 Such features

conversely elicit MOF integration in numerous applications ranging from gas

capture and storage7,8 to water adsorption and from catalysis to electrical-based

applications.9–12

Recently, MOFs have also gained interest and use in biomedical applications,13 both

for the formation of contrast agents for MRI enhancement13,14 and as agents for drug
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delivery strategies.13 The ability to tune their structures as well

as their porosity to target specific areas of the body has allowed

for adequate adsorption of selective drugs or molecules as well

as user-directed delivery.15 MOF integration also led to better

contrast and longer duration of imaging when used for MRI,

all relative to traditional contrast agents14,16,17 or time-con-

trolled delivery of covalently or noncovalently bound drugs to

selected diseased tissue, all while preventing side effects of the

surrounding healthy ones.18–20

However, recent concerns over MOF or MOF-related

product safety have been raised. Preliminary toxicological

assessment studies showed that the presence of metal

atoms in MOFs coordinated bonds structure could create

a local imbalance in the exposed biological system to

affect homeostasis, both extracellularly and

intracellularly,19 with the degree of the homeostatic

changes being dependent on material’s composition and

structure. Studies by Tamames-Tabar et al., showed, for

instance, that the toxicity of fourteen different MOFs con-

taining varying metal ions (e.g., iron, zinc, and zirconium)

and organic linkers (e.g., carboxylates or imidazolates) on

human cervical carcinoma epithelial cells (HeLa) and in a

murine macrophage cell line (J774) was dependent on the

composition of the individual MOF being tested as well as

the cell line being assessed.21 Analysis also showed that

iron-based MOFs had lower toxicity relative to both zir-

conium- and zinc-MOFs, with J774 cells experiencing a

greater toxicity due to the faster internalization of the

tested material.21 Complementary work by Ruyra et al.,

evaluated and categorized toxicity of sixteen uncoated

MOFs in exposed zebrafish embryos, with results sorting

deleterious effects based on material structure and the

individual-related leaching of metal ions.22 Additionally,

Ren et al., found that IRMOF-3, a rigid cubic zinc-based

MOF, had a time- and concentration-dependent toxicity on

rat pheochromocytoma cells starting at concentrations as

low as 100 µg/mL,23 while Grall et al., observed low

toxicity of mesoporous metals-based (e.g., iron, aluminum,

chromium) MOFs when exposed to two hepatic cell lines

(HepG2 and Hep3B) and two lung cell lines (A549 and

Calu-3 respectively) at doses ranging from 10 to 100 μg/
mL.24

However, while highly comprehensive, these available

studies are mostly based on single-point assays (e.g., 4

succinate dehydrogenase activity – MTT – assay) that do

not allow real-time assessment of toxicity nor provide

insights into time-dependent windows of exposure.

Considering that such single-point assays also suffer

from interference from reagents normally used in classical

cellular approaches that could potentially influence MOF-

induced toxicity assessment,25 we proposed to screen for

cellular behavior upon exposure to MOFs of prevalent use

by using only cell-based bio-sensorial approaches. To

demonstrate the validity and applicability of the proposed

approaches, we used MIL-160, a microporous hydrophilic

aluminum-based MOF10,26 with a five-membered ring and

an oxygen heteroatom,10 and ZIF-8, a hydrophobic frame-

work of zeolitic imidazolate.10,27 Human bronchial epithe-

lial (BEAS-2B) cells were employed as a pertinent model

for toxicity assessment.28 MOF selection was based on

their demonstrated wide integration for gas storage

applications,29 enzyme-based green technologies10 and

drug delivery systems,30,31 while cell selection was based

on demonstrated intrinsic sensitivity of such systems to

convert biological activity into electrical measurements to

be recorded in real time with an electric cell impedance

sensing platform (ECIS).25 By simply relying on the nat-

ural sensitivity of cells, our analysis demonstrates high-

throughput, rapid and accurate screening and differentia-

tion of toxicity based on MOFs physicochemical proper-

ties, as well as the capability for extension and large-scale

screening of other MOF materials.

Materials and methods
Preparation of MIL-160
MIL-160 was synthesized by linking aluminum chloride

hexahydrate (99%, Acros Organics) with 2, 5-furandicar-

boxylic acid (98%, Alfa Aesar), through a hydrothermal

method.32 Specifically, a precursor compromised of dis-

solved 2, 5-furandicarboxylic acid, aluminum chloride hex-

ahydrate and sodium hydroxide (extra pure, Acros Organics)

was suspended in deionized water in a mole ratio of 1.0: 1.0:

2.1: 1000. The precursor was subsequently dosed in a Teflon-

lined stainless steel autoclave and heated at a temperature of

363 K for 24 hrs. After hydrothermal reaction and cooling to

room temperature, the products were filtered on cellulose

filters of grade 1 (Whatman) and washed extensively with

deionized water to remove any unreacted species. The filter

paper was then dried overnight at room temperature and the

resulting products were removed and stored in a vacuum

chamber, again, at room temperature.

Preparation of ZIF-8
ZIF-8 was synthesized by rapidly mixing zinc nitrate (98%,

Acros Organics) and 2-methylimidazole (97%, Alfa Aesar)
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solutions, at room temperature, for about 10 mins.33

Initially, solutions A and B were prepared, with solution

A being prepared by dissolving 0.2 g zinc nitrate hexahy-

drate in 5 mL deionized water and solution B by dissolving

2.0 g 2-methylimidazole also in 5 mL deionized water. The

solutions were then mixed under uniform mechanical stir-

ring and at room temperature. The resulting product was

collected by centrifugation at 5000 rpm for 8 mins, washed

with deionized water several times to remove any nonpre-

cipitated species, dried at room temperature and subse-

quently stored in a vacuum chamber, again at room

temperature.

Material characterization
Surface morphology and elemental composition of

MIL-160 and ZIF-8 were investigated using Hitachi

S-4700 Field Emission Scanning Electron Microscope

(Hitachi High-Technologies Corporation) equipped with

energy dispersive X-ray (EDX) spectroscopy. For these

analyses, dry powders of the samples were mounted onto

carbon tape and investigated using an accelerating voltage

of 5.0 kV.

Crystalline phases of the synthesized MIL-160 and

ZIF-8 MOFs were confirmed by powder x-ray diffraction

(PXRD) analysis with experiments performed at room

temperature under ambient conditions on PANalytical

X’Pert Pro X-ray Diffractometer with CuKa radiation at

40 kV and 40 mA, respectively.

Cell culture
Immortalized human bronchial epithelial (BEAS-2B,

American Type Culture Collection – ATCC) cells were

cultured in Dulbecco’s Modified Eagle Medium (DMEM;

Corning) media containing 5% FBS, 1% L-glutamine and

1% penicillin-streptomycin (reagents purchased from Life

Technologies). The cells were passaged regularly using

0.25% trypsin (Invitrogen) and incubated at 37ºC, 5%

CO2 and 80% relative humidity. Before each experiment,

cells were grown to a confluent monolayer. Control experi-

ments with human non-small cancer lung (H460) cells

purchased from ATCC were also performed. For these,

H460 cells were cultured in Roswell Park Memorial

Institute-1640 medium (RPMI, Gibco) supplemented

with 10% FBS, 1% L-glutamine and 1% penicillin/strep-

tomycin. Cells were passaged regularly using 0.25% tryp-

sin and maintained in a humidified atmosphere at 37ºC and

5% CO2.

Dose-response curves
BEAS-2B and H460 cells were seeded in 12-well plates

(Falcon) at a density of 2.0×105 cells/mL. After 24 hrs, the

cells were exposed to MIL-160 or ZIF-8 at the doses of 1,

10, 50, 100, 250, 500 and 750 µg/mL, respectively, with

such doses formed by serial dilutions from original stock

concentrations in their respective cells' media. Before any

of the intended cellular exposures, the samples were soni-

cated for 8–10 mins using of a bath sonicator (Branson).

After 24 hrs of exposure, the cells were trypsinized,

stained with 0.4% trypan blue solution (Invitrogen) and

10 µL of such stained cells was subsequently added to a

hemocytometer (Hausser Scientific). The number of cells

in the four outer grids of the hemocytometer were counted

using a Leica DM IL optical microscope (Leica

Microsystems) and a 10× objective to determine the IC50

value, ie, the half maximum inhibitory concentration.

ECIS
Real-time analysis of BEAS-2B cells behavior was mon-

itored via ECIS (ECIS-ZΘ; Applied Biophysics).34,35 For

such analyses, 96-well plates (96W1E+ or 96W20idf)

were used; the electrodes were first stabilized for 2 hrs

with 200 µL of DMEM to help minimize any potential

drift during the experiment. BEAS-2B cells were subse-

quently seeded at a density of 2.0×105 cells/mL and

allowed to form a confluent monolayer for 24 hrs. After

24 hrs, the cells were exposed to suspensions of MIL-160

or ZIF-8 dispersed in media (as previously described) at

doses below, at and above their determined IC50 values

(see section above). Cellular behavior was monitored in

real-time over 72 hrs of exposure with changes in cellular

resistance and alpha’s parameter (detailing the changes in

the current between the ventral surface of the cell and

electrode)36 being continuously monitored during this

time. Media with MIL-160 or media with ZIF-8, at each

exposure dose, served as blanks while cells only in media

served as controls.

Statistical analyses
All graphs are presented as the mean value of the

number of indicated replicates with (±) SE bars.

GraphPad Prism (GraphPad Software) was used for the

determination of the IC50 values, with a sigmoidal dose

response (four-parameter dose-response curve) being

chosen for the fit.
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Results and discussion
We implemented a screening strategy based on ECIS34,35

for a common in vitro model cell line28 (BEAS-2B) to

assess the safety of MOFs of prevalent use in real-time and

in a high-throughput fashion. For the assessment, MOFs

were differentiated based on their physicochemical char-

acteristics since previous studies showed that materials’

properties determine the overall toxicity in an exposed

biological system. Specifically, the chosen MOFs differed

in their surface morphology, with MIL-160 displaying a

cube-like morphology with distinct edges and points

(Figure 1A) and ZIF-8 displaying a flower-like morphol-

ogy with softer edges (Figure 1B) as shown by scanning

electron microscopy (SEM) analysis. Both MOFs dis-

played regular sizes of 8–10 µm for MIL-160 and 1–2

µm for ZIF-8, respectively, with the observed differences

being based on their overall aspect ratios.

Elemental composition of the two MOFs was deter-

mined by energy dispersive X-ray (EDX) spectroscopy

and showed that MIL-160 composition consisted mainly

of carbon and oxygen resulting from the integration of the

2, 5-furandicarboxylic acid linker, as well as aluminum

from the presence of aluminum chloride hexahydrate

metal clusters (Figure 1C). The elemental composition of

ZIF-8 consisted of carbon, nitrogen and zinc, all consistent

with the make-up of its imidazolate linker and metal ion,

zinc, respectively.

Figure 1 Surface morphology of (A) MIL-160 and (B) ZIF-8 as determined by SEM. (C) Elemental composition of MIL-160 and ZIF-8 as determined by EDX. (D) Crystalline

structures of the two MOFs of prevalent use as determined by PXRD.

Abbreviations: SEM, scanning electron microscopy; EDX, energy dispersive X-ray spectroscopy; MOFs, metal organic frameworks; PXRD, powder X-ray diffraction.
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Powder x-ray diffraction (PXRD) analysis confirmed

both MIL-160 and ZIF-8 crystalline phases (Figure 1D)

with characteristic peaks of MIL-16011 at 15.2º, 18.8º,

22.8º and 27º as assigned to the planes (031), (022),

(051) and (502) respectively. Complementary, characteris-

tic peaks of ZIF-8 at 10.33º, 12.8º, 14.7º, 16.5º and 18º

were attributed to planes (002), (112), (022), (013) and

(222) respectively, consistent with previous studies.33,37

For the proposed toxicity screening of the two MOFs, a

dose-response curve was first established. Human bron-

chial epithelial (BEAS-2B) and human non-small cancer

lung (H460) cells were used. Specifically, cells were

exposed to either MIL-160 or ZIF-8 MOFs at doses of 1,

10, 50, 100, 250, 500 and 750 µg/mL; the range of doses

was chosen to represent the potential exposures used when

biological applications are considered.38 The dose-

response curves of BEAS-2B cells exposed to MIL-160

and ZIF-8 are displayed in Figure 2A and B, respectively.

The analysis of the IC50 values (i.e., concentration of MOF

required to inhibit cell growth by 50%) was determined

from these curves, with exposure to MIL-160 and ZIF-8

eliciting IC50 values of 421 and 57 µg/mL, respectively,

and indicating a much lower degree of toxicity for MIL-

160 relative to the ZIF-8 particles. The dose-response

curves for H460 cells are displayed in Figure 2C and D,

respectively. The analysis of IC50 values was determined

from these curves, with exposure to MIL-160 and ZIF-8

eliciting IC50 values of 433 µg/mL and 61 µg/mL, respec-

tively, values which were similar to the ones obtained for

the BEAS-2B. Because BEAS-2B cells were previously

established as an acceptable model cell line in a variety of

toxicity studies,28 we decided to focus the remaining ana-

lysis solely on BEAS-2B cells.

The observed differences in toxicity between the two

prevalent MOFs are presumably due to their different char-

acteristics, one of which is hydrophobicity. This is sup-

ported by a previous analysis that showed that

hydrophobicity plays critical roles in nanomaterial interac-

tions with biological systems, with protein absorption and

corona formation at their interfaces to influence material-

cellular uptake39 and with hydrophobic nanoparticles

known to be more disruptive to cellular membranes because

of theirability to localize within to thus remove lipids from

their structural bilayer.39 Specifically, Tamames-Tabar et al.,

found a correlation between MOF degree of hydrophobicity

and toxicity.21 Analysis showed that as the LogP for the

MOF increased, the degree of toxicity generally increased,

indicating a higher degree of toxicity for hydrophobic

MOFs,21 consistent with the results of this study.

Numerous other studies have also found that an increase

Figure 2 Dose-response curves (± SE bars) of BEAS-2B cells exposed to (A) MIL-160 and (B) ZIF-8 (n≥4) and H460 cells exposed to MIL-160 (n=6) (C) and ZIF-8 (n=2) (D)

respectively.
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in hydrophobicity caused an increased toxicity of

nanomaterials.40,41 For example, Farcal et al., showed that

toxicity increased when TiO2 nanomaterials were coated

with a hydrophobic coating,40 presumably due to interac-

tions of such coating with the lipid layers of the cell's

membrane,39,40 with such interactions resulting in changes

to membrane integrity, cell signaling,42 as well as increased

uptake.43 Additionally, in regard to the uptake of such

nanomaterials, previous studies have found that an increase

in uptake results in an increase in cellular toxicity presum-

ably due to greater effects on the metabolic pathways of the

exposed cells.21,44

In addition to the differences in hydrophobicity, the

elemental composition, morphology and size of MIL-160

and ZIF-8 could likely influence their degree of toxicity.

Specifically, zinc, the constituting metal for ZIF-8 was

shown to have a higher degree of toxicity relative to

other metals (e.g., iron or zirconium), with the toxicity

being due to its ability to modify cellular metabolism to

ultimately lead to cellular damage.21 In addition, ZIF-8

displayed a smaller particle size relative to MIL-160;

smaller particles were previously shown to result in higher

surface area for internal cellular protein binding 45 along

with higher degrees of toxicity.46MIL-160 displayed a

morphology with sharper edges relative to ZIF-8 which

has the potential to disturb cellular membranes47 however

to a smaller degree .

Real-time screening using Electric Cell Impedance

Sensing (ECIS) platform48 was performed at doses below,

at and above eachMOF’s respective IC50 value (200, 400 and

800 µg/mL for MIL-160 and 20, 60 and 100 µg/mL for ZIF-

8), with exposure monitored continuously over a 72hrs per-

iod. ECIS was previously shown to provide a mean to assess

cell–cell and cell–substrate interactions, cell morphology,

motility, and coverage at a nanoscale resolution and in a

high-throughput manner.34,35,49 Representative analysis of

cellular resistance monitored using the ECIS system pro-

vided an indication of cell coverage, morphology and viabi-

lity respectively.34,35

The resistance trends displayed by the BEAS-2B cells

over the 72 hrs of exposure showed to be dependent on the

MOF physicochemical characteristics and exposure doses

being used. Specifically, cells exposed to MIL-160 dis-

played a dose-dependent decrease in their resistance rela-

tive to control cells (Figure 3A), with the cells exposed to

800 µg/mL displaying a complete loss in resistance within

20 hrs of exposure, thus indicating a loss in the cell–cell

interaction and monolayer formation, as well as changes in

cellular viability.48 Consistent with the dose-response

curves and the IC50 value, cells exposed to MIL-160 at

400 µg/mL displayed a resistance that was approximately

half of that of the control (cells that were not exposed).

This result persisted over the whole 72 hrs of observation.

Complementary cells exposed to 200 µg/mL displayed

slightly lower resistances relative to control cells, with

such results being recorded over the full exposure time.

Unlike the cells exposed to MIL-160, cells exposed to

ZIF-8 at doses below (20 µg/mL) and at the material's

Figure 3 Representative normalized resistance of BEAS-2B cells after exposure to (A) MIL-160 and (B) ZIF-8 at doses below, at and above their determined IC50 values.

Representative normalized alpha parameter for BEAS-2B cells after exposure to (C) MIL-160 and (D) ZIF-8 at doses below, at and above their determined IC50 values.
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respective IC50 value (60 µg/mL) had resistance values

similar to the resistance of the control cells over the

majority of the exposure time. A slight loss in cell resis-

tance after approximately 36 hrs of exposure was noted for

the cells exposed to 20 µg/mL (Figure 3B). Similar to the

cells exposed to MIL-160, cells exposed to the high dose

of ZIF-8 displayed a complete loss in cellular resistance,

thus indicating a loss in the cell monolayer and cellular

viability possibly due to changes in cell–substrate

interactions.48

ECIS analysis also showed that BEAS-2B cells

exposed to MIL-160 caused a dose-dependent decrease

in the alpha parameter, i.e., cell–substrate interactions.49

Specifically, exposure to 800 µg/mL caused an almost

complete loss in recording (Figure 3C), while exposure

to 200 µg/mL MIL-160 caused values of alpha parameter

similar to those of control. Complementary, exposure to

400 µg/mL led to a decrease in the alpha parameter. Cells

exposed to 20 and 60 µg/mL ZIF-8 had similar alpha

parameter values as the control cells, while cells exposed

to 100 µg/mL displayed a complete loss in alpha and thus

a loss in cell–substrate interactions (Figure 3D).

The different degrees of cell–substrate interactions as

analyzed by our real-time, high-throughput strategy con-

firmed the possible different routes of toxicity for the two

MOFs, based on their different physicochemical

properties.21 Specifically, the results suggest that the loss

in resistance displayed by BEAS-2B cells exposed to 200

µg/mL MIL-160 was likely not due to changes in cell–

substrate interactions. In contrast, the similar degrees of

decrease in the alpha parameter for cells exposed to 400

and 800 µg/m MIL-160, along with a larger drop in

resistance for cells exposed to 200 µg/mL, suggest that

the loss in resistance is more due to the loss in cell

viability or changes in morphology rather than due to

cell–substrate alterations. Further, the similarity of the

degree of decrease in resistance and alpha parameter for

cells exposed to ZIF-8 at all doses suggests that cell–

substrate interactions may be responsible for the cellular

toxicity of these particles.

Our assessment is supported by the previous single-

point studies that identified increased toxicity based on

material hydrophobicity, with such characteristic to

affect interactions of the specific material with the

lipid bilayer40,42 and subsequently induce changes in

membrane’s integrity and cell-responsive signaling.42,43

Our results thus demonstrate that the proposed strategy

represents an effective means of assessment, with

additional identified benefits to classify toxicity based

on the times of exposure. Specifically, the early time

points associated with changes in cellular behavior

could be further used as a means to mitigate additional

or concentrated exposures, thus possibly allowing for

cellular recovery if exposure stops or is removed.

Our proposed screening assay represents an important

step towards detection and assessing MOF-induced dele-

terious effects in a wider variety of cell lines, with the

range of toxic mechanisms to be differentiated based on

cell viability, morphology and cell–substrate interactions,

respectively. Furthermore, considering that our high-

throughput screening strategy indicates that cell death

manifests through loss of cell–substrate interactions, our

approach could help become an instrumental tool for dis-

covering what specific pathways are actually being tar-

geted, thus complimenting molecular-based hypotheses,

however, in a much more reliable and high-throughput

fashion. While this current study supports the use of a

real-time technique to screen for toxicity, it does not

suggest replacement of currently used in vitro toxicity

testing strategies provided by the single-point assays but

rather seeks to add a valuable primary screening tool that

could be supplemented by a variety of other assays to

ensure assessment of cellular metabolic activity for

instance. In addition, this study was performed using in

vitro cell lines; to further understand the toxicological

effects of these particles as they relate to human exposure,

studies should be done in vivo and on suitable animal

models.

Conclusion
We proposed a screening strategy that allows for differen-

tiation of toxicity in human epithelial cells in a real-time,

high-throughput fashion. Our analysis suggests different

routes of toxicity to be influenced by MOFs physicochem-

ical characteristics. Our results emphasize the importance of

performing toxicological screening assessment of MOFs

before their implementation in biomedical applications.
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