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Segmentation of cardiac fibrosis and scars is essential for clinical diagnosis and can
provide invaluable guidance for the treatment of cardiac diseases. Late Gadolinium
enhancement (LGE) cardiovascular magnetic resonance (CMR) has been successful
in guiding the clinical diagnosis and treatment reliably. For LGE CMR, many methods
have demonstrated success in accurately segmenting scarring regions. Co-registration
with other non-contrast-agent (non-CA) modalities [e.g., balanced steady-state free
precession (bSSFP) cine magnetic resonance imaging (MRI)] can further enhance
the efficacy of automated segmentation of cardiac anatomies. Many conventional
methods have been proposed to provide automated or semi-automated segmentation
of scars. With the development of deep learning in recent years, we can also see more
advanced methods that are more efficient in providing more accurate segmentations.
This paper conducts a state-of-the-art review of conventional and current state-
of-the-art approaches utilizing different modalities for accurate cardiac fibrosis and
scar segmentation.

Keywords: cardiac magnetic resonance, late gadolinium enhancement, scar segmentation, deep learning, atrial
fibrillation, myocardial infarction

1. INTRODUCTION

Necrosis regions found in the heart (including left atrium (LA) pre-ablation fibrosis, LA post-
ablation scar and left ventricle (LV) infarction), depending on the location and size, can have various
implications on the cardiac conditions of the patients. For example, ventricular scars can be signs
of earlier episodes of myocardial infarction (MI) (Choi et al., 2001; Krittayaphong et al., 2008; Wu
et al., 2008; Larose et al., 2010). Locating and quantifying the fibrosis and scars have also been
demonstrated as a valuable tool for the treatment stratification of patients with atrial fibrillation
(AF) (Allessie, 2002; Boldt, 2004) or ventricular tachycardia (Ukwatta et al., 2015) and provide
guidance information for the surgical or ablation based procedures (Vergara and Marrouche, 2011).
Imaging of post-ablation scars may also give valuable information on treatment outcomes (Peters
et al., 2007; Badger et al., 2010).
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Cardiovascular magnetic resonance (CMR) has been one
of the modern imaging techniques, which is widely used for
qualitative and quantitative evaluation of cardiac conditions
and to support diagnosis, monitoring disease progression and
treatment planning (Kim et al., 2009). In particular, Late
Gadolinium enhancement (LGE) CMR has been an emerging
technique for locating and quantifying regions of fibrosis and
scars across the LA and the LV (Peters et al., 2007; McGann
et al., 2008; Oakes et al., 2009; Akkaya et al., 2013; Bisbal
et al., 2014). LGE CMR has also been shown to improve
ablation strategy planning, treatment stratification and prognosis
by pre-ablation fibrosis quantification via clinical validations
(Akoum et al., 2011). It also enabled computationally guided and
personalized targeted ablation in treating AF in clinical practices
(Boyle et al., 2019).

Many algorithms have been developed for the segmentation
of cardiac scarring regions, and a few challenges have
benchmarked some of the high-performing methodologies
(Table 1). Among these, 2-SD (standard deviation) has been
advocated by the official guidelines (Kramer et al., 2013),
while the full width at half maximum (FWHM) technique
has been advocated as the most reproducible method to
segment ventricular scars (Flett et al., 2011) (see Section 3.2
for descriptions of 2-SD and FWHM methods). As these
algorithms are usually based on successful segmentation of the
corresponding anatomical regions beforehand as an accurate
initialization, there has also been rising attention to the
automated segmentation of LA and LV anatomy from the LGE
CMR images (Table 1).

With the development of artificial intelligence techniques,
we can observe a rising number of various deep learning
models using convolutional neural networks [e.g., fully
connected neural network (FCNN) (Szegedy et al., 2016)
and U-Net (Ronneberger et al., 2015)], which have demonstrated
encouraging results in segmentations of cardiac substructures
in recent years (Chen C. et al., 2020). It has also been
found that deep learning can be directly applied to scar
segmentation as a fully automated end-to-end solution
for the input LGE CMR images. With co-registration of
different modalities together and deep learning based transfer
learning, the combination of LGE CMR with other CMR
imaging modalities [e.g., balanced steady-state free precession
(bSSFP)] may further improve the efficacy and efficiency of the
segmentation results.

The use of Gadolinium-based contrast agent (GBCA) has led
to concerns over the patient’s safety, particularly for the patient
with renal impairments (Ledneva et al., 2009). With deep learning
based methods, cardiac scarring regions can now be localized and
quantified in non-Gadolinium enhanced CMR images without
GBCA injections (Zhang et al., 2019).

As all pre-2016 and pre-2013 cardiac scarring segmentation
have been carefully benchmarked and summarized by Karim
et al. (2013, 2016), this paper instead focuses on the survey of
all post-2016 methodologies in fibrosis and scars delineation and
segmentation of the LA and LV anatomy from LGE CMR images.
This study also discusses the potential use of the modalities other
than LGE CMR in locating and quantifying the scars.

1.1 Search Criteria
To identify related contributions, search engines like Scopus
and Google Scholar were queried for papers on or after 01
Jan 2016 containing (“atrial” OR “ventricular”) and (“cardiac”)
and (“segmentation”) with or without (“scar”) in their titles or
abstracts. Papers that do not primarily focus on the segmentation
of cardiac scar or scar-related cardiac anatomy were excluded.
Each paper was reviewed and agreed upon by at least two of
us (Y.W., Z.T., B.L.) before inclusion. We found 4,384 papers
from the search engines and shortlisted 110 of them following
the criterion above (Figure 1). After full-text screening for
their relevances to the topic, we eventually included 47 of
them into this study. The last update to the included papers
was on 13 May 2021.

2. IMAGING MODALITIES

2.1 LGE CMR
Fibrosis found in LA are signs of atrial structural remodeling
and can be considered as a major risk factor in the progression
of the atrial fibrillation (AF) (Allessie, 2002; Boldt, 2004), where
the identification of scarring and fibrosis regions in LA has been
crucial for diagnosis, prognosis and treatment planning. Native
pre-ablation fibrosis can be a sign of AF recurrence (Oakes
et al., 2009), and post-ablation detection of ablation induced
scars can facilitate the identification of post-ablation ablation
line gaps, which is the main reason of ablation failures (Peters
et al., 2007; Badger et al., 2010). In contrast to the traditional
method of the electro-anatomical mapping (EAM) system, which
is an invasive technique in localization of the atrial scar and the
fibrosis with suboptimal accuracy (Zhong et al., 2007; Schmidt
et al., 2009), LGE CMR enables the atrial scarring and fibrosis
regions to be localized and quantified non-invasively without
ionizing radiation. LGE CMR employs the slow washout kinetics
of Gadolinium in these regions to highlight these scarring and
fibrosis regions (Peters et al., 2007; McGann et al., 2008; Oakes
et al., 2009; Akkaya et al., 2013; Bisbal et al., 2014).

In addition to the atrium, LGE CMR has also been considered
as a gold-standard modality for the assessment and quantification
of the scarring regions in the left ventricle (Simonetti et al.,
2001; Wu et al., 2001; Wagner et al., 2003a; Hendel et al., 2006),
where fibrotic and scarring regions found can be considered
as a sign of earlier or current episodes of the MI (Choi et al.,
2001; Krittayaphong et al., 2008; Wu et al., 2008; Larose et al.,
2010). In addition to MI, with growing prognostic evidence,
LGE has been successful in the identification of scarring regions
in cardiomyopathy, inflammatory and infiltrative conditions
(Wagner et al., 2003b; Maceira et al., 2005; Smedema et al., 2005;
Flett et al., 2009).

However, the LGE CMR modality often suffers from poor
image qualities, which may be due to residual respiratory
motions, variabilities in the heart rate and gadolinium wash-
out during the currently long acquisition time (Yang et al.,
2017). Particularly, the spatial resolution of the left atrium in
the LGE CMR image is limited (To et al., 2011), considering
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TABLE 1 | List of challenges in segmentation of LV and LA anatomy and scar in LGE CMR.

Year Challenge/Dataset Conference (MICCAI/IBSI etc.) Modality (data size n) Target Pathology

2012 LV scar segmentation challenge
(Karim et al., 2016)

MICCAI LGE MRI (30) LV scar MI

2013 LA scar segmentation
challenge (Karim et al., 2013)

ISBI LGE MRI (30) LA scar AF

2018 LA segmentation challenge
(Xiong et al., 2021)

MICCAI LGE MRI (150) LA cavity AF

2019 Multi-sequence Cardiac MR
Segmentation Challenge
(MS-CMR) (MS-CMR
Challenge, 2019)

MICCAI LGE MRI, T2 MRI, bSSFP
MRI (45, coregistered)

LV blood pool, RV blood pool,
LV myocardium

MI

2020 Myocardial pathology
segmentation combining
multi-sequence CMR (MyoPS)
(MyoPS Challenge, 2020)

MICCAI LGE MRI, T2 MRI, bSSFP
MRI (45, coregistered)

LV blood pool, RV blood pool,
LV normal myocardium, LV

myocardial oedema, LV
myocardial scar

MI

• Published on or after 01 Jan 2016
• Contain (“atrial” OR “ventricular”) AND (“cardiac”) AND (“segmentation”)

Contain (“scar”) OR (“fibrosis”) OR (“infarction”) OR (“necrosis”)

Contain (“LGE”) OR (“Gadolinium”)

SHORTLISTED
(cardiac scar segmentation)

n = 91

SHORTLISTED
(LGE CMR related myocardium segmentation)

n = 19
EXCLUDE

YES (n = 4,384)

YES

YES

NO

NO

NO

FIGURE 1 | Flowchart to demonstrate the search criterion.

the thin transmural thickness of the atrial wall [mean = 2.2–
2.5 mm (Saìnchez-Quintana et al., 2005)] (Figure 2). The variable
anatomical morphological shapes of the LA and pulmonary
veins (PV) also impose an additional challenge to the LGE
CMR segmentations. To improve the visualization of these scar
regions, we can see a successful attempt by maximum intensity
projection (MIP) to enhance intensities on post-ablation LA
LGE CMR (Knowles et al., 2010). Moreover, some irrelevant
cardiac substructures may be highlighted in LGE CMR images
as well, in addition to the scarring and fibrosis regions. These
may be due to, for example, the navigator beam artifact,
which is often seen near the right PV, Gadolinium uptake
by the aortic wall and valves, and confounded enhancement
in the spine, esophagus, etc. (Karim et al., 2013; Yang et al.,
2017). As a result, these can lead to a poor result in the
delineation of LA and LV scar or fibrosis regions and even a
significant amount of false positives in segmentations of these
structures and regions.

In addition, although LGE CMR has been successful in being
the gold standard reference technique for AF and MI, including
LGE in MRI significantly extends the scanning time. There have
been also increasingly growing concerns regarding the safety of
the Gadolinium based contrast agent used, particularly for the
patient with renal impairments (Ledneva et al., 2009).

2.2 LGE CMR With Other Modalities
In addition to LGE MRI, which could highlight the scarring
regions, segmentation of the anatomy and scarring regions can
also utilize other modalities (Figure 3) to further improve the
accuracy if applied with LGR CMR by co-registering different
modalities together (Zhuang, 2019).

There have been challenges benchmarking a range of
algorithms for the cross-modality fusion based segmentation of
anatomy, scar and oedema.

(1) MS-CMR challenge (MS-CMR Challenge, 2019; Pop et al.,
2020) presented a range of algorithms taking multiple
modalities in to further improve the segmentation
accuracy of LV myocardium, LV blood cavity and RV.

(2) MyoPS challenge (MyoPS Challenge, 2020; Zhuang
and Li, 2020) presented algorithms to delineate LV
myocardium with scarring and oedema.

Other modalities and sequences can include:

(1) Magnetic resonance angiography (MRA) sequence – to
image LA and PV with high contrasts, which has been
demonstrated by Tao et al. (2016) to improve the error
distance in segmenting LA anatomy to within 1.5 mm.
However, MRA is usually ungated and usually acquired
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FIGURE 2 | Examples of LGE CMR images acquired at (A) LA and (B) LV,
with the fibrosis/infarction regions highlighted in green. By comparing (A2) and
(B2), we can see the fibrosis region in LA is rather more discrete and thinner
compared to LV infarction, making LA fibrosis regions more difficult to be
accurately fully localized and quantified. Image source: (A) was extracted from
pre-ablation CMR images in ISBI 2013 cDERMIS dataset (http://www.cardia
catlas.org/challenges/left-atrium-fibrosis-and-scar-segmentation-challenge/).
(B) was extracted from MICCAI 2012 Ventricular Infarct Segmentation
challenge dataset (http://www.cardiacatlas.org/challenges/ventricular-infarct
-segmentation/).

in an inspiratory breath-hold, making anatomy delineated
from MRA significantly distorted from LGE CMR.

(2) Balanced steady-state free precession (bSSFP) – provides
a clear boundary between the myocardium and blood
cavity under movements, which is usually respiratory
and cardiac gated. It can offer cine CMR with a
uniform texture.

(3) T2 – high intensities in T2 presents myocardial oedema
with high specificity and sensitivity (Gannon et al., 2019),
T2 could be helpful in segmenting myocardial oedema
and scar simultaneously if incorporated with LGE-CMR

and bSSFP (Zhu et al., 2017). Identification of oedema
on CMR can help clinicians to differentiate between
acute and remote myocardial infarction (Friedrich, 2017).
The presence of oedema in patients without extensive
irreversible injury (e.g., scar) can serve as a marker for
clinicians to predict the recovery of LV systolic functions
(Vermes et al., 2014).

3. CONVENTIONAL METHODS

Conventionally, a two-stage approach is adopted in the
identification and evaluation of fibrotic and scarring tissue –
(1) segmentation of the relevant anatomical structure (LA and
PV in the case of LA fibrosis/scar segmentation and LV in the
case of LV infarction segmentation) and (2) then segmentation
of the fibrotic and scarring regions. This two-stage approach is
particularly beneficial for LA and PV, as LA and PV are highly
morphological variables and relatively small in size. We shall
then elaborate on the recent developments of methodologies
for each of them.

3.1 Segmentation of Anatomical
Structures
The delineation of anatomical structures, e.g., LA and LV wall,
from others can be difficult in LGE CMR images. In LGE scarring
tissues are significantly enhanced while the signals from the
healthy tissues are attenuated (Keegan et al., 2015), making the
segmentation of LA, PV and LV anatomical structures very
challenging.

3.1.1 Why Is Accurate Segmentation of Anatomical
Structure Necessary Before Scar Segmentation?
Accurate segmentation of the anatomy (LA or LV wall) is essential
as it gives an accurate initialization for the scar segmentation.
Therefore, traditionally, the segmentation of these structures
were all done manually.

We could see in the cDEMRIS challenge in ISBI 2012
(Karim et al., 2013) algorithms with manually initialized LA
segmentation showed significantly better performance than
Others. It demonstrated the need for an accurate anatomy

FIGURE 3 | Example images using different CMR sequences acquired by (A) LGE CMR (B) T2 CMR (C) bSSFP CMR. As denoted by the green arrows, we can see
(A) LGE CMR accentuates the scar tissue by high intensities on the images; (B) T2 CMR accentuates myocardial oedema by high intensities on the image; and (C)
bSSFP CMR shows the distinct endo- and epi-cardial boundary of the myocardium clearly on the image. Image source: (A–C) extracted from the MS-CMR open
challenge dataset (MS-CMR Challenge, 2019).

Frontiers in Physiology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 709230

http://www.cardiacatlas.org/challenges/left-atrium-fibrosis-and-scar-segmentation-challenge/
http://www.cardiacatlas.org/challenges/left-atrium-fibrosis-and-scar-segmentation-challenge/
http://www.cardiacatlas.org/challenges/ventricular-infarct-segmentation/
http://www.cardiacatlas.org/challenges/ventricular-infarct-segmentation/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-709230 July 28, 2021 Time: 13:38 # 5

Wu et al. Fibrosis/Scar Segmentation From Cardiac MRI

segmentation ahead of the scar segmentation along with Rajchl
et al. (2015). Moccia et al. (2018) also demonstrated that manual
and accurate segmentation of the LV wall could improve the deep
learning based segmentation of the LV infarction.

3.1.2 Conventional Methods in Segmenting
Anatomical Structures
In the early 21st century, radiologists looked between LGE CMR
and cine CMR back and forth to delineate the myocardium
region. To mimic that, we can see methods in the first decade
and early second decade of this century utilizing both LGE and
cine modalities by, for example, non-rigid registration to achieve
high accuracy in segmentation of myocardium over LGE CMR
(Dikici et al., 2004; Ciofolo et al., 2008; Wei et al., 2011, 2013).
However, by doing so, the result may suffer from registration
misalignment between LGE and cine modalities and the model
may be computationally demanding. As such, from 2014 we
can see methods that are less computationally demanding and
using LGE modality only (Albà et al., 2014; Kurzendorfer et al.,
2017a,b,c).

Conventional methods in medical image segmentation usually
have limited efficacy. Representative methods are summarized in
Table 2, which mainly include the following methodologies.

(1) Random forest (Kurzendorfer et al., 2017b).
(2) Image registration (Kurzendorfer et al., 2017c).
(3) Markov random field (MRF) model (Albà et al., 2014).
(4) Atlas-based modeling with active contour model

(Kurzendorfer et al., 2017a).
(5) Principal component analysis (PCA) technique

(Kurzendorfer et al., 2017c).

For LA, in particular, the methods involving pre-defined shape
priors (Zhu et al., 2013; Veni et al., 2017) often suffer from
relatively poor error distance, which is more than 1–2 mm
required (Xiong et al., 2021) under the clinical setting considering
the thin LA wall (Zhao et al., 2017). However, one of them
reported a relatively high Dice score (79%) (Zhu et al., 2013).

3.2 Segmentation of Scarring Regions
Upon successful segmentation of the anatomy, the scarring
regions can be identified by a range of approaches. These
approaches can be mainly divided into the following categories:
threshold based methods, classification methods, or the
combination of both.

3.2.1 Fixed Threshold Based Methods (n-SD and
FWHM)
Traditionally, the scarring regions can be detected as they are
accentuated in LGE CMR. Among a range of conventional
techniques, 2-SD has been advocated by official guidelines
(Kramer et al., 2013), while the full width at half maximum
(FWHM) technique has been advocated as the most reproducible
method to segment ventricular scars (Flett et al., 2011).

2-SD and FWHM are both fixed threshold methods in
segmenting the scarring region, where pixels with intensities
above a fixed threshold would be labeled as the scar. 2-SD or
even n-SD methods define such threshold as the sum of the mean

and two or n standard deviations of signal intensities in a remote
reference region, whereas FWHM defines such threshold as the
half of the maximum signal intensity within the scar.

Karim et al. (2016) evaluated 2, 3, 4, 5, 6 -SD and FWHM
methods on a public human LV infarct dataset and showed
that FWHM superseded all n-SD methods tested by its Dice
Scores and that the Dice Scores went slightly higher with the
threshold rising from 2 to 6 -SD. However, it is not the case
when Karim et al. (2013) evaluated 2, 3, 4 -SD and FWHM on
a public human LA fibrosis/scar dataset. For pre-ablation LA
fibrosis, FWHM performed much worse than all n-SD methods
tested. For post-ablation LA scar, FWHM gave similar Dice
Scores as 2-SD’s with 3, 4, 6 -SD methods’ Dice Scores much
lower than these two.

However, these fixed-threshold techniques, including n-SD
and FWHM, are unlikely to handle variations well (Oakes
et al., 2009). The variations can come from two sources –
scar itself and external circumstances. Scars are highly variable
in their morphology and their brightness distribution on LGE
CMR. Varied external factors including resolution, contrast,
signal-to-noise ratio (SNR), inversion time and surface coil
intensity variation can also adversely impact the accuracy of the
segmentation. This is particularly the case for pulmonary veins,
which are highly morphological variables.

3.2.2 Conventional Adaptive Methods
An LV scar segmentation challenge (Karim et al., 2016) organized
in MICCAI 2012 and LA scar segmentation (Karim et al.,
2013) challenge organized in ISBI 2013 carefully benchmarked
and summarized the majority of the pre-2013 conventional
methods. In the LV segmentation challenge in 2012, it
showed all of the algorithms benchmarked did not exhibit
superiority against FWHM, although they did perform better
than n-SD methods.

3.2.2.1 Adaptive thresholding based methods
Conventional threshold based approaches are summarized in
Table 3A, which mainly include the following methodologies.

(1) Otsu thresholding (Otsu, 1979; Tao et al., 2010).
(2) Histogram analysis (Karim et al., 2013).
(3) Hysteresis thresholding (Karim et al., 2013).
(4) Constrained watershed segmentation (Hennemuth et al.,

2008).

3.2.2.2 Classification based methods
In addition, conventional classification approaches are
summarized in Table 3B, which mainly include the
following methodologies.

(1) K-means clustering (Karim et al., 2013).
(2) Graph cuts (Karim et al., 2013, 2014).
(3) Active contour with EM-fitting (Karim et al., 2013).
(4) Simple linear iterative clustering (SLIC) and support

vector machine (Yang et al., 2018b).
(5) Random forest classification (Kurzendorfer et al., 2018).
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TABLE 2 | Summary of representative conventional methodologies for segmentation of the myocardium on LGE-MRI.

Reference Modalities Methodology description Pros Cons Quantitative result
(myocardium)

Dataset

Dikici et al., 2004 LGE MRI, cine MRI (1) Define LV border –
non-rigid registration of cine
and LGE MRI
(2) LV pixel classification –
SVM

Automatic segmentation of
LGE-MRI with CINE-MRI
information

No longitudinal axis (LAX)
consideration, resulting in
inter-slice misalignment;
Need to register with other
modality (CINE MRI)

Average contour pixel location
error = 1.54 pixel

Private (LV LGE + cine
MRI, n = 45)

Ciofolo et al., 2008 LGE MRI, cine MRI 2D segmentation with a
geometrical template (LGE
only) and 3D mesh
alignment (LGE + CINE)

Overcome
non-homogeneous intensity
of the myocardium in LGE
infarcted regions

Meshes focus only on features
in the SAX slices, no inter-slice
consideration and thus
inter-slice misalignment;
Need to register with other
modality (CINE MRI)

ASD = 2.2 mm (endocardial),
2.0 mm (epicardial)

Private (LV LGE + cine
MRI, n = 27)

Wei et al., 2011 LGE MRI, cine MRI (1) Affine transformation
estimation
(2) non-rigid registration of
LGE and cine MRI
(3) myocardial contour
generation by simplex
mesh geometry

Utilize information better in
connecting cine and LGE MRI

No LAX consideration, resulting
in inter-slice misalignment;
Need to register with other
modality (CINE MRI)

Mean Dice = 0.8249;
ASD = 0.97 pixel (endocardial),
0.93 pixel (epicardial)

Private (LV LGE + cine
MRI, n = 10)

Wei et al., 2013 LGE MRI, cine MRI Translational registration of
LGE and cine MRI data; 3D
non-rigid deformation of the
myocardial meshes by both
short axis (SAX) and
longitudinal axis (LAX) data

Consistent and robust
segmentation;
Consider both SAX and LAX
data to reduce interslice
misalignment

Need to register with other
modality (CINE MRI)

Mean Dice = 0.9409;
ASD = 0.67 mm (endocardial),
0.69 mm (epicardial)

Private (LV LGE + cine
MRI, n = 21)

Albà et al., 2014 LGE MRI Slice-by-slice graph cuts
(GC) with interslice and
shape constraints

Impose morphological
constraints that are common
across MRI sequences – no
need for subject-specific
tuning or for user initialization
and generalizable for other
sequences (CINE-MRI);
Achieve robustness to
variations in grey-level
appearance and to image
inhomogeneities – more
robust to the presence of
abnormalities;
Consider interslice
interactions;
No need to register with other
modality (e.g., bSSFP cine
MRI)

Give poorer result when
generalized to CINE-MRI (due
to many artefacts in the dataset
tested)

Mean Dice = 0.81;
ASD = 1.83 mm (endocardial),
2.38 mm (epicardial)

Private (LV LGE MRI,
n = 20)

(Continued)
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TABLE 2 | Continued

Reference Modalities Methodology description Pros Cons Quantitative result
(myocardium)

Dataset

Kurzendorfer et al.,
2017c

LGE MRI (1) LV localization – image
registration
(2) short axis estimation –
principal component analysis
(PCA)
(3) endocardial refinement – a
minimal cost path search (MCP)
in polar space using the edge
and scar information
(4) epicardial refinement - by
shape and inter-slice
smoothness constraints
(5) surface extraction – 3D
mesh generation by marching
cube algorithm (Lorensen and
Cline, 1987)

Fast speed and low
computational workload by
using simple texture features;
Consider image data along
the longitudinal axis in
addition to the short axis,
improving inter-slice
smoothness and avoid
inter-slice shift;
No need to register with other
modality (e.g., bSSFP cine
MRI)

Poor performance in apex and
LV outflow tract, poor accuracy
in basal regions;
Since this method is texture
based, the distribution of scar
and the small size of the atrium
adversely affect its performance

Mean Dice = 0.92;
ASD = 1.35 mm

Private (LV LGE MRI,
n = 30)

Kurzendorfer et al.,
2017a

LGE MRI (1) LV detection – circular
Hough transforms
(2) LV blood pool detection –
morphological active contours
approach without edges
(MACWE)
(3) endocardial boundary
extraction – a minimal cost path
search (MCP) in polar space
using the edge and scar
information
(4) epicardial boundary
extraction – by edge
information while considering
endocardial contour extracted

Fast speed and low
computational workload by
using simple texture features;
No need to register with other
modality (e.g., bSSFP cine
MRI)

Poor performance in apex and
LV outflow tract, poor accuracy
in basal regions;
Since this method is texture
based, distribution of scar
adversely affect its performance

Mean Dice = 0.85
(endocardial), 0.84 (epicardial);
ASD = 2.54 mm (endocardial),
3.32 mm (epicardial)

Private (LV LGE MRI,
n = 26)

Kurzendorfer et al.,
2017b

LGE MRI (1) LV detection – circular
Hough transforms, Otsu
thresholding and circularity
measures
(2) ROI detection –
morphological active contours
approach without edges
(MACWE)
(3) endocardial boundary
extraction – random forest
classifier
(4) epicardial boundary
extraction – minimal cost path
search to the boundary cost
array in polar space

Fast speed and low
computational workload by
using simple texture features;
No need to register with other
modality (e.g., bSSFP cine
MRI)

Poor performance in apex and
LV outflow tract, resulting in
poor accuracy in basal regions
and poor ASD result

Mean Dice = 0.83
(endocardial), 0.83 (epicardial);
ASD = 3.55 mm (endocardial),
4.12 mm (epicardial)

Private (LV LGE MRI,
n = 100)

ASD: average surface distance.
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TABLE 3 | Summary of representative conventional methodologies for segmentation of cardiac scar and fibrosis regions on LGE-MRI.

Type of method Reference Method Description Pros Cons Quantitative result
(scar/fibrosis)

Dataset

(A) Thresholding Hennemuth et al., 2008 Histogram analysis with
constrained watershed
segmentation

Automatic threshold
determination;
No training (supervision)
needed;

Based on fixed models –
mismatches occur for
some cases

* Private (LGE MRI, n = 21)

Tao et al., 2010 Otsu thresholding (Otsu, 1979)
Refine segmentation – (accept
false rejection) connectivity
filtering and (reject false
acceptance) region growing

Automatic threshold
determination;
No training (supervision)
needed;
No specific density model
assumed – no overfitting;
Region growing technique can
be useful for small MI

Connectivity filtering and
region growing may not be
suitable for discrete LA
fibrosis regions

Mean Dice = 0.83 Private (LV LGE MRI,
n = 20)

Cates et al. (2013) (part of
Karim et al., 2013)

Histogram analysis and simple
thresholding

Simple and accurate
processing

Time consuming (require
manual work);
Manual variance may be
significant for the thin LA
wall

Median Dice = 0.42
(pre-ablation); Median
Dice = 0.78 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 30 (pre-ablation), 30
(post-ablation)]

Bai et al. (2013) (part of
Karim et al., 2013)

Hysteresis thresholding (Canny,
1986)

Coherent segmentation
(adjacent faint scar sections
can still be segmented)

Fixed parameterized model
relying on empirical data

Median Dice = 0.37
(pre-ablation); Median
Dice = 0.76 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 30 (pre-ablation), 30
(post-ablation)]

(B) Classification Perry et al. (2013) (part of
Karim et al., 2013)

K-means clustering Relatively higher performance in
pre-ablation fibrosis
segmentation result
benchmarking;
No training (supervision)
needed

Cluster number to be
determined beforehand;
Variance in LA scar
segmented

Median Dice = 0.45
(pre-ablation); Median
Dice = 0.72 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 30 (pre-ablation), 30
(post-ablation)]

Karim et al. (2013) (part of
Karim et al., 2013)

Markov random fields (MRF)
model with graph-cuts

Relatively higher performance in
pre-ablation fibrosis result
benchmarking;

Require necessary
post-processing steps to
refine clustering

Median Dice = 0.30
(pre-ablation); Median
Dice = 0.78 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 30 (pre-ablation), 30
(post-ablation)]

Gao et al. (2013) (part of
Karim et al., 2013)

Active contour with
expectation-maximization
(EM)-fitting

Counteract region leaking
problem in region growing
techniques

Fixed number of Gaussian
mixtures in model

Median Dice = 0.42
(pre-ablation); Median
Dice = 0.78 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 15 (post-ablation)]

Karim et al., 2014 Graph cuts Does not requires manual
outlining of base-line healthy
myocardium

Require additional modality
(bSSFP)

* Private (LA LGE + bSSFP
MRI, n = 15)

Yang et al., 2018b Simple linear iterative
Clustering (SLIC) + support
vector machine

Fully automatic scar
segmentation;
Able to complement minor
flaws in manual annotation

Require collection of
b-SSFP modality;
Supervised learning – need
paired manual labels for
training

Mean Dice = 0.79 Private [LA LGE + bSSFP
MRI, n = 11 (pre-ablation),
26 (post-ablation)]

Kurzendorfer et al., 2018 Fractal Analysis and Random
Forest Classification

Utilize texture information in
addition to clustering

Require accurate
segmentation of the
myocardium

Mean Dice = 0.66 Private (LV LGE MRI,
n = 30)

*Overall quantitative metric for the whole result population was not found. Please refer to the original article for more information of the result.
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4. DEEP LEARNING BASED METHODS

Deep learning based methods are constructed from deep
artificial neural networks. In this section, we will briefly
introduce the common types of artificial neural networks
(ANNs) and then focus on their variants targeting cardiac
anatomy and scar segmentations. The authors would also
like to recommend interested readers to refer to Goodfellow
et al. (2016) for more detailed explanations and mathematical
illustrations of these networks and Chen C. et al. (2020) for more
thorough demonstrations of these networks in general cardiac
imaging analysis.

4.1 Neural Networks of Deep Learning in
Image Analysis
Convoluted neural networks (CNNs), particularly fully
convoluted neural networks (FCNNs), have demonstrated
success in delineating anatomical structures in medical images
(Shelhamer et al., 2017), especially in cardiac MR (Chen C. et al.,
2020). Successful examples include ResNet (Szegedy et al., 2016),
U-Net (Ronneberger et al., 2015), and etc. U-Net (Ronneberger
et al., 2015), in particular, has been known for its ability to
gather latent information in medical image analysis and thus
to gain better performance in segmentation, which has become
the most popular CNN backbone architecture, especially after
demonstrating success in the ISBI cell tracking challenge in 2015.

The recurrent neural network (RNN) is another type of ANNs.
The RNN is rather more useful in processing sequential data, as it
could ’memorize’ past data and utilize its ’memory’ to assist with
its current prediction. Widely used structures of RNNs include
long-short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997) and gated recurrent unit (GRU) (Cho et al., 2014).

Autoencoders (AEs) are also a type of ANNs, which are able
to learn latent features of imaging data. Unlike CNNs and RNNs,
AEs learn these features without supervision. With latent features
gathered by AEs, it could be used to guide the segmentation of
medical images (Oktay et al., 2016; Yue et al., 2019).

Generative Adversarial Networks (GANs) was initially
proposed for image synthesis (Goodfellow et al., 2014). With
its two-player model structure (a generator network to give
a synthesized image and a discriminator network to try to
differentiate that synthesized image from a true image), the
model can enhance the resolution of the synthesized image
by adversarial training. The GAN could also be used for
segmentation, where its discriminator network would rather
attempt to see if the output label is in an anatomically plausible
shape (Luc et al., 2016).

4.2 Segmentation of Anatomical
Structures
4.2.1 Why Use Deep Learning in the Anatomical
Structure Segmentation?
There are a few challenges recently organized to benchmark
the new methodologies proposed for the cardiac anatomy
segmentation – 2018 LA Segmentation Challenge in MICCAI
2018 (LASC’18) (Xiong et al., 2021) for LA, MS-CMR (MS-CMR

Challenge, 2019; Pop et al., 2020) in MICCAI 2019, and MyoPS
2020 (MyoPS Challenge, 2020; Zhuang and Li, 2020) in MICCAI
2020 for LV. With the recent development in deep learning, we
can observe a range of methodologies developed for LA and LV
segmentation in LGE CMR (Jamart et al., 2020).

In particular, in LASC’18, all deep learning methods had their
mean surface distance in LA wall segmentation below 1.7 mm,
with the minimum mean value of 0.748 mm. This demonstrated
the efficacy of the deep learning based methods by the surface
distance, which is required to be less than 1–2 mm under the
clinical setting (Xiong et al., 2021).

4.2.2 Deep Learning Methodologies in the Anatomical
Structure Segmentation
Successful networks demonstrating success in delineating
anatomical structures include VGG-net (Simonyan and
Zisserman, 2014), U-Net (Zabihollahy et al., 2019b), and V-Net
(Milletari et al., 2016). To further exploit the information on the
z-axis, LSTM and its variants (Yang et al., 2018a; Zhang et al.,
2020) and dilated residual learning blocks (Yang et al., 2018a)
can be introduced to the widely used U-Net.

On top of the U-Net, Xiong et al. (2019) proposed a dual
path U-Net variant, which is demonstrated to have the best Dice
Score (0.942) followed by VGGNet (0.864) in their benchmarking
of a range of popular CNNs including the original U-Net and
one non-deep-learning based method (Zhu et al., 2013) in LA
segmentation. Multi-view learning, incorporating axial, sagittal
and coronal views together, gave superior performance compared
to models based on one view only (Xiao et al., 2020).

On the contrary, further research showed that structural
variations in U-Net are unlikely to cause a significant
improvement of its performance in LA segmentation from
LGE CMR (Wang et al., 2019), and that deep supervision and
attention blocks are unlikely to further improve LA segmentation
performance either (Borra et al., 2020b).

In addition to these supervised learning based methods,
Chen J. et al. (2019) proposed a feature-matching based
semi-supervised learning technique to further improve the
segmentation efficacy.

All the methods discussed above are summarized in Table 4.

4.3 Segmentation of Scarring Regions
We can observe a range of deep learning based methods in
segmenting scars (Table 5).

4.3.1 LA Scar Segmentation Models
For LA (Table 5A), Yang et al. (2017) proposed a deep learning
based method using Stacked Sparse Auto-Encoders to delineate
the LA fibrosis region, which is based on accurate anatomical
structure delineation. Li et al. (2020) proposed a graph-cuts
framework based on multi-scale CNN to further incorporate local
and global texture information of the images.

4.3.2 LV Scar Segmentation Models
For LV (Table 5B), E-Net (Moccia et al., 2018) and FCNN
(Moccia et al., 2019) were demonstrated for its high accuracy if
with manually segmented LV walls. Then, multi-view U-Net has
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TABLE 4 | Summary of representative deep learning based methodologies for segmentation of the myocardium on LGE-MRI.

Reference Model backbone Method description Pros/cons Quantitative result (myocardium) Dataset

Zabihollahy et al., 2019b U-Net Standard U-Net Fast processing; deep
latent network

Mean Dice = 0.8661 Private (LV LGE MRI, n = 24)

Zhang et al., 2020 U-Net U-Net with bidirectional
convolutional LSTM

Process spatial sequential
information

Mean Dice = 0.906 LASC’18 (Xiong et al., 2021)
(LA LGE MRI, n = 100)

Yang et al., 2018a U-Net U-Net with multiview
sequential learning via
convolutional LSTM and
dilated residual learning

Process spatial sequential
information on all 3 spatial
axes

Mean Dice = 0.897 Private (LA LGE MRI, n = 100)

Xiong et al., 2019 FCNN Dual-path FCNN
concerning both local and
global view

Mitigate class imbalance;
Less input image size –
save GPU memory

Dice = 0.942 Benchmarking (Dice) Private [LA LGE MRI, n = 40
(pre-ablation), 70
(post-ablation)]

U-Net
(Ronneberger et al.,
2015)

0.642

Dilated U-Net (Men
et al., 2017)

0.687

VGGNet (Men
et al., 2017)

0.684

Inception (Szegedy
et al., 2015)

0.792

ResNet (He et al.,
2016)

0.804

DCN-8 (Long et al.,
2015)

0.558

DeconvNet (Noh
et al., 2015)

0.500

SegNet
(Badrinarayanan
et al., 2017)

0.656

V-Net (Milletari
et al., 2016)

0.696

DeepOrgan (Roth
et al., 2015)

0.632

Zhu et al., 2013 0.821

Xiao et al., 2020 FCNN 3D FCNN with 3D view
fusion

Process spatial information
on all 3 spatial axes
volumetrically;
Greater amount of GPU
memory occupied

Dice = 0.912 LASC’18 (Xiong et al., 2021)
(LA LGE MRI, n = 100)

Chen J. et al., 2019 Double-sided FCNN Semi-supervised learning –
discriminative feature
learning via double-sided
domain adaptation

Achieve a fusion of the
feature spaces of labeled
data and unlabeled data to
achieve semi-supervision

Mean Dice = 0.9078 Private (LA LGE MRI,
two-center, n1 = 175, n2 = 94)

We included the benchmarking quantitative results from Xiong et al. (2019) for readers’ interests, as they covered nearly all popular deep learning models for general image processing.
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TABLE 5 | Summary of representative deep learning based methodologies for segmentation of cardiac scar and fibrosis regions on LGE-MRI.

LA/LV Reference Model backbone Model description Pros/Cons Quantitative results
(scar/fibrosis)

Dataset

(A) LA Yang et al., 2017 Auto Encoder Stacked Sparse
Auto-Encoders

Significantly higher
accuracy;
Misenhancement in
valves, etc. can cause
false positive;
Hyper-parameter
sensitive

Mean Dice = 0.82 Private [LA LGE MRI,
n = 10 (pre-ablation),
10 (post-ablation)]

Li et al., 2020 CNN Graph-cuts framework
based on multi-scale
CNN

Multi-scale consideration
enables both local and
global feature extraction;
Surface projection
mitigate difficulty in
accurate LA wall
delineation;
Require collection of
b-SSFP

Mean Dice = 0.898 Private [LA + bSSFP,
LGE MRI, n = 58
(post-ablation)]

(B) LV Moccia et al., 2018 E-Net E-Net on manually
segmented
myocardium region only

Significantly higher
accuracy;
Require manual
intervention in
myocardium
segmentation

Dice = 0.86 Private (LV LGE MRI,
n = 30)

Moccia et al., 2019 FCNN FCNN on manually
segmented
myocardium region only

Significantly higher
accuracy;
Require manual
intervention in
myocardium
segmentation

Median Dice = 0.7125 Private (LV LGE MRI,
n = 30)

Zabihollahy et al., 2020 U-Net Cascaded multi-view
U-Net via majority vote
multi-view fusion

Consider sequential
spatial information on all
three axes

Median Dice = 0.8861 Private (LV LGE MRI,
n = 34)

also been developed in segmenting the scar in a cascaded way
(Zabihollahy et al., 2020).

4.4 End-to-End Automated Fibrosis and
Scar Segmentation
4.4.1 Development of End-To-End Scar Segmentation
Models Instead of Staged Segmentation Networks
With more recent developments of deep learning, the models
can extract further latent information from the LGE CMR
images and segment the scar directly from LGE CMR
images without acquiring accurate segmentation of the relevant
cardiac anatomical structures (e.g., LA wall) in advance while
maintaining the accuracy. There has also been a range of
methods (Table 6) that can complete the segmentation of both
the anatomy of cardiac chambers and the scar simultaneously
(referred to as "two tasks" below). This is particularly the
case for LV, where there is much less variability in its
anatomical shape.

4.4.2 LA End-To-End Scar Segmentation Models
For LA (Table 6A), due to the thin LA wall, it is particularly
difficult to achieve an end-to-end segmentation of scar directly
from LGE CMR. A multi-view two task (MVTT) deep learning
based method with dilated attention network was proposed

to complete the two tasks simultaneously (Chen et al., 2018;
Yang et al., 2020). This study also benchmarked a range of
popular deep learning networks such as U-Net and V-Net on each
of the two tasks. It compared the performance of its network with
conventional methods such as 2-SD and k-means to demonstrate
the superiority of its network in completing both of the two tasks
accurately on both pre-ablation and post-ablation datasets (Yang
et al., 2020). This study also suggested that 2-SD, k-means and
fuzzy c-means methods clearly over-estimated the enhanced LA
scar region (Yang et al., 2020).

Later, with a joint GAN discriminator, Chen et al. were able
to further improve the segmentation accuracy by dealing with
the significantly unbalanced two LA targets (LA wall and scar)
(Chen et al., 2021; Table 7). In their method, cascaded learning,
a widely applied technique in learning labels with unbalanced
classes in natural image segmentation (Dai et al., 2016; Murthy
et al., 2016; Li et al., 2017; Lin et al., 2017; Ouyang et al., 2017;
Cai and Vasconcelos, 2018; Chen K. et al., 2019), demonstrated
superiority in learning.

4.4.3 LV End-To-End Scar Segmentation Models
As LV has less variant morphology and greater size, there have
been more successful methods demonstrating their efficacies and
efficiencies in LV scar segmentation (Table 6B). E-Net (Moccia
et al., 2018) and FCNN (Moccia et al., 2019) were the first few
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TABLE 6 | Summary of representative end-to-end deep learning based methodologies for segmentation of cardiac scar and fibrosis regions on LGE-MRI.

LA/LV Reference Model backbone Model description Pros/Cons Quantitative results
(scar/fibrosis)

Dataset

(A) LA Yang et al., 2020* ResNet Multi-view based
dilated attention and
residual network with
sequential learning via
convolutional LSTM

Spatial sequential
information processing;
Attention network to
tackle class imbalance

Mean Dice = 0.8258 Private [LGE MRI,
n = 190 (97 pre- and
93 post-ablation)]

Chen et al., 2021 GAN Adaptive attention
cascade network for
simultaneous
estimation of
unbalanced targets +
joint discriminative
network for adversarial
regularization

Inter-cascade adversarial
learning paradigm to
tackle class imbalance
and regularize the output

Mean Dice = 0.946 Private [LGE MRI,
n = 192 (97 pre- and
95 post-ablation)]

(B) LV Moccia et al., 2018 E-Net E-Net Relatively low accuracy;
Unable to tackle class
imbalance well

Dice = 0.55 Private (LV LGE MRI,
n = 30)

Moccia et al., 2019 FCNN FCNN Relatively low accuracy;
Unable to tackle class
imbalance well

Median Dice = 0.5400 Private (LV LGE MRI,
n = 30)

Zabihollahy et al., 2019a CNN Volume patch based
3D CNN

utilize small volume
patches for accurate
local view inspection

Mean Dice = 0.9363 Private (LV LGE MRI,
n = 10)

Fahmy et al., 2020 U-Net U-Net based 3D CNN Sub-volume design
utilizes small volume
patches for accurate
local view inspection

Mean Dice = 0.54 Private (LV LGE MRI,
multi-vendor n = 1073)

*As (Yang et al., 2020) and (Chen et al., 2018) reported very similar methodologies, we reported (Yang et al., 2020) only in this table.

TABLE 7 | Result of a private benchmarking (Chen et al., 2021) of different algorithms on the LASC’18 dataset, reported in their mean ± SD.

LA and PVs LA scar

Dice Scores ASD (mm) Dice Scores ASD (mm)

2D U-Net 0.898 ± 0.034 3.38 ± 4.53 0.526 ± 0.118 1.83 ± 0.891

3D U-Net 0.895 ± 0.032 3.81 ± 3.89 0.508 ± 0.106 1.90 ± 0.837

MVTT (Yang et al., 2020) 0.902 ± 0.037 2.25 ± 1.39 0.613 ± 0.131 1.39 ± 1.03

JAS-GAN (Chen et al., 2021) 0.913 ± 0.027 2.24 ± 2.73 0.621 ± 0.110 1.24 ± 1.04

ASD, average surface distance.

networks that demonstrated the ability to segment scar directly
from LGE CMR. Although with relatively low Dice scores, they
demonstrated that with an accurately segmented myocardium
label it could perform better.

Recently, many deep learning methods have been proposed
and demonstrated significantly higher efficacy compared
to traditional threshold based methods. Zabihollahy et al.
developed a CNN based network to classify each pixel by
considering small volume patches around that pixel to
greatly improve the mean segmentation accuracy in terms
of its mean Dice score to 93.63, compared to the mean
Dice scores of K-nearest neighbor (KNN) (77.85), FWHM
(61.77), and 2SD (48.33) in their private benchmarking
(Zabihollahy et al., 2019a).

In addition, Fahmy et al. (2020) proved that a 3D CNN
deep learning based approach could be applied for LV scar
segmentation for patients with hypertrophic cardiomyopathy
(HCM) via a multicenter multivendor study.

Inspired by the two-stage approach, a multi-view cascaded
U-Net driving for even higher efficacy in segmentation was
developed to cascade the two tasks sequentially while considering
sagittal, axial and coronal views (Moccia et al., 2019).

4.5 Segment LGE CMR Jointly With
Other Modalities
As explained in Section 3.1.2, traditionally, clinicians check
both bSSFP cine and LGE MRI modalities to ensure accurate
segmentation of the myocardium and then the scar. Therefore,
many methods suggested the use of both bSSFP cine and LGE
modalities in delineating anatomical structures and scar to mimic
that. For LA, it is also known that MRA gives a clear boundary
in PV to help with LA wall segmentation. We can see many
methods taking MRA as an extra modality into their models
to enhance their segmentation accuracy. However, many studies
chose bSSFP over MRA, as bSSFP can be acquired in the
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same phase as LGE CMR by cardiac gating. Although MRA
provides better resolution, MRA is not cardiac gated and can
be difficult and error-prone in co-registration with LGE CMR,
causing misalignments in registered images. Additionally, as
explained in Section 2.2, integration with other modality (e.g.,
T2) may enable more findings from the CMR (e.g., oedema) in
addition to scars.

There are few challenges benchmarking a range of algorithms
for the cross-modality fusion based segmentation of anatomy,
scar and oedema. MS-CMR challenge (MS-CMR Challenge,
2019; Pop et al., 2020) presented a range of algorithms taking
multiple modalities in to further improve the segmentation
accuracy of LV myocardium, LV blood cavity and RV.
MyoPS challenge (MyoPS Challenge, 2020; Zhuang and Li,
2020) presented algorithms to delineate LV myocardium with
scarring and oedema.

Common methods to segment anatomy and scar from
multiple modalities include:

(1) Cross-modality style and feature propagation (typically
from bSSFP to LGE-MRI) [e.g., multi-atlas label fusion
(MAS) (Zhu et al., 2017)].

(2) Combination of multiple paired sequences and modalities
for segmentation by either cross-modality image style
transfer [e.g., Cycle-GAN (Zhu et al., 2017) and UNIT
style transfer (Huang et al., 2018; Chen J. et al., 2020)]
or multi-input models [e.g., Multi-variable mixture model
(MvMM) (Zhuang, 2019)].

(3) A two-stage approach to firstly co-registering anatomical
segmentation from one modality to another (typically
from bSSFP segmentation to LGE-MRI) and then
segment scars based on the co-registered anatomy
segmentation (Leong et al., 2019).

However, respiratory and/or cardiac motion complications
between acquisitions of different modalities can still cause errors
in registration and possible misalignments.

5. SCAR SEGMENTATION WITH
NON-CONTRAST-AGENT (NON-CA)
ENHANCED IMAGING MODALITY ONLY

Although LGE CMR has been very successful in being the
gold standard reference technique for AF and MI, including
LGE in an MRI scanning significantly extends the scanning
Time. Moreover, there have been increasingly growing concerns
regarding the safety of the Gadolinium based contrast agent used,
particularly for the patient with renal impairments (Ledneva
et al., 2009). There has been a rising attention in exploring
methods to segment scars without injecting contrast agents to the
patients on non-CA modalities. Non-CA modality based cardiac
scar segmentation methods have been widely demonstrated
for LV scar delineations but has not been realized for LA
scar delineations.

Dastidar et al. (2019) and Liu et al. (2018) demonstrated
the potential of pre-contrast scar segmentation by comparing

the inter-modality manual observations of myocardial infarction
regions on LGE CMR and native-T1 mapping without the
Gadolinium contrast agents.

5.1 Relaxation Time Based Scar
Segmentation in T2
T1 and T2 (Messroghli et al., 2017) are modalities that are not
enhanced by any contrast materials, where relaxation times in
MI is longer compared to the healthy myocardium and could
be referenced for MI region segmentation reproducibly (Abdel-
Aty et al., 2004; Kali et al., 2014; Smulders et al., 2015). However,
the relaxation time is field strength specific (Raman et al., 2013;
Haaf et al., 2017) and requires the acquisition of images for
additional breath holds, which significantly extends the CMR
acquisition time.

5.2 MRI Feature Tracking
Magnetic resonance imaging feature tracking is also an approach
to differentiate MI induced cardiac wall abnormalities from
normal myocardium, which can be acquired as part of a standard
CMR scanning examination (Muser et al., 2017; Ogawa et al.,
2017). However, this technique can only detect and locate the
position of MI without quantifying it.

5.3 Scar Segmentation in CINE MRI
To further improve scar segmentation on non-contrast enhanced
CMR, trained by co-registered LGE and cine MRI modalities,
SVM based texture analysis in pre-contrast cine MRI only can
discriminate between nonviable, viable and remote segments
(Larroza et al., 2018). Non-contrasted enhanced CMR scar
segmentation has also been demonstrated via neighborhood
approximation forests (Bleton et al., 2016), Simple Linear
Iterative Clustering (SLIC) (Achanta et al., 2012) based
supervoxels (Popescu et al., 2017).

5.3.1 Deep Learning Based Scar Segmentation in
CINE MRI
With the development of deep learning, a method based on
a combination of Long short-term memory (LSTM), recurrent
neural network (RNN) and fully convoluted neural network
(FCNN) (Xu et al., 2017) and a GAN based method (Xu et al.,
2018) have been demonstrated accuracy in detecting, locating
and quantifying LV scarring regions from non-contrast enhanced
CMR images. Zhang et al. proposed a deep learning based
framework to greatly improve the efficacy of the segmentation
of LV scar on cine MRI (with its stages consisting of (1)
ROI localization, (2) RNN based motion pattern extraction,
and (3) pixel classification by FCNN) and assess their network
extensively under a clinical setting (Zhang et al., 2019). Xu et al.
(2020) on top of the deep learning based workflow, proposed
a progressive sequential causal generative adversarial network
(GAN) to simultaneously synthesize LGE-equivalent images and
multi-class tissue segmentation (including LV blood cavity, LV
myocardium and scar region) from cine CMR images. A detailed
summary and results of a private benchmarking of all these
algorithms can be found in Table 8.
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TABLE 8 | Summary of representative machine learning/deep learning based scar segmentation in cine MRI for segmentation of cardiac scar regions on cine bSSFP MRI.

Reference Method description Pros/Cons Private Benchmarking
Accuracy (%) (Xu et al.,

2020) (scar)

Dataset

Xu et al., 2020 (1) priori coarse tissue mask generation
GAN,
(2) condition LGE-equivalent image
synthesis GAN,
(3) fine segmentation GAN

Segment more than just LV
scar – LV blood pool,
myocardium and scar regions;
Further improve
temporal-spatial learning by a
two-stream structure that
includes a spatial perceptual
pathway, a temporal perceptual
pathway, and a multi-attention
weighing unit.

97.13 Private [SAX cine bSSFP
MRI, Xu et al. (2020),
n = 280]

Zhang et al., 2019 (1) LV localization – ROI detection by
CNN
(2) Motion feature extraction
(2.1) global motion feature – dense
motion flow estimation
(2.2) local motion feature – LSTM-RNN
(3) infarction discrimination – FCNN

Combine both LSTM-RNN
based local motion analysis and
dense motion flow estimation
based global motion analysis

95.03

Xu et al., 2018 GAN
(A) Generator:
(A1) LV morphology and kinematic
abnormalities – spatio-temporal feature
extraction network through 3D
successive convolution
(A2) complementarity between
segmentation and quantification - joint
feature learning network for multitask
learning;
(B) Discriminator:
(B1) intrinsic pattern between tasks –
uses task relatedness network for
adversarial learning

Introduce adversarial learning
and task relatedness to reduce
divergence

96.77

Xu et al., 2017 (1) Heart localization – FAST R-CNN
(Girshick, 2015)
(2) Motion statistical feature –
LSTM-RNN
(3) discriminative layer – FCNN

Combine both ROI based local
motion analysis and deep
optical flow based global
motion analysis

94.93

Popescu et al., 2017 Simple Linear Iterative Clustering (SLIC)
based supervoxels (Achanta et al.,
2012)

Only radial strain analyzed,
excluding longitudinal and
circumferential strains;
K-means clustering used
requires an empirical definition
of the number of clusters

86.47

Bleton et al., 2016 Neighborhood approximation forests Consider myocardial thickness
and its temporal variations

84.39

6. EVALUATION METRICS

A range of evaluation metrics can be employed for assessing
the results of the segmentation of the anatomy. These include
Dice score, sensitivity, specificity, Hausdorff distance (HD) and
surface-to-surface distance (STSD).

(1) Dice Score
The Dice Score coefficient, DICE, is one of the most widely used
evaluation metrics in segmentation accuracy evaluations. It is
particularly sensitive to the difference between the ground truth
label and the result label.

Given a 3D prediction label tensor, A, and 3D ground truth
label tensor, B, the Dice score can be defined as:

DICE (A, B) =
2 |A ∩ B|
|A| + |B|

(1)

(2) Sensitivity
Sensitivity score, also known as True Positive Rate, can be
adapted to reflect the success of the algorithm for segmenting the
foreground (cardiac anatomy) as:

Sensitivity =
TP

TP+ FN
(2)

where TP stands for true positive and FN stands for false negative.
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(3) Specificity
Sensitivity score, also known as True Negative Rate, reflects the
success of the algorithm for segmenting the background as:

Specificity =
TN

TN+ FP
(3)

where TN stands for true negative and FP stands for false positive.

(4) Hausdorff Distance
Hausdorff distance, HD, is an important parameter in evaluating
the geometrical characteristics which measures the maximum
local distance between the surfaces of the predicted LA volume
label tensor, A, and the ground truth label tensor, B, given by:

HD (A, B) = max
b∈B

{
min
a∈A

{√
a2 − b2

}}
(4)

where a and b are all pixels locations within A and B.
In practice, the HD is not generally recommended to use it

directly since it has a great sensitivity to outliers, and as noises
and outliers are quite common in medical image segmentation
(Gerig et al., 2001; Zhang and Lu, 2004). However, Huttenlocher
et al. (1993) proposed a way to handle outliers by defining the
HD as the qth quantile of distance instead of the maximum to
exclude the outliers.

(5) Surface-to-Surface Distance
Surface-to-surface distance, STSD, measures the average distance
error between the surfaces of the predicted LA volume and the
ground truth.

STSD (A, B) =
1

nA + nB

 nA∑
p = 1

√
p2 − B2 +

nB∑
p′ = 1

√
p′2 − A2


(5)

where nA and nB are the numbers of pixels in A and B,
respectively. Variables p and p

′

describe all point between
A and B.

The maximum error distance acceptable in the LA wall
segmentation should be 1–2 mm under the clinical setting
considering the thin LA wall (Xiong et al., 2021).

(6) Error of the Anterior-Posterior
Diameter of the Anatomical Structure
The anterior-posterior diameters of LA and LV are widely used as
an essential clinical measure in clinical diagnosis and treatments.

The diameters can be estimated by finding the maximum
Euclidean distance along the anterior-posterior axis of each CMR
scan (Xiong et al., 2021).

(7) Error of Volume of the Anatomical
Structure
The anatomical volumes of LA and LV are widely used as an
essential clinical measure in clinical diagnosis and treatments.

The volume of the structure can be found as the sum of
positively labeled voxels. Given the volume of the predicted

anatomical structure, VA, and the volume of the ground truth,
VA, the total volume error can be defined as:

δV = |VA − VB| (6)

(8) Scar Volume Percentage
In addition to the ones mentioned above, scar segmentation also
employs a scar volume based metric in assessing the segmentation
result, which is much more widely used as the quantification of
scar is important for clinical use. They calculate the volumetric
percentages of the scarring regions and compare them across the
predicted and the ground truth labels.

The scar percentage is defined as the percentage of the volume
of the scarring region, Vscar , relative to the volume of the relevant
anatomical wall, Vwall (e.g., LA wall) (Tao et al., 2010).

[%] scar =
Vscar

Vwall
× 100% (7)

7. DISCUSSION

7.1 Dataset Acquisition
7.1.1 Inter-Observer Variability in the Manual
Annotation of Ground Truth Labels
For validation and benchmarking of different methods and
training of deep learning based methods, accurate, consistent and
reproducible acquisition of ground truth labels is essential.

Validation by employing labels from a single clinician may
not be ideal as these labels may exhibit bias and intra-observer
variances when the same clinician is asked to repeat their labeling.
Thus, it is recommended that we take observations from multiple
clinicians and fuse them together.

However, we can see significant inter-observer variances,
particularly for LA anatomical segmentation in LGE-MRI where
the boundaries of the LA walls are very blurred. Kurzendorfer
et al. (2017c) attempted to compensate for inter-observer
variances by additional smoothing but ended up with slight
improvement in Dice Scores (+0.04).

It is recommended that the data source reports the inter- and
intra- observer variances by employing evaluation metrics such as
the Dice Score coefficient. The currently widely used method of
label fusing is obtaining a 70% consensus label among multiple
annotations, which can be low in their consistency levels. The
level of each observer’s expertise (novice, medical student, trainee,
junior clinician or senior clinician) must also be clearly noted,
particularly when multiple observers are involved. It may be also
recommended that the observers should all be experienced senior
clinicians to maintain the high accuracy and low variance in the
manual annotation.

7.1.2 Dataset Sources
Many methods use single-vendor single-center datasets to
validate their methods, which may not demonstrate the ability
to generalize the accurate segmentation methodology to centers
with CMR machines of different settings and compositions.

There have been some trials assessing the performance
of models based on multi-vendor and multi-center data
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(Engblom et al., 2016; Fahmy et al., 2020). However, evaluation
based on multi-vendor and multi-center data with a more
significant patient population should be introduced for a more
comprehensive unbiased validation, comparison of performances
of different methods and assessment for their scalability.

7.1.3 Quantitative Result Reporting
We would like to alert readers that nearly all studies summarized
in this study used their own distinct private datasets when
reporting results. Biased conclusion may be derived when directly
comparing these quantitative metrics across studies. The authors
would like to ask all readers to refer to the experimental settings
in acquisitions of the datasets stated in their original articles when
comparing quantitative results across different studies, instead of
only looking at these numbers stated. We would also look forward
to a public benchmarking of all these methods as a fairer review
of their performances.

Also, the authors would like to ask readers to be cautious when
directly comparing Dice Scores reported for the segmentation of
the LV infarction than the LA necrosis’. As the LA is much smaller
than the LV, an equivalent volume of discrepancy may trigger a
more significant reduction in the LA necrosis’ Dice Score ratios
than the LV infarction’s. Additionally, the LA necrosis tends to
be more challenging to be accurately segmented than the LV
infarction explained above.

In addition, the image quality, contrast, class imbalance
and other factors of the image data can directly impact
the result generated from it and thus the accuracy reported.
In particular, the authors would advocate future literature
to report (1) scar to blood pool contrast ratios (SC-BP)
(Karim et al., 2014) to show the scar contrast, (2) signal-
to-noise ratio (SNR) to show the noise variation along with
evaluation metrics in results, so the readers can have a better
understanding of the experimental settings before interpreting all
the metrics reported quantitatively. These two additional metrics
are essential, particularly when it comes to LA scar segmentation,
where the scar segmentation is more difficult and where higher
SC-BP can give higher Dice Scores in the results generated
(Karim et al., 2014).

7.2 Conventional Methods
7.2.1 Advantages – Computational Load and
Explainability
Obviously, as conventional methods are less demanding on the
composition of the computing device, they can be deployed for
wider clinical uses more easily. This is an advantage when it
comes to the scalability and generalizability of the product, where
a standard computer is enough for its deployment.

Conventional methods are also more explainable than deep
learning. The explainability also guarantees easier acceptance
from the clinicians, as the product may appear more trustworthy
and more reliable.

7.2.2 How Reliable Are the Conventional Methods?
7.2.2.1 Fixed threshold conventional methods
Fixed threshold methods may not fit some LGE CMR images, as
they are unlikely to handle variations well (Oakes et al., 2009).

Scars are highly variable in their morphology and their
brightness distribution on LGE CMR. Some severe LV cardiac
scar may appear bright in its surroundings and very dark in
its center, as the center of the scar is so severely infarcted
that very little GBCA carrying perfusion arrives there. N-SD
and FWHM, which require the pixel intensity to be more than
a certain threshold for that pixel to be recognized as a scar,
may not label these dark centers as the scar. Additionally, due
to the partial volume effect, fibrotic regions containing both
intermingling bundles of fibrotic and viable myocytes will be
darker than the complete necrosis region. The low intensity
exhibited from such fibrotic regions may be below the fixed
threshold set and make these fibrotic regions be falsely recognized
as healthy myocardium.

Varied external factors including resolution, contrast, signal-
to-noise ratio (SNR), inversion time and surface coil intensity
variation can also adversely affect the accuracy of the scar
segmentation. LGE CMR modality often suffers from poor
image quality, which may be due to residual respiratory motion,
variability in the heart rate and gadolinium wash-out during the
currently long acquisition time (Yang et al., 2017). Considering
the thin transmural thickness of the atrial wall [mean = 2.2–
2.5 mm (Saìnchez-Quintana et al., 2005)] (Figure 2), the
spatial resolution of LGE CMR images is relatively limited,
particularly for the left atrium (To et al., 2011). The variable
anatomical morphological shapes of pulmonary veins (PV) also
impose an additional challenge to the LGE CMR segmentations.
In addition, some uninterested cardiac substructures may be
highlighted in LGE CMR images as well in addition to
the scarring and fibrosis regions. These may be due to the
navigator beam artifact (which is often seen near the right PV),
Gadolinium uptake by the aortic wall and valves and confounded
enhancement in the spine, esophagus, etc. (Karim et al., 2013;
Yang et al., 2017).

7.2.2.2 Conventional adaptive methods
Although adaptive conventional methods may mitigate adverse
impacts from variable scar shapes and varied external
factors, adaptive conventional methods can also be affected
by sizes, variances and artifacts in testing image data as
they utilize prior information learned. Kurzendorfer et al.
(2017c) showed that a particular scar distribution over
the myocardium could adversely affect their methods in
segmenting endocardial contours. Such vulnerability may be
more problematic when it comes to LA anatomical structures,
as PV is a very morphological variable and LA walls are much
smaller and thinner.

7.3 Deep Learning Based Methods
7.3.1 How We Could Make the Deep Learning
Perform Even Better?
For detailed designs of the deep learning networks, LASC’18
benchmarked (Xiong et al., 2021) a range of U-Net variants
in LA wall segmentation from LGE CMR. This challenge,
along with other literature for cardiac scar segmentation,
demonstrated the following.
(1) Image Sources
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(a) Higher image qualities (as in signal-to-noise ratio) would
result in a higher Dice Score, although not statistically
significantly linearly related.

(b) In addition, models with contrast normalization as a pre-
processing technique performed significantly better than
the ones without using normalization.

(2) Model Backbone

(a) CNN based methods delivered better results compared to
the atlas based methods.

(b) U-Net based methods outperformed other networks using
VGGNet, ResNet, etc.

(c) There was no statistical difference between the
segmentation performances of the models based on 2D
CNNs and models based on 3D CNNs. However, further
research showed that 3D CNNs greatly outperformed 2D
CNNs with the same model architecture in terms
of the Dice Scores of their segmentation results
(Borra et al., 2020a).

(3) Segment on ROI or the Whole Image?

(a) Centring LA on ROI as an input to the second sequential
model would make the model perform significantly better
compared to the model with non-centered ROIs.

(b) Class imbalance induced by significantly big or small ROI
size could lead to an adverse effect on the segmentation
results in terms of Dice scores.

(c) Double sequential CNNs (Li et al., 2019; Xia et al., 2019;
Yang et al., 2019; Xiong et al., 2021) (one detecting
the region of interest first and then the second model
performing regional segmentation within the region of
interests (ROI) detected) achieved much better results
compared to the methods with only one single CNN.

(d) Double sequential 3D CNN outperformed single 2D CNN
and single 3D CNN models regarding its Dice scores,
surface distance, LA diameter error and LA volume error.

(4) Model Architecture

(a) Models with residual connections performed significantly
better compared to the ones without residual connections.

(b) The use of dropout blocks did not perform significantly
better than the one without using dropout.

(c) Rectified Linear Unit (ReLU) trained models did not
perform significantly better than the Parametric Rectified
Linear Unit (PReLU) trained models.

(5) Loss Functions

(a) Dice loss trained models performed significantly better
than the cross-entropy trained models.

7.3.2 Problems With Deep Learning in Segmentation
7.3.2.1 Computational load
Although we are able to observe much better results generated
from deep learning based methods, we can also observe a rise in
computational demand from deep learning networks. For deep
learning based methods, high-end computer graphics processing

units (GPUs) become a necessity when deploying these models,
whereas standard computers with CPUs only are sufficient for
most of the conventional methods to run. Under a clinical setting,
hiring a GPU is not always possible, as it is not part of a standard
clinical computing workstation. The requirement of a high-end
computer with GPU in deploying a deep learning based method
may significantly limit the ability of these methods to scale.

However, if a standard computer was only used to infer
a deep learning model, its runtime may be a bit long but
still falls within the maximum time limit that clinicians can
accept (usually a few minutes per slice for models that
are not extra complex). Therefore, we can see these models
can be deployed and scaled only if they are sophisticatedly
trained, as training on the clinician’s side, where unlikely they
have a GPU, is not usually possible. As the inference time
may vary significantly across different models over CPUs and
depend on their architectures and complexities, reporting of
inference time per slice on a standard computer without a
GPU should also be mandatory in addition to the inference
time over a GPU.

7.3.2.2 Scarcity of annotated data
Training datasets with abundant paired labels are essential to
the success of deep learning model training. However, there has
been a scarcity of labels due to the tedious process of manually
annotating the ground truths in medical imaging. In order to
mitigate such scarcity in ground truth labels, several methods can
be adopted, including the following.

(1) Data augmentation,
(2) Transfer learning with fine-tuning (Bai et al., 2018; Chen

S. et al., 2019; Khened et al., 2019),
(3) Weak and semi-supervised learning (Bai et al., 2017, 2018;

Can et al., 2018; Chartsias et al., 2018, 2019; Kervadec
et al., 2019),

(4) Self-supervised learning (Bai et al., 2019) and,
(5) Unsupervised learning (Joyce et al., 2018).

In addition, to mitigate the challenging training process
brought by the great data size required to train a scalable
network, active learning (Mahapatra et al., 2018) has been
introduced to reduce manual annotation workloads as well as the
computational loads.

7.3.2.3 Explainability in deep learning
Although there has been a wide range of evidence demonstrating
the efficacy of deep learning in medical image analysis, the
deep learning networks behave more like a ’black box,’ where
its interpretability is poor. It has been shown that these deep
learning networks can be attacked by adversarial noises or
even just rotation in medical images (Finlayson et al., 2019),
questioning the reliability and scalability of these deep learning
models in assisting diagnosis. For alerting users of these possible
failures, segmentation quality scores (Robinson et al., 2019) and
confidence maps [e.g., uncertainty maps (Sander et al., 2019) and
attention maps (Heo et al., 2018)] should be provided to highlight
uncertainties in the model prediction.

Frontiers in Physiology | www.frontiersin.org 17 August 2021 | Volume 12 | Article 709230

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-709230 July 28, 2021 Time: 13:38 # 18

Wu et al. Fibrosis/Scar Segmentation From Cardiac MRI

7.4 Non-CA Modality Segmentation:
Bye-Bye to Gadolinium?
Although many methods can accurately segment scars on non-
CA cine MRI, the impact from different numbers of cardiac
phases on cine MRI has not been assessed.

In addition, the binary class of either normal or scar may be
too simplistic. Quantification of the so-called “gray-zone,” which
has been proposed for the clinical implication of ventricular
arrhythmia (Jablonowski et al., 2017), immediately surrounding
the ventricular scar may be useful clinically.

Also, gadolinium based contrast agent is not only applied for
scar imaging but also for assessing myocardial perfusion, which
is usually assessed together in LGE CMR, for which additional
classification and differentiation of ischemic and remote regions
of myocardium would be useful (Leiner, 2019). To achieve
that, Liu et al. (2016) demonstrated non-Gadolinium contrast
adenosine stress and rest T1 Mapping for identification and
classification of normal, infarcted, ischemic and remote regions
in LV myocardium.

We are glad to see a range of algorithms demonstrated for
LV scar segmentation in non-contrast enhanced CMR. However,
this has not been realized for CMR images of LA, which is more
difficult as the LA scarring regions in CMR suffers from greater
variances in morphology and relatively lower resolution of CMR.
Moreover, LA scars can appear in discrete regions (Figure 2),
which imposes further challenges to the LA scar segmentation
from non-CA modalities.

CONCLUSION

This study summarizes the recent developments in cardiac
scar segmentation, covering a wide range of conventional
and deep learning techniques. In particular, we presented and
discussed the usefulness of non-LGE modalities in cardiac

anatomy and scar segmentation. We then further discussed
the recent progress in segmenting the cardiac scarring region
from non-contrast-enhanced images. We hope this review can
provide a comprehensive understanding of the segmentation
methodologies for cardiac scar and fibrosis and increase the
awareness of common challenges in these fields that can call for
future research and contributions.
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