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Autonomic nervous system-
mediated effects of galanin-like 
peptide on lipid metabolism in liver 
and adipose tissue
Satoshi Hirako1, Nobuhiro Wada2, Haruaki Kageyama3, Fumiko Takenoya4, 
Yoshihiko Izumida2, Hyounju Kim5, Yuzuru Iizuka5, Akiyo Matsumoto5, Mai Okabe6, 
Ai Kimura7, Mamiko Suzuki8, Satoru Yamanaka8 & Seiji Shioda7

Galanin-like peptide (GALP) is a neuropeptide involved in the regulation of feeding behavior and energy 
metabolism in mammals. While a weight loss effect of GALP has been reported, its effects on lipid 
metabolism have not been investigated. The aim of this study was to determine if GALP regulates lipid 
metabolism in liver and adipose tissue via an action on the sympathetic nervous system. The respiratory 
exchange ratio of mice administered GALP intracerebroventricularly was lower than that of saline-
treated animals, and fatty acid oxidation-related gene mRNA levels were increased in the liver. Even 
though the respiratory exchange ratio was reduced by GALP, this change was not significant when mice 
were treated with the sympatholytic drug, guanethidine. Lipolysis-related gene mRNA levels were 
increased in the adipose tissue of GALP-treated mice compared with saline-treated animals. These 
results show that GALP stimulates fatty acid β-oxidation in liver and lipolysis in adipose tissue, and 
suggest that the anti-obesity effect of GALP may be due to anorexigenic actions and improvement of 
lipid metabolism in peripheral tissues via the sympathetic nervous system.

Obesity increases the risk of developing diabetes, fatty liver, hyperlipidemia, metabolic syndrome and atheroscle-
rotic diseases1,2. Preventing obesity thus forms an important aspect of maintaining a healthy body. Atherosclerotic 
diseases such as ischemic heart disease and cerebral infarction are the most common causes of death in many 
countries, and it is well known that hyperlipidemia is closely associated with these diseases3. Energy constancy is 
not controlled by a single organ, but rather via the coordinated action of various organs. Energy regulation within 
peripheral tissues, such as the liver, white adipose tissue (WAT) and brown adipose tissue (BAT), is coordinated 
by sympathetic and vagal parasympathetic nerve activity. The sympathetic nervous system (SNS) modulates both 
glucose production and glucose uptake in peripheral tissues4–7, and enhances fatty acid oxidation in the liver, 
lipolysis in WAT, and thermogenesis in BAT8,9. When energy levels are insufficient, lipids stored in adipocytes are 
hydrolyzed and released into the blood in the form of non-esterified fatty acids (NEFA) and glycerol10,11. Recently, 
it was reported that a liver–brain–adipose neural axis exists, whereby the liver sends signals to the brain via the 
vagus nerve, and the brain sends signals via sympathetic nerves to adipose tissue12–14.

Galanin-like peptide (GALP), a 60-amino acid neuropeptide that was originally isolated and identified from 
porcine hypothalamic extracts, has been shown to affect food intake regulation, energy metabolism and repro-
duction15–18. Following the discovery of GALP, various studies on its physiological function reported that the 
intracerebroventricular (i.c.v.) injection of GALP in mice results in a decrease in food intake and body weight19–22. 
In rodents, fasting reduces GALP mRNA expression and the number of neurons expressing GALP23. Conversely, 
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leptin administration increases the number of GALP-expressing neurons in the brains of fasted rats compared 
to control fasted rats that were injected with saline23, indicating that GALP expression is regulated by leptin. 
Furthermore, in ob/ob mice, body weight and food intake decreased continuously following chronic GALP admin-
istration for 14 days24. The i.c.v. administration of GALP also produces a decrease in body weight at 24 h, possibly 
due to its effects on thermogenesis25. Recently, we found that GALP influenced the respiratory exchange rate 
(RER). The RER is calculated by the ratio of CO2 produced to O2 consumed, and reflects main source of metabolic 
energy such as carbohydrate, protein and fat. That is, when pure carbohydrate is consumed as the energy source, 
RER is theoretically 1.0. In contrast, under conditions where fat is included as a source of energy, RER decreases 
from 1.0 to 0.72 as the proportion constituted by fat increases. In a previous study, we reported that the RER 
decreased following the i.c.v. administration of GALP in mice26. This finding suggests that lipid metabolism is also 
regulated by GALP. In ob/ob mice, chronic administration of GALP increases uncoupling protein (UCP)1 gene 
and protein expression in BAT24, indicating that the enhanced energy metabolism induced by GALP takes place 
via sympathetic activation. It is therefore possible that GALP acts on peripheral tissues via autonomic nervous sys-
tem activity. Despite these findings, the effects of GALP on lipid metabolism in other organs have not been inves-
tigated. In this study, we show that GALP affects lipid metabolism in the liver and WAT via its action on the SNS.

Results
Effect of GALP on lipid metabolism in peripheral tissues. Energy and lipid metabolism were stud-
ied in mice administered a single i.c.v. dose of GALP or saline vehicle. One hundred minutes after the injection 
procedure to the brain, food intake was found to be reduced in the GALP-treated group with respect to the 
saline-treated control group (Fig. 1A). The RER of the GALP group was also lower than that of the saline group at 
around 60 min post-administration, and this decrease continued until animals were sacrificed (100 min post-i.c.v. 
injection) (Fig. 1B). This result suggested that fat is included as a source of energy by GALP treatment.

In relation to lipid components in the plasma, triglyceride (TG), total cholesterol (TC), NEFA and leptin levels 
were not significantly different between the GALP- and saline-treated groups, although there was a tendency 
for plasma fibroblast growth factor (FGF)-21 levels to increase in the GALP-treated group (p =  0.122; Table 1). 
Moreover, there was no significant difference between the groups in relation to hepatic TG and TC contents 
(Table 1). Expression levels of lipid metabolism-regulating genes in the liver and WAT are shown in Fig. 1C–J. 
The expression of mRNA for hepatic fatty acid synthase (FAS), a key enzyme in lipogenesis, was significantly 
down-regulated in the GALP-treated group compared with the saline group (Fig. 1C). However, no difference in 
expression levels of stearoyl-CoA desaturase (SCD)1 was observed between the saline- and GALP-treated groups 
(Fig. 1D). Levels of carnitine palmitoyltransferase (CPT)-1, medium-chain acyl-CoA dehydrogenase (MCAD) 
and acyl-CoA oxidase (AOX) mRNA, the proteins of all of which are involved in fatty acid oxidation, were sig-
nificantly increased in the GALP-treated group compared with the saline group (Fig. 1E–G). FGF-21 mRNA 
expression was also significantly increased in the GALP-treated group (Fig. 1H). In adipose tissue, mRNA levels 
of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), which are involved in lipolysis, were 
increased in the GALP-treated group compared with control (Fig. 1I,J).

Effect of GALP on lipid metabolism under short fast conditions. Based on the above results, we next 
examined the effects of GALP on lipid metabolism under short fast conditions. RER was significantly reduced in 
the GALP-treated group from approximately one hour after GALP administration compared to the saline-treated 
group (Fig. 2A). Hepatic FAS and SCD1 levels were not significantly different between the groups, whereas CPT-1 
and AOX mRNA levels were significantly increased in the GALP group compared with the saline group, and 
MCAD and FGF-21 showed a trend to increase (Fig. 2B–G). mRNA levels of HSL and ATGL in adipose tissue 
were increased in the GALP-treated group compared with control (Fig. 2H,I). The expression of ATGL mRNA in 
particular was significantly increased.

GALP-mediated effects on lipid metabolism in peripheral tissues via actions on the sympa-
thetic nervous system. The adrenergic blocker guanethidine was used to examine the action of GALP 
on SNS-modulated lipid metabolism (Fig. 3). Food intake in the 100 minutes following i.c.v. administration was 
reduced in the GALP-treated group in the presence and absence of guanethidine (Fig. 3A). There was no signifi-
cant difference between the Saline +  Saline group and the Guanethidine +  GALP group. RER was also reduced in 
this group compared to control in a manner that was suppressed by guanethidine treatment (Fig. 3B). Moreover, 
compared to control, FAS mRNA expression was reduced in the GALP-treated group, while SCD1 mRNA expres-
sion was unaffected, and CPT-1, MCAD and FGF-21 mRNA expression levels were increased (Fig. 3C–H). These 
actions of GALP could be inhibited by guanethidine treatment. HSL and ATGL mRNA levels were also increased 
in GALP-treated animals, and this effect was also suppressed by guanethidine (Fig. 3I,J). GALP i.c.v. adminis-
tration dramatically increased the phosphorylation of HSL in WAT compared to that measured in saline-treated 
animals, and this too could be suppressed by guanethidine treatment (Fig. 3K,L).

Discussion
This study shows that the i.c.v. administration of GALP stimulates hepatic fatty acid β - oxidation-related gene 
expression and lipolysis in WAT. Following the i.c.v administration of GALP, the RER began to decrease approxi-
mately one hour later and continued to decrease until animals were sacrificed 100 min post-administration. This 
result indicates that GALP was potentially involved in promoting fat consumption to provide energy. A decrease in 
RER with GALP administration was also observed under short fast conditions. Additionally, an increased expres-
sion of hepatic fatty acid β -oxidation-related genes (CPT-1, MCAD and AOX). These data suggest that GALP 
administered to the brain activates hepatic fatty acid β -oxidation, resulting in the consumption of fat for energy.
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With regard to fatty acid synthesis, hepatic FAS and SCD1 mRNA expression levels were decreased in 
GALP-treated animals with ad libitum access to food. Previous studies have indicated that expression lev-
els of genes related to fatty acid synthesis and β -oxidation vary with repeated fasting. In particular, hepatic 
fatty acid synthesis-related gene expression decreased during fasting27,28, whereas the expression of fatty acid 

Figure 1. Effect of the i.c.v. administration of GALP on food intake, respiratory metabolism and mRNA 
expression levels in liver and WAT. Food intake (A) and respiratory exchange ratio (RER) (B) after i.c.v. 
administration of saline or 2 nmol of GALP. Expression levels of hepatic FAS (C), SCD1 (D), CPT-1 (E), MCAD 
(F), AOX (G), FGF-21 (H) genes and adipose HSL (I) and ATGL (J) genes were measured by real-time PCR, 
and expressed relative to 18S rRNA. Values represent means ±  S.D. (n =  6). *p <  0.05 versus saline.
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β -oxidation-related genes increased under fasting conditions27,29–31. For this reason we examined the effect of 
GALP under short fast conditions, where food was removed after the i.c.v. administration of GALP or vehi-
cle. Although the mouse enters a short-term fasted state at this time, we confirmed that GALP administration 
had no effect on lipid metabolism after a period of overnight fasting (results not shown). In this way, under the 
short fast condition, the decrease in fatty acid synthesis-related gene expression by GALP was not observed. 
Consequently, the decreased FAS and SCD1 gene expression observed in GALP-treated animals in our study 
may be due to a reduced food intake. GALP did however induce a decrease in RER and increased fatty acid 
β -oxidation-associated gene expression under short fast conditions. In other words, the major effect of GALP 
on lipid metabolism in the liver is increased fatty acid β -oxidation. Although hepatic β -oxidation-related gene 
expression was increased, plasma and liver lipid levels did not change significantly. The 100-min period between 
GALP administration and sacrifice of animals might have been too brief to enable changes in lipid concentrations 
to become clearly evident. In relation to WAT, expression levels of lipolysis-related genes and phosphorylated HSL 
protein were up-regulated in the GALP-treated group compared with control. On the other hand, plasma NEFA 
levels were not significantly different between the groups. We hypothesized that GALP would enhance lipolysis 
in adipose tissue and release fatty acids into the blood, which would then undergo fatty acid β -oxidation in the 
liver. It is thought that one of the anti-obesity effects of GALP could take place via this mechanism. However, it 
is possible that increased plasma NEFA levels were not observed in the present study because we only measured 
them for 100 minutes after GALP administration. Examination of the long-term effects of GALP on plasma NEFA 
and lipid levels will be an objective of future research.

The SNS has a clear association with lipid metabolism in the periphery8,9. It was reported that leptin activates 
hepatic 5′ -adenosine monophosphate-activated protein kinase (AMPK) through α -adrenergic receptor-mediated 
effects on sympathetic nerves, promoting fatty acid β -oxidation in the liver32–34. In addition, SNS stimulation is 
known to enhance lipolysis in WAT9, with several reports attesting to such actions. For example, GALP admin-
istration increases body temperature and heart rate35. Also, the expression of UCP1 in BAT was increased by the 
i.c.v. administration of GALP24. These findings are consistent with sympathetic-mediated responses, implying 
that GALP can influence peripheral organs via actions on the SNS. To determine if this was the case in the 
present study, mice were treated with the peripheral sympathetic blocker, guanethidine. The reduction in RER 
observed in GALP-treated mice was suppressed by pre-treatment with guanethidine. On the other hand, the 
GALP-induced decrease in food intake was unaffected by guanethidine. It is thought that guanethidine inhibits 
the function of postganglionic adrenergic neurons, thus inhibiting peripheral sympathetic function and reversing 
the GALP-induced effects on RER. Food intake on the other hand, is centrally modulated by GALP and there-
fore remained unaffected by guanethidine. Our data also showed that guanethidine reversed the GALP-induced 
down-regulation of hepatic genes involved in fatty acid synthesis and up-regulated genes involved in fatty acid 
β -oxidation. Similarly, pre-treatment with guanethidine inhibited the GALP-induced phosphorylation of HSL in 
WAT. Taken together, these findings demonstrate that the actions of GALP on fatty acid β -oxidation in the liver 
and lipolysis in adipose tissue are mediated by sympathetic nerve stimulation.

Plasma FGF-21 levels showed a tendency to increase and hepatic FGF-21 mRNA expression was significantly 
increased by the GALP treatment. FGF-21 is synthesized in the liver and promotes lipolysis in adipose tissue; it is 
known that FGF-21 is a target gene of peroxisome proliferator-activated receptor (PPAR)α 36,37,29. As expression 
levels of PPARα  target genes such as CPT-1, AOX, MCAD, and FGF-21 were increased in GALP-treated animals, 
it is possible that GALP activated PPARα . These results suggest that GALP exerts it effects directly via the SNS 
and indirectly via the release of FGF-21 from the liver, which stimulates lipolysis in WAT. While it is known that 
leptin enhances fatty acid β -oxidation in the liver, it is suggested that the hepatic β -oxidation- related gene expres-
sion increasing effect of GALP was not mediated via an upregulation of leptin as no changes in plasma leptin 
levels were seen. The results shown here indicate that GALP acting within the brain controls lipid metabolism in 
peripheral tissues via the SNS. Nevertheless, the mechanism(s) by which this occurs remain(s) unknown. While 
the i.c.v. administration of GALP affects fatty acid β -oxidation in the liver and lipolysis in WAT via SNS-mediated 
actions, it should be noted that these tissues are also controlled by nerves that innervate the pneumogastric sys-
tem. This, coupled with the fact that the actions of GALP were not fully inhibited by guanethidine, suggests that 
further studies are required to elucidate how GALP exerts its anti-obesity effects.

Saline GALP

Plasma

 Total cholesterol (mg/mL) 170.09 ±  19.7 171.79 ±  16.4

 Triglyceride (mg/mL) 46.22 ±  13.77 49.72 ±  16.63

 Non-esterified fatty acids (mEq/mL) 0.93 ±  0.25 1.13 ±  0.22

 Leptin (ng/mL) 1.37 ±  0.66 1.30 ±  0.52

 FGF-21 (pg/mL) 68.23 ±  39.17 110.94 ±  48.09

Liver

 Total cholesterol (mg/g) 2.86 ±  0.5 3.38 ±  0.49

 Triglyceride (mg/g) 2.19 ±  1.29 2.67 ±  1.68

Table 1.  Plasma parameters and liver lipid levels of mice administered i.c.v. with saline or GALP. Values 
represent means ±  S.D. (n =  6).
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In conclusion, we have described here that GALP enhances fatty acid β -oxidation-related gene expression in 
the liver and lipolysis in the WAT. These newly observed physiological functions are exerted via actions on the 
SNS and via FGF-21-mediated humoral control, and may explain the previously reported anti-obesity effects of 

Figure 2. Effect of GALP i.c.v. administration on respiratory metabolism in short fast mice. Respiratory 
exchange ratio (RER) (A) after i.c.v. administration of saline or 2 nmol of GALP in short fast mice. Expression 
levels of hepatic FAS (B), SCD1 (C), CPT-1 (D), MCAD (E), AOX (F) and FGF-21 (G) and adipose HSL 
(H) and ATGL (I) were measured by real-time PCR, and expressed relative to 18S rRNA. Values represent 
means ±  S.D. (n =  4). *p <  0.05 versus saline.
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Figure 3. Effect of i.c.v. administration of GALP on food intake and respiratory metabolism in saline 
pretreatment and saline treatment group (Saline + Saline (S + S)), saline pretreatment and GALP 
treatment group (Saline + GALP (S + GA)) and guanethidine pretreatment and GALP treatment group 
(guanethidine + GALP (Gu + GA)). Food intake (A) and respiratory exchange ratio (RER) (B) after i.c.v. 
administration of saline or 2 nmol of GALP. Expression levels of hepatic FAS (C), SCD1 (D), CPT-1 (E), MCAD 
(F), AOX (G), FGF-21 (H) genes and adipose HSL (I) and ATGL (J) genes were measured by real-time PCR, and 
expressed relative to 18S rRNA. Expression of Ser 563 p-HSL and total HSL protein in epididymal white adipose 
tissue (K,L) (three individual protein samples pooled). Values represent means ±  S.D. (n =  6). *P <  0.05; #, P <  0.05 
versus the Saline +  Saline group.
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GALP. GALP may serve as a therapeutic option in the prevention and cure of obesity and dyslipidemia in clinical 
practice in the future.

Methods
Animals. Male C57BL/6J mice (5 or 9 weeks of age; Sankyo Labo Service Corporation, Inc., Tokyo, Japan) 
were used in all experiments. Mice were maintained on a 12-h day cycle (8:00 AM–8:00 PM) under conditions 
of 20 °C and 40–70% humidity, and allowed free access to standard diet (Labo MR stock; Nosan Corporation, 
Japan) and water. Following the i.c.v. administration of GALP or saline vehicle, food consumption was measured 
until sacrifice. In the short fast experiment, the energy intake of all mice was adjusted by removing the diet after 
i.c.v. administration. All mice were individually housed in metabolism cages allowing respiratory metabolism 
to be measured. All animal studies were conducted in accordance with the “Standards Relating to the Care and 
Management of Experimental Animals” (Notice No. 6 of the Office of Prime Minister dated March 27, 1980) and 
with approval from the Animal Use Committee of Showa University. (Approval Number: 04055).

Intracerebroventricular (i.c.v.) injections. Mice were anesthetized with pentobarbital sodium and 
a small hole was bored in the skull 0.2 mm posterior and 1.1 mm laterally to the bregma for the positioning 
of an indwelling cannula (Laboratory and Medical Supplies Co., Ltd., Tokyo, Japan). Animals were allowed to 
recover for 7 d during which time they were handled daily. Placement of the guide cannula was checked by a 
positive drinking response to angiotensin II. Animals were then assigned randomly to a saline- (vehicle) or a 
GALP-treated group. After a washout period of 7 d, a single administration of 2 μ L saline or GALP (1 nmol/μ L), 
respectively, was given via the guide cannula at 18:30 h.

Respiratory metabolism. Oxygen consumption (VO2) and carbon dioxide production (VCO2) were mon-
itored using an indirect calorimeter (Oxymax, Columbus Instruments, Columbus, OH) in the 100 minutes fol-
lowing the saline or GALP administration. RER was calculated as the molar ratio of VCO2/VO2. In previous 
studies, the difference in RER value between the GALP and control groups reached a maximum about 100 min-
utes after administration26, for which reason mice in this study were sacrificed 100 minutes after the GALP or 
vehicle administration.

Collection of blood and tissue samples. Blood samples were collected from the hearts of sacrificed ani-
mals and treated with heparin. The liver and epididymal WAT were removed, immediately frozen in liquid nitro-
gen, and stored at − 80 °C until analysis. Plasma was obtained by centrifugation (900 ×  g, 4 °C, 10 min) and frozen 
at − 80 °C.

Quantification of liver and plasma lipids. A portion of liver tissue from each mouse was used for ana-
lyzing TG and total TC contents. Hepatic lipids were extracted from approximately 100 mg of liver tissue for 
each mouse in accordance with the method of Folch et al.38. Quantification of liver and plasma TG and TC 
were performed using the Triglyceride E-Test and Cholesterol E-Test kits, respectively, while plasma NEFA were 
quantified using the NEFA C-Test kit (Wako Pure Chemical Industries, Ltd). Plasma leptin levels were quanti-
fied by enzyme-linked immunosorbent assay (ELISA) using the Leptin/mouse ELISA kit (Morinaga Institute 
of Biological Science, Tokyo, Japan). FGF-21 levels in plasma were measured with the FGF-21 ELISA kit (R&D 
System, Minneapolis, USA).

Quantification of mRNA expression. Total RNA was extracted from liver and WAT tissue from each 
mouse using Trizol (Life Technologies, Inc.) in accordance with the manufacturer’s protocol, and then converted 
into cDNA with an Affinity Script QPCR cDNA Synthesis Kit (Stratagene, Agilent Technologies, La Jolla).

Quantification of mRNA expression levels by TaqMan real-time PCR was performed using an ABI7900HT 
instrument (PE Applied Biosystems, Foster City, CA). mRNA was amplified using EagleTaq Master Mix PCR rea-
gent (Roche Applied Science, Indianapolis, IN). Primers are listed in Table 2. Universal ProbeLibrary probes were 
purchased from Roche Diagnostics GmbH. Target genes were normalised to the endogenous control (18s rRNA). 
The 18S rRNA primer and the VIC/MGB probe set were purchased from Life Technologies, Inc.

Gene Forward primer(5′-3′) Reverse primer(5′-3′)
FAS gctgctgttggaagtcagc agtgttcgttcctcggagtg

SCD1 ttccctcctgcaagctctac cagagcgctggtcatgtagt

CPT-1 ggacattatcaccttgtttggc ggagcaacacctattcatttgg

MCAD agtaccctgtggagaagctgat tcaatgtgctcacgagctatg

AOX caccattgccattcgataca tgcgtctgaaaatccaaaatc

FGF-21 agatggagctctctatggatcg gggcttcagactggtacacat

HSL gcgctggaggagtgttttt cgctctccagttgaaccaag

ATGL tgaccatctgccttccaga tgtaggtggcgcaagaca

Table 2.  Primers for RT-PCR amplification of indicated genes. FAS: fatty acid synthase, SCD: stearoyl-CoA 
desaturase, CPT: carnitine palmitoyltransferase, MCAD: medium-chain acyl-CoA dehydrogenase, AOX: acyl-
CoA oxidase, FGF-21: fibroblast growth factor-21, HSL: hormone-sensitive lipase, ATGL: adipose triglyceride 
lipase.
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Sympathetic nerve blockade. C57BL/6J mice received an intraperitoneal (i.p.) injection of guanethidine 
hemisulfate (Wako Pure Chemical Industries, Ltd) to block sympathetic nerve activity. Mice were pretreated 
with saline (vehicle) or saline containing (40 mg/ kg) guanethidine. Fifteen minutes later mice were given an i.c.v. 
injection of saline or GALP (2 nmol).

Western blot. Western blotting was performed as reported previously39. Briefly, whole-cell lysates or tis-
sue extracts were fractionated by SDS–PAGE and transferred to a polyvinylidene difluoride membrane using 
a transfer apparatus according to the manufacturer’s protocol (Bio-Rad). After blocking with 5% skim-milk in 
1 ×  TTBS (tris-tween-buffer-saline) (10 ×  TTBS: NaCl, 80 g; 1 M Tris–HCl, pH 7.5, 200 mL; Tween-20, 5 mL) for 
1 h, the membrane was incubated with primary antibody at 4 °C for 12 h. Membranes were washed five times for 
10 min and incubated with a 1:10,000 dilution of horseradish peroxidase-conjugated second antibody for 1 h. For 
blot development, the luminol/enhancer and peroxide buffer solutions were mixed in a 1:1 ratio (1 mL:1 mL; one 
membrane volume) and spread over the membrane and incubated at RT for 5 min. Signals (cross-reacting protein 
bands) were visualized using the ChemiDoc XRS +  imaging system (Bio-Rad, Hercules, CA, USA).

Statistical Analysis. Differences between two groups were assessed using the unpaired two-tailed Student’s 
t-test unless otherwise noted. Data sets involving more than three groups (sympathetic nerve blockade study) 
were assessed by Tukey’s post-hoc test. Values were reported as the mean ±  SD. Statistical significance was defined 
as P <  0.05.
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