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ABSTRACT

A hypothesis concerning the potential utility of surfactant supplementation for the treatment of critically ill
patients with COVID-19 is proposed, along with a brief summary of the data in the literature supporting this
idea. It is thought that surfactant, which is already approved by the Food and Drug Administration for in-
tratracheal administration to treat neonatal respiratory distress syndrome in pre-term infants, could benefit
COVID-19-infected individuals by: (1) restoring surfactant damaged by lung infection and/or decreased due to
the virus-induced death of the type II pneumocytes that produce it and (2) reducing surface tension to decrease
the work of breathing and limit pulmonary edema. In addition, a constituent of surfactant, phosphatidylglycerol,
could mitigate COVID-19-induced lung pathology by: (3) decreasing excessive innate immune system stimula-
tion via its inhibition of toll-like receptor-2 and -4 activation by microbial components and cellular proteins
released by damaged cells, thereby limiting inflammation and the resultant pulmonary edema, and (4) possibly
blocking spread of the viral infection to non-infected cells in the lung. Therefore, it is suggested that surfactant
preparations containing phosphatidylglycerol be tested for their ability to improve lung function in critically ill

patients with COVID-19.

Introduction

COVID-19, caused by the novel coronavirus SARS-CoV-2, has re-
sulted in massive morbidity and mortality, as well as profound eco-
nomic difficulties due to the necessity for quarantining to contain and
mitigate the pandemic. Although many people who become infected
exhibit only mild or moderate symptoms, others develop severe
symptoms, and COVID-19 appears to be more deadly than influenza,
especially in older individuals and those with pre-existing conditions.
Treatment to date is mainly symptomatic supportive care including
invasive or non-invasive ventilation. In a recent retrospective study of
52 Chinese patients with COVID-19 requiring intensive care, more than
60% of the patients died [1]. Of the non-survivors about 80% of the
patients developed acute respiratory distress syndrome (ARDS) [1], and
respiratory failure associated with ARDS is the leading cause of COVID-
19 mortality [2].

ARDS is characterized by lung inflammation and pulmonary edema,
which reduces gas exchange and leads to hypoxemia and dyspnea, often

requiring mechanical ventilation to provide sufficient oxygenation.
ARDS is also accompanied by enhanced secretory phospholipase A,
(sPLA,) activity in the lungs [3,4]; sPLA, degrades the phospholipids
that are components of surfactant, including phosphatidylglycerol (PG)
(reviewed in [5]). Indeed, a recent study has demonstrated an increase
in the activity of an sPLA2 that preferentially hydrolyzes PG, as well as
a significant decrease in PG in the bronchoalveolar lavage fluid of ARDS
patients versus normal control subjects [3]. The impairment of surfac-
tant function not only can increase surface tension and reduce lung
compliance but may also further exacerbate pulmonary edema, since
surfactant helps to reduce fluid infiltration into the alveoli through its
reduction of surface tension [6,7]. Knowledge about this sequence of
events has led to studies in humans testing the efficacy of exogenous
surfactant in the treatment of ARDS, and some results have been pro-
mising [8-11], although meta-analyses have largely failed to show an
effect of exogenous surfactant administration on the survival of adult
ARDS patients (e.g., [12;13]). On the other hand, another meta-analysis
determined a benefit of surfactant administration on oxygenation levels
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and mortality in those patients with severe ARDS caused by pneumonia
or aspiration of gastric contents [14], suggesting that co-morbidities
other than ARDS may potentially determine the effect (or lack thereof)
of surfactant administration on survival.

In contrast, the pulmonary failure induced by COVID-19 seems to
differ in many respects from other types of ARDS [15,16]. For example,
many COVID-19 patients initially present with hypoxemia with main-
tained lung compliance and low elastance, termed the L type pre-
sentation [17]. These L-type patients can often be treated with oxygen
supplementation and prone positioning, or if they are intubated due to
worsening hypoxia, mechanical ventilation at low positive end ex-
piratory pressures (PEEP). However, L-type patients often transition
into the second or H-type clinical presentation [17], in which they
exhibit high elastance and low compliance and usually require me-
chanical ventilation at higher PEEP [18]; low pulmonary compliance
portends worsening lung disease manifested by atelectasis and in-
creasing hypoxia. Therefore, only the H-type mimics the lung para-
meters observed in pre-term infants that produce minimal surfactant,
suggesting that at least in the early stages, COVID-19 patients ex-
hibiting L-type disease may retain some pulmonary surfactant activity.

A key role of pulmonary surfactant is to reduce surface tension and
prevent alveolar atelectasis at end expiration. In the absence of active
surfactant, high surface tension at the air-liquid interface in the alveoli
creates collapsing forces [19]. In addition, since surface tension draws
fluid from the capillaries into the alveolar spaces, surfactant decreases
pulmonary fluid accumulation by reducing surface tension to maintain
airway dryness [20]. Increased surface tension related to surfactant
dysfunction also alters alveolar capillary shape and pulmonary blood
flow to exacerbate hypoxemia [19]. On the other hand, during severe
respiratory distress with mechanical ventilation, the role of higher
PEEP is to keep the alveoli “recruited” or, in other words, to prevent
end-expiratory alveolar collapse. However, mechanical ventilation and
high PEEP represent a double-edged sword: maintaining or improving
oxygenation while causing alveolar lung injury. Mechanical ventilation
with high PEEP may also reduce the ability of surfactant to lower sur-
face tension, since compression of surfactant to an area of less than 50%
of its original surface area by higher pressures can result in rupturing of
the film on re-expansion, resulting in compromised surface tension-re-
ducing capacity [21,22]. In addition, the stresses of mechanical venti-
lation also stimulate the inflammatory response [21].

Thus, it seems likely that another function of surfactant may be
important: its ability to dampen the inflammatory response to microbial
components. Thus, at least one of the surfactant phospholipids, PG, has
been shown to inhibit activation of toll-like receptors (TLR) of the lung
innate immune system by microbial components (reviewed in [23]).
Voelker and colleagues have shown that PG inhibits TLR2 and TLR4
activation by microbial components, also known as pathogen-asso-
ciated molecular patterns (PAMPs), such as acylated lipopeptides and
lipopolysaccharide [23]. This inhibition then results in reduced pro-
duction of inflammatory mediators and decreased lung inflammation
and damage [24-26]. These results are also consistent with the results
of Wu at al. [27], who demonstrated that PG inhibits endotoxin-sti-
mulated activation of nuclear factor-kappaB (NFxB), a transcription
factor associated with inflammation, to reduce Type IIA secretory
phospholipase A, levels/activity in macrophages. The mechanism of
action of PG seems to be related to the ability of the TLR2 and TLR4 co-
receptor CD14 to bind this phospholipid and somehow prevent TLR
activation [26,28]. Indeed, Martin et al. [29] have recently suggested
blocking CD14, but with inhibitory antibodies, to control inflammation
in COVID-19.

Of note, PAMPs are not the only molecules that can activate TLRs.
TLR activation can also be induced by endogenous proteins that are
released by damaged or stressed cells, the so-called danger- or damage-
associated molecular patterns (DAMPs) (reviewed in [30]). Many such
TLR-stimulating DAMPs have been identified (reviewed in [31]), in-
cluding several heat shock proteins, high mobility group B1 (HMGB1)
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and fibrinogen [31], and these can be released extracellularly upon cell
damage. We recently showed that PG can inhibit DAMP-induced in-
flammatory mediator production [32] and skin inflammation [32,33].
Specifically, PG inhibits TLR2 and TLR4 activation by the DAMPs
S100A9 and beta-defensin-2 [32]. PG can also inhibit TLR2 and TLR4
activation in response to PAMPs in several cell types and in TLR2 and
TLR4 reporter cell lines [34], with minimal effects on the activation of,
or stimulation of inflammatory mediator expression by, other pattern
recognition receptors, such as the TLR7/8 that recognizes single-
stranded RNA. In addition, supplementation of surfactant with addi-
tional PG (to a molar percentage of 6%) preserves lung function and
prevents alveolar epithelial injury and the expression of pro-fibrotic
mediators in a neonatal pig triple injury model of ARDS [35]. The
ability of PG to protect against cell injury would be expected to be
beneficial in COVID-19 ARDS. Furthermore, COVID-19 patients have
been reported to exhibit elevated levels of tumor necrosis factor-alpha
(TNFa) [2], and drugs targeting pro-inflammatory mediators, such as
interleukin (IL)-1 and IL-6 have been proposed or are in use for the
treatment of COVID-19 [36,37]. PG has been shown to inhibit the ex-
pression of IL-1a, IL-1f, IL-6, and/or TNFa, as well as IL-8, interferon-
gamma and/or macrophage inflammatory protein-2, in response to TLR
activation by PAMPs and DAMPs [24-26,28,32,34,38,39]. In turn,
several of these inflammatory mediators (e.g., IL-6 and TNFa) are also
known to increase the levels of certain sPLA,s, in particular that en-
coded by the gene PLA2G2A [3], which would decrease PG levels even
further. Finally, excessive inflammation (e.g., markedly increased C-
reactive protein and D-dimer levels) is associated with the hypercoa-
gulopathy sometimes seen in COVID-19 patients [40]. Therefore, the
ability of PG to inhibit PAMP- and DAMP-induced might also decrease
these COVID-19 sequelae as well.

Hypothesis

Collectively, these results have led to the current hypothesis that
PG, in the form of exogenous surfactant, might be efficacious in treating
the symptoms of COVID-19. By analogy with SARS-CoV [41,42], SARS-
CoV-2 is thought to target alveolar type-II cells [43,44], the lung cells
that produce surfactant; the resulting release of endogenous molecules
by these damaged cells would presumably activate TLRs and stimulate
inflammatory mediator production and inflammation. These effects
likely would, together with the gradual reduction in surfactant resulting
from the death of these type II pneumocytes (and possibly the increased
activity of sPLA,) [3-5], promote the pulmonary edema that is a hall-
mark of COVID-19. The pulmonary edema, in turn, further impairs gas
exchange and leads to ARDS with further hypoxemia and dyspnea.
However, the initial presentation might be expected to show differences
from the respiratory distress seen in pre-term infants: phosphati-
dylcholine represents approximately two-thirds to three-quarters of
pulmonary surfactant lipid content [45,46] and thus provides the ma-
jority of its surfactant activity. Therefore, gradual loss of phosphati-
dylcholine would allow maintenance of compliance despite enhanced
inflammation resulting from decreased levels of PG, which comprises
only 9-12% of surfactant phospholipid [45,46], and the resultant pul-
monary edema. Presumably, loss of the anti-surface tension effects of
surfactant would only occur once large numbers of Type II alveolar cells
were destroyed and phosphatidylcholine was severely depleted. At this
point, then, patients would transition to the H-type clinical presenta-
tion, with the low compliance more typical of neonatal respiratory
distress syndrome.

Pulmonary administration of exogenous surfactant would be ex-
pected to counter this sequence of events in multiple ways: (1) it would
restore the levels of surfactant to protect against increased surface
tension in the lung; (2) it would inhibit activation of the innate immune
system by released DAMPs to reduce inflammation and inflammatory
damage; and (3) it would decrease pulmonary edema through the
combination of the first two effects. In addition, it is thought that in
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Surfactant Medications Approved by the Food and Drug Administration for Treatment of Neonatal Respiratory Distress Syndrome.

Natural Surfactants

Synthetic Surfactants

Generic Name Beractant Calfactant

Brand Name Survanta Infasurf

Company Abbott ONY Biotech

Source Minced bovine lung extract Calf lung lavage

Protein/amount SP-Band -C (1 to 21 mg/mM  SP-B and —C (13.5 mg/mM
PL) PL

Phospholipid/amount 30 mg/mL 35 mg/mL

PG/amount’ 3.2% total PL 4-6% total PL

FDA approval July 1991 July 1998

Poractant alfa Culfosceril palmitate* Lucinactant

Curosurf Exosurf Surfaxin

Chiesi GSK' Windtree’

Minced porcine lung extract First-generation Second generation synthetic
synthetic

SP-B and —C (7 to 15 mg/mM N/A SP-B-like sinapultide (0.9 mg/

PL) mL)

80 mg/mL 13.5 mg/mL 30 mg/mL

1.2% total PL N/A 25% total PL

November 1999 August 1990 March 2012

*Withdrawn from the market due to reduced efficacy relative to other natural surfactant medications.

J Discovery Labs became Windtree Therapeutics in 2016.

™ Abbreviations: FDA, Food and Drug Administration; GSK, GlaxoSmithKline; N/A, not applicable; PG, phosphatidylglycerol; PL, phospholipid; SP-B, surfactant

protein-B; SP-C, surfactant protein-C.

§ The values for protein and PG amounts were obtained from references [49,71-73].

some individuals, COVID-19-related morbidity and mortality may be
related to an over-reaction of the immune system and a “cytokine
storm” [2,37,47,48]. By inhibiting innate immune system activation
and release of pro-inflammatory mediators that recruit and activate
additional immune cells, including those of the adaptive immune
system, PG would likely interrupt this process of immune system hyper-
responsiveness, acting as a dampening mechanism, or rheostat, to
regulate lung inflammation [23]. Finally, it is known that pulmonary
surfactant can facilitate recruitment of collapsed airways and offer
protection from mechanical ventilation-induced lung injury. Thus,
exogenous surfactant therapy may restore or replenish insufficient or
dysfunctional endogenous surfactant activity and improve outcomes in
COVID-19. Thus, we are proposing that PG-containing surfactant
medications that are already approved by the Food and Drug Admin-
istration for the treatment of neonatal respiratory distress syndrome
(Table 1) be administered intratracheally via bronchoscopy to COVID-
19 patients with severe acute respiratory distress syndrome. It should
be noted that natural and second-generation synthetic surfactant pre-
parations have been found to exhibit increased efficacy for improving
neonatal respiratory distress syndrome relative to first-generation pro-
tein-free surfactant medications like Exosurf®. These results are con-
sistent with data indicating the importance of certain surfactant pro-
teins to improve the effect of surfactant on surface tension [49] and
others to reduce microbial infection ([50,51] and reviewed in [52]).

Additional considerations

The histologic description of COVID 19 pathology at autopsy shows
diffuse alveolar damage with cellular fibromyxoid exudates, acute fi-
brinous, hyaline membrane formation, organizing pneumonia and
desquamation of pneumocytes, all consistent with ARDS [53,54].
Hyaline membrane formation has been observed in histological samples
at both the early and later stages of the disease, suggesting early type II
pneumocyte injury with surfactant dysfunction [53]. Although not all
COVID-19 patients progress to a low-compliance phenotype, evidence
in histological specimens highly suggests that there is surfactant dys-
function and hyaline membrane formation comparable to that observed
in the non-COVID-19 ARDS-mediated alveolar damage described by
Matthay and Zemans [55]. One approach to improve the dysfunctional
surfactant in this disease is to treat with exogenous surfactant, thereby
allowing maintenance of its function in the alveoli. Indeed, it seems
likely that COVID-19-affected lungs will require functioning surfactant
to fully recover. Exogenous bronchial surfactant instillation has been a
feasible and safe approach in infants, although a higher dose and re-
peated administration may be required to restore dysfunctional alveoli
impacted by COVID-19.

It should also be noted that despite its ability to inhibit TLR

activation and inflammation, PG in surfactant does not seem to be
globally immunosuppressive. In fact, in animal models in vivo it protects
against infection resulting from several viruses, including respiratory
syncytial virus, influenza A (H3N2) and H1N1 [38,39,56], by inhibiting
the interaction of these viruses with their receptors on host cells
(Fig. 1). Although it is not known whether PG has a similar inhibitory
effect on the infectious capacity of SARS-CoV-2, a positive-sense single-
strand RNA virus, the minimal effect of PG on the activation of TLR7/8
[32,34] would suggest that this phospholipid would likely not suppress
innate immune system responses to the virus. Therefore, surfactant
might be useful in preventing the spread of SARS-CoV-2 viral infection
between infected and naive cells within the lung without affecting the
response to this infection, in addition to protecting against the damage
caused by excessive inflammation and edema and the increased surface
tension that eventually results from loss of surfactant. On the other
hand, the surfactant lipids phosphatidylcholine, in particular dis-
aturated phosphatidylcholine (dipalmitoyl-phosphatidylcholine), and
phosphatidylserine are reported to potentially promote infection by
viral pathogens [57]. However, the mechanisms are thought to involve
facilitation of viral entry via the ability of the virus to bind lipid and co-
opt reuptake/recycling pathways in the case of PC and promotion of
viral fusion by mimicking of an apoptotic signal in the case of PS [57].
Since SARS-CoV-2 purportedly gains entry into cells through angio-
tensin-converting enzyme 2 (ACE2) [40], these mechanisms used by
other viruses seem unlikely to be relevant to SARS-CoV-2 and COVID-
19 pneumonia.

It should also be noted that certain conditions that increase the risk
of a severe response to SARS-CoV-2 infection are also known to reduce
surfactant and/or surfactant phospholipid levels or to impair surfactant
function. Thus, phospholipid levels inversely correlate with age, at least
in horses [58]. Smoking also reduces phospholipid levels in pulmonary
surfactant [59] and is thought to increase the risk of adverse outcomes
from COVID-19 [48]. Diabetes causes increased serum levels of high
mobility group-B1 (HMGB1) [60], a known DAMP [31] that activates
TLR4 [31], which would be expected to enhance inflammation. Simi-
larly, in some cases hypertension has also been proposed to result from
enhanced serum DAMP levels (reviewed in [61]), which again could
possibly lead to a chronic low-level inflammation. Obesity is also
thought to be accompanied by inflammation (reviewed in [62]). In-
deed, serum levels of C-reactive peptide, a marker of inflammation,
have been observed to correlate well with SARS-CoV-2 viral load and
the Murray score, which assesses the severity of lung injury in in-
dividuals with ARDS [63]. Diabetes, hypertension and obesity have
been suggested to predispose individuals to worse outcomes from
COVID-19 [64]. In addition, serum levels of angiotensin II, which is also
reported to increase inflammation through TLR4 [31,65], are reported
to be elevated in patients with COVID-19 [63]. Finally, a recent report
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has suggested that the corticosteroid dexamethasone may improve
survival in patients with severe COVID-19 [66]. If confirmed, this result
would be consistent with the hypothesis described here, since gluco-
corticoids are known not only to suppress inflammation but also to
increase lung surfactant synthesis [67,68]. By stimulating any re-
maining Type II alveolar cells to produce more surfactant phospholipids
including PG, dexamethasone could both directly and indirectly de-
crease lung inflammation.

Implications

Surfactant has already been used in studies to treat ARDS [8-11] in
adult patients, although with less than impressive results. It should be
noted that Walmrath et al. [9] discussed the likelihood that higher
doses and/or more frequent administration of surfactant might be ne-
cessary in the case of ARDS (versus neonatal respiratory distress syn-
drome) to overcome the ongoing surfactant-inactivating conditions
(increased sPLA, levels, inflammation and oxidative stress) often pre-
sent in ARDS lungs. We would also like to point out that not all sur-
factant medications contain PG (for example, Exosurf® does not), which
could potentially be another explanation, in addition to potentially
inadequate dosing and inactivation of surfactant function by shearing
[13], for why not all studies of surfactant administration in ARDS have
found a benefit [12]. Despite the mixed results concerning exogenous
surfactant medication in adult ARDS [12,13], it is approved by the Food
and Drug Administration for intratracheal administration to pre-term
infants to treat neonatal respiratory distress syndrome. In infants there
are few side effects, and infants who receive surfactant have shorter
hospital stays and better survival [69]. Similarly, eleven clinical trials
in adults have indicated that surfactant therapy is both feasible and
safe, with no significant adverse effects reported [70]. Therefore, it is
postulated that because SARS-CoV-2 is thought to target and damage/
destroy surfactant-producing type II pneumocytes, COVID-19 may be
more like neonatal ARDS than are other types of ARDS. Indeed, like pre-
term infants, patients with COVID-19 have been found to exhibit hya-
line membrane formation [53]. Therefore, it is proposed that in-
vestigative studies to administer PG-containing surfactant, either syn-
thetic (e.g., Surfaxin®) or isolated from bovine (Alveofact®, Survanta®,
Beraksurf® and Infasurf®) or porcine lungs (Curosurf®), to critically ill
COVID-19 patients be initiated, particularly in view of the fact that few
therapies for severe COVID-19 have been shown to be effective to date
[371, and such treatments are actively being sought.

PG —I Pro-Iana_mmatory

Fig. 1. Phosphatidylglycerol in surfactant inhibits
toll-like receptor-2 (TLR2) and TLR4 activation in
response to damage-associated molecular patterns
(DAMPs). SARS-CoV-2, the virus that causes
COVID-19, is thought to infect type II pneumocytes,
the cells in the lung responsible for surfactant pro-
duction. Propagation of the virus results in pneu-
mocyte death and the release of viral particles and
endogenous intracellular molecules, some of which
can serve as DAMPs. These DAMPs, as well as pa-
thogen-associated molecular patterns (PAMPs) de-
rived from microorganisms and viruses (reviewed in
[741), activate the innate immune system through
TLR2 and TLR4 on alveolar macrophages (M¢),
triggering pro-inflammatory mediator production

diators

nflammatory
Mediators

and inflammation. Phosphatidylglycerol (PG) in
surfactant inhibits PAMP- and DAMP-induced TLR2
and TLR4 activation thereby reducing inflammatory
mediator production and inhibiting inflammation.
PG also may inhibit SARS-CoV-2’s ability to infect
naive cells. It is hypothesized that restoration or
supplementation of surfactant PG by administration
of exogenous surfactant will improve the re-
spiratory failure characteristic of COVID-19 pneu-
monia.
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