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Abstract
Three-dimensional (3D) whole body scanners are increasingly used as precise measuring

tools for the rapid quantification of anthropometric measures in epidemiological studies.

We analyzed 3D whole body scanning data of nearly 10,000 participants of a cohort col-

lected from the adult population of Leipzig, one of the largest cities in Eastern Germany.

We present a novel approach for the systematic analysis of this data which aims at identify-

ing distinguishable clusters of body shapes called body types. In the first step, our method

aggregates body measures provided by the scanner into meta-measures, each represent-

ing one relevant dimension of the body shape. In a next step, we stratified the cohort into

body types and assessed their stability and dependence on the size of the underlying

cohort. Using self-organizing maps (SOM) we identified thirteen robust meta-measures

and fifteen body types comprising between 1 and 18 percent of the total cohort size. Thir-

teen of them are virtually gender specific (six for women and seven for men) and thus

reflect most abundant body shapes of women and men. Two body types include both

women and men, and describe androgynous body shapes that lack typical gender specific

features. The body types disentangle a large variability of body shapes enabling distinc-

tions which go beyond the traditional indices such as body mass index, the waist-to-height

ratio, the waist-to-hip ratio and the mortality-hazard ABSI-index. In a next step, we will link

the identified body types with disease predispositions to study how size and shape of the

human body impact health and disease.

Introduction
Anthropometric measures are important to assess developmental normality and predisposi-
tions to diseases and to calculate drug and chemotherapy dosages. The relationship between
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the fat distribution, the associated human body shape and health risk, e.g. for cardiovascular
diseases, metabolic syndrome or cancer, are a major issue in many population studies [1–6]
where size and shape of the human body have traditionally measured in terms of only a few
anthropometric measures. Simple combinations of basal measures such as height, waist cir-
cumference, and weight were combined into ‘health indices’ to judge the health status of
human individuals. The impact and suitability of health indices such as the BMI (body-mass
index [7]), WHtR (waist circumference to height ratio [1]), WHR (waist to hip circumference
ratio [8,9]) and ABSI (a body size index [3]) were under discussion in the context of the “obe-
sity-mortality paradox” [10], showing that moderate overweight does not imply shorter
lifetime. These results call for a rethinking of how metabolic health is assessed in terms of alter-
native anthropometric measures which better characterize the relationship between the dimen-
sions of the human body and health.

Currently, whole body scanners using triangulation are the most effective measuring tools
for the rapid, accurate, precise and reproducible quantification of the dimensions of the human
body [11–16]. These devices capture 3D body models in a few seconds of measurement. There-
fore, the participant is illuminated by four lasers which project horizontal lines around the
body. Those lines are captured by eight cameras on different heights and utilized to triangulate
the body surface, which is then transformed into about one hundred length and circumference
measures by appropriate software tools in a fully automated way with high reproducibility, pre-
cision and accuracy [16–18]. These new and amended data are expected to improve the diag-
nostics of many diseases, replacing the current reliance on simple body indices [15,16].

Body scanning produces new types of data which, in turn, need new algorithms and
approaches for 3D shape analysis including dimension reduction and normalization [19]. They
also challenge new concepts for anthropometric phenotyping to get finer morphological dis-
tinctions for whole-body characteristics [20]. The first and, to our best knowledge, so-far
unique study of ‘body-‘ typing (i.e. the quantification and clustering of human body shapes)
with inputs from 3D anthropometry was published only recently [21]. This first attempt to
cluster body scanner data is however based on a relatively small cohort of about 300 adult peo-
ple. It provided a simple classification into endomorphic (high fatness), ectomorphic (high lin-
earity), and endo-mesomorphic (a mixture of fatness and muscularity) body types. Other
studies based on 3D body scanning used only a few single measures to derive combined indices
such as BMI or WTH without considering the increased set of body measures potentially avail-
able [13,14].

3D body scanning is ideal for screening large populations of subjects in large-scale epidemi-
ological surveys due to detailed acquisition of body dimensions, and easy and efficient use [13].
It is applied to generate a database of human physical dimensions for men and women of vari-
ous weights, between the ages of 18 and 65 years of a total of 2,500 people in the United States
and 2,500 in Europe (The Netherlands and Italy) in the frame of the CAESAR (Civilian Ameri-
can and European Surface Anthropometry Resource Project) project [22], which promoted to
tackle a series of methodical issues of 3D scanning technology [17–19].

3D body scans were applied in the Leipzig Research Center for Civilization Diseases
(LIFE). LIFE-ADULT (see reference [23] for a description of the study design) so far con-
ducted the largest population based study with an extensive phenotyping of urban individuals
in Germany. It has recently completed the baseline examination of 10,000 randomly selected
adult participants from Leipzig, a city in eastern Germany with 550,000 inhabitants. The gen-
eral objective is to investigate prevalences, early onset markers, and the role of lifestyle factors
of major civilization diseases. All participants underwent an extensive core assessment pro-
gram including besides anthropometry structured interviews, questionnaires, physical exami-
nations and biospecimen collection. The study covers a main age range from 40–79 years and
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predominantly collects people of middle European ethnicity. A follow-up investigation is
planned to start from 2016, re-assessing the same participants and allowing longitudinal
comparisons.

In this publication we systematically analyzed the complete set of body measures provided
by 3D body scanning of 8,499 adult participants of the LIFE study to define novel anthropo-
metric phenotypes with possible relevance for lifestyle factors and civilization diseases. This
data constitutes, to our best knowledge, one of the largest sets of such data presently available.
We pursue several objectives: How many and particularly what kinds of dimensions of body
shape are relevant? Are there characteristic ‘body types’? How to determine, to define and to
describe such body types in a robust fashion? For this we present a methodical framework of
data analysis using machine learning as the basal clustering technique. We demonstrate that
our approach allows for representation of human body shapes with high-resolution. It provides
robust body types as an important prerequisite for identifying new anthropometric factors of
health risk in subsequent, presently ongoing analyses.

Material and Methods

Ethics approval and consent to participate
As a prerequisite to enrolment, written informed consent was obtained from all participants.
The study was approved by the responsible institutional ethics board of the Medical Faculty of
the University of Leipzig. The data privacy and safety concept of the study was approved by the
responsible data protection officer.

3D body scanning of the LIFE adult cohort
In this publication we analyzed anthropometric 3D body scanner data collected in the LIFE-A-
DULT cohort between 8/2011 and 11/2014. A comprehensive description of the study design is
given in [23]. The study comprised inter alia interviews, questionnaires, classical anthropome-
try, laboratory investigations, biobanking, endocrinological, cardiovascular and cognitive
assessments, MRI of the brain, and 3D body scanning. Basic anthropometric characteristics of
the cohort are summarized in Table 1.

3D body scanning was performed by means of a commercial ‘Vitus Smart XXL’ 3D laser
scanner (Human Solutions GmbH, Kaiserslautern, Germany) which provides an image of the
body surface of each participant. Body measures were extracted from this image using Anthro-
Scan 2.9.9 software (Human Solutions GmbH) and stored in the LIFE research data base. Mea-
surement and data generation are in agreement with ISO 20685, the international standard for
3-D scanning methodologies for internationally compatible anthropometric databases. About

Table 1. Basic characteristics of the LIFE-ADULT cohort (mean values ± standard deviation). Distribu-
tion functions can be found in S1 File.

Gender Male Female

Number of participants 4,117 4,363

Age (y) 57 ± 13 56 ± 12

Height (cm) 176 ± 7 165 ± 7

Weight (kg) 86 ± 14 71 ± 14

Waist circumference (cm) 101 ± 12 91 ± 13

BMI (kg/m2) 28 ± 4 26 ± 5

WHR 0.96 ± 0.08 0.84 ± 0.08

WHtR 0.57 ± 0.07 0.55 ± 0.09

doi:10.1371/journal.pone.0159887.t001
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20–30 participants passed the study program of LIFE per day including 3D body scanning. The
scanner was calibrated every morning before data collection using a standard calibration body.
Measurements of all participants (standing position) were realized in a standardized way by
applying in-house standard operating procedures (SOP) based on manufacturer’s instructions.
SOP define the positioning of the participants, scanner settings, and the protocol throughout
the scanning process. Body measures were extracted automatically by the scanner software
using default parameter settings as implemented by the manufacturer which includes Land-
mark identification and gap filling algorithms. The data of all participants were generated
using the same scanner device and the same software as described above. We validated the
results of different software versions (v2.9.9–3.0.7), showing identical results (unpublished data
generated in the NaKo level III study). Surface calculation was validated using an in-house
MathCad program confirming outcome of the body scanner software.

For each participant 140 measures were collected and stored in the LIFE research data base.
These measures include 97 (linear) lengths and distances, 36 (curved) girths, 2 angles, weight,
and the four aggregated characteristics ‘body mass index’ (BMI [7]), ‘waist to hip circumfer-
ence ratio’ (WHR [24]), ‘waist circumference to height ratio’ (WHtR [1]) and ‘a body shape
index’ (ABSI [3]).

Preprocessing
The P = 140 body measures of N = 9,892 participant constitute the P x N matrix of raw data
(see Fig 1). Their preprocessing includes three steps: i) removal of missing values; ii) normali-
zation with respect to body height; and iii) Z-normalization of each body measure:

1. The matrix contained 17,721 (≙ 1.4%) missing values for 1,868 participants which could
not be estimated by the scanner software. In a first step, 46 participants were removed
which show missing values for more than 50% of the body measures. In the second step, 6
body measures were removed which were missed in more than 5% of the participants (for a
list see S1 Table). In the last step, the remaining 1,347 participants (≙ 13.6%), which still
have missing values, were removed. The resulting data matrix without missing values com-
prises P = 134 body measures of N = 8,499 participants.

2. The body measures of each participant were then divided by the body height. This normali-
zation step adjusts measures for body height and assumes that body shape linearly scales
with body height.

3. Finally, each measure was Z-normalized, i.e. centralized with respect to its mean value aver-
aged over all participants and divided by its standard deviation. Z-normalization makes the
different measures comparable by providing a common scale in units of the standard devia-
tion of each measure in the cohort.

SOM clustering of body measures—‘feature map’ and bodygrams
We applied self-organizing map (SOM) machine learning for both, clustering of the 134 body
measures into 13 meta-measures as well as for clustering of participants into body types using
these meta-measures. SOM clustering into body types is described in the next subsection.

SOMmachine learning projects the multidimensional features landscape, given by the body
measures, into a two-dimensional map space [25]. We developed a comprehensive analysis
workflow based on the SOMmethod. This so called ‘high-dimensional data portraying’ was
previously applied to different data types in molecular proteome, genome and, first of all, tran-
scriptome studies [26–30]. We applied SOM learning to the preprocessed body scanner data
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using standard parameter settings of the R-package ‘som’ [31]. A SOM size of 50 x 50 units was
chosen after thorough adjustment of map resolution to optimally resolve the cluster structure
inherent in the data (see S1 File). A larger SOM size does not change clustering results. Clusters
of body measures were determined in this so called ‘feature map’ based on the patterns of the
distance map which visualizes the mean Euclidean distance of each SOM unit to its adjacent
neighbors (for details see [32]). A cluster is then defined as an area surrounded by units of
(local) maximum distances (see S1 File). This SOM-based clustering outperforms alternative
approaches such as principal component analysis and hierarchical clustering when applied to
body scanner data as shown in S1 File. In total we detected 13 clusters of body measures termed
‘meta-measures’. These meta-measures collect between 2 and 27 single measures (see S1
Table). Their values were calculated as mean values averaged over the respective single mea-
sures in each of the clusters. Eleven singleton measures are not included in the clusters and
excluded from downstream analyses. The resulting set of thirteen meta-measures anthropome-
trically characterizes each participant of the study. We Z-normalized the meta-measures of
each participant to remove additive ‘offsets’.

SOM clustering of participants—‘body map’
The second SOM called ‘body map’ was generated to cluster participants with similar body
measures. For input data we utilized the thirteen Z-normalized meta-measures of all 8,499 par-
ticipants of the study. We determined the minimum SOM size required to separate distinct
body types by progressively increasing SOM size until the asymptotic range was reached and

Fig 1. Workflow of SOM-based analysis of 3D body scanner data.

doi:10.1371/journal.pone.0159887.g001
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no new body types emerged (see S1 File). A size of 130 x 130 units was finally chosen. Each
unit in the body type map collects one or more participants with similar body shape, or it
remains empty otherwise. Body types were defined by separated clusters in the body map
which contain at least 85 participants (≙1% of the cohort) to focus on robust and relevant
clusters.

A visual description of body types and their mutual relations is achieved by staining the
body map according to mean characteristics of the participants in each of the tiles such as age,
gender, BMI, WHtR, WHR, and ABSI.

Availability of data
Preprocessed meta-measures of all participants used in this study together with the assignment
of gender, age, BMI and body type are provided as S2 Table. Raw data can be requested from
the LIFE Consortium (www.life.uni-leipzig.de/en/).

Results

SOM-based analysis workflow for body scanner data
We developed a comprehensive workflow to process body scanner data in large epidemiologi-
cal cohorts (see methods section and Fig 1). In the first step, raw data of body measures were
preprocessed which includes the removal of missing values, body height- and Z-normaliza-
tions. Height normalization is supposed to minimize body size-scaling effects to focus our anal-
ysis on the variety of body shapes. Z-normalization is applied to make the different measures
comparable in terms of a common scale.

After preprocessing, our data set comprises 134 body measures collected within the adult
cohort of the LIFE study from 8,499 participants. We additionally included four classical body
indices into the data set, namely ‘body mass index’ (BMI [7]), ‘waist to hip circumference ratio’
(WHR [24]), ‘waist circumference to height ratio’ (WHtR [1]) and ‘a body shape index’ (ABSI
[3]). In the next steps we applied SOMmachine learning either to cluster the body measures or
the participants, respectively. Details are described below and in the methods section.

134 body scanner measures aggregate into 13 meta-measures
A feature map of preprocessed body scanner data is generated using SOMmachine learning
[25]. A grid size of 50 x 50 was chosen to achieve stable clustering of the 134 body scanner mea-
sures into thirteen clusters (see S1 File). The SOM algorithm organizes continuous features,
here body measures, within a two-dimensional grid such that features with similar profiles
across the cohort locate at the same or at close positions, whereas features with dissimilar pro-
files are found in different regions of the map. Fig 2a shows the localization of each body mea-
sure in the feature map. Each dot represents at least one individual measure. If multiple
measures are located at the same position, their number is indicated by the color scale given
within the figure: blue dots represent positions with 1 single measure, dark red represents a
position with 16 measures. Importantly, the distances between the body measures in SOM
space are scaled non-linearly, i.e. they expand in regions highly populated with features and
decrease in sparsely populated regions. We make use of this property for the unsupervised
determination of clusters of features with similar profiles. We obtained thirteen clusters termed
meta-measures which contain from 2 to 27 individual body measures (Fig 2b). The meta-mea-
sures were labeled with capital letters following clockwise order in the feature map. This way
the meta-measures were sorted according to the mutual similarity of their profiles which only
partly agrees with their anatomical assignment. Meta-measures in the top left region of the
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feature map mainly refer to girth measures, whereas those in the bottom right region to length
measures. For example, cluster ‘I’, called meta-measure ‘arm length’, contains six related mea-
sures, namely ‘arm lengths left & right’, ‘arm lengths to neck left & right’, and ‘up arm lengths
left & right’ (see S1 Table for the complete list of meta-measure assignments). The localization
of length and girth measures in opposite areas of the map reflects anti-correlated behavior, i.e.
larger girths on average associate with smaller lengths and vice versa. Another meta-measure
‘G’, which was termed ‘Inseam and lower body lengths’, is a cluster of 18 features mainly
related to heights drawing on the lower body such as ‘sideseam lengths left & right’, ‘buttock
height’, ‘knee height’ and ‘distance neck to knee’. Please remind that the meta-measures refer
to scaled body measures in relation to body height.

We judged the stability of our cluster assignments with regard to variation of the cohort
composition using consensus clustering on randomly sampled sub-cohorts of 4,000 partici-
pants (� 50% of the cohort) as described in S1 File. The consensus map reveals deep blue
squares along the diagonal which indicate stable clusters of body measures which grouped
together in most bootstrapping iterations (Fig 2c). Light blue off-diagonal regions indicate a
residual level of uncertainty of cluster assignment, e.g. between clusters G and H. The consen-
sus map indicates a clear and robust cluster structure inherent in the body scanner data. This is

Fig 2. SOM cluster analysis of bodymeasures. (a) The population map shows the localization of all 134
body measures in SOM space. The color code assigns the number of measures in each of the 50x50 SOM
units, empty units are white. Singleton body measures not included in the meta-measure clusters are
highlighted. (b) The samemap as in panel (a), where thirteen clusters were detected and assigned with a
‘nick name’ characterizing the measures in the cluster. Their number per cluster is given in parenthesis. (c)
Consensus cluster map of the features. Light to deep blue coloring indicates the increasing frequency of
pairwise appearance of different features in the same clusters as determined in 100-fold bootstrapped SOM
training and clustering. (d) Mean intra-cluster consensus as a function of the number of participants used in
consensus clustering.

doi:10.1371/journal.pone.0159887.g002
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further supported by the mean inter-cluster consensus value of hm(k)i = 0.91, meaning that
feature pairs from the same cluster (as classified using the full cohort) attain common cluster
assignments in 91% of the bootstrapping iterations.

Finally we studied cluster stability as a function of cohort size using partial inter-cluster con-
nectivity for consensus clustering of randomly sampled sub-cohorts of sizes ranging from 100
to 8,000 participants (Fig 2d). It turned out that the mean inter-cluster consensus value asymp-
totically levels off at about 0.9 for cohorts greater than 4,000, indicating robust clustering. For
cohorts smaller than 1,000, clustering of features becomes rather unstable.

Bodygrams
We visualize the values of the thirteen meta-measures using a polar diagram representation
called bodygram where the ordering of polar axes was chosen according to the ordering of
meta-measures in the SOM (Fig 3a). The black polygon refers to Z = 0 and thus to the mean
value of each measure averaged over the cohort. In the following the terms ‘big’, ‘small’, ‘long’
and ‘short’ relate to these average values.

Fig 3b shows four bodygrams of selected participants together with the corresponding body
surface images. They reveal that relatively tall and thick people and also participants with short
and long extremities can be easily identified by sections of the bodygram largely deviating from
the Z = 0 baseline. The bodygram enables a simple shape-based perception of anthropometric
phenotypes.

In the next step we generated mean bodygrams of sub-cohorts specified by gender, age and
weight (Fig 3c). Comparison of the female and male bodygrams reveals typical gender-specific
differences between body shapes: Men show higher values of torso and extremities lengths,
whereas women show larger sideseam lengths and thigh girths. In general, these gender specif-
ics are more pronounced for older people (especially women) whose upper body girths and
shoulder angle markedly increase. Women also show larger (relative) ‘head circumference’ val-
ues than men. Larger body heights of men thus do not associate with a proportional increase of
their head circumferences. We further stratified younger and older women and men with
respect to their body weight: For young men a high weight associates with longer length mea-
sures and girths (upper body, thigh), whereas for older men a strong increase of upper body
girth and shoulder width is observed. Higher weights are trivially found for obese as well as
‘strong’men. Interestingly, younger overweight women show extraordinarily large thigh girths,
whereas older women also show arm and neck girths beyond their average values.

This simple approach clearly shows that gender, age, weight and BMI reflect multiple char-
acteristics of the body shape as seen by the meta-measures, whereas the former, virtually one-
dimensional parameters are not able to comprehensively describe the multidimensional diver-
sity of the body shape.

The LIFE-ADULT cohort splits into distinct body types
After clustering of body measures we clustered the participants into body types using SOM
machine learning. We trained SOMs of increasing sizes with the meta-measure data of the
LIFE cohort. We found that the number of resolved body (type) clusters increases until a SOM
size of 130 x 130, and then levels off at a number of fifteen clusters (see S1 File). Hence, a SOM
size of 130 x 130 was required to achieve sufficient resolution of the clusters inherent in the
LIFE cohort of nearly 8,500 adult participants. These clusters either contain mainly women
(labelled as F1. . .F6), men (M1. . .M7) or participants of both genders (B1 & B2) (see Fig 4a). A
few participants could not be assigned to any body type cluster (n = 96,≙ 1.1% of the cohort).
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Fig 3. Visualization of body shapes using bodygrams. (a) Bodygrams are polar diagrams with the meta-
measures in Z-units as axes. The black polygon refers to Z = 0. (b) Example bodygrams and the
corresponding body surface scan images of selected participants. The dotted ‘cobweb’ lines indicate
deviations from the mean in units of +/- 1, 2 etc. standard deviations. (c) Bodygrams averaged over all men
(left branch) and women (right branch). The gender-specific groups were further stratified into young and old
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They were located in isolated units of the body map and will be addressed in follow-up
analyses.

We generated a consensus matrix by applying 100-fold bootstrapped clustering using sub-
cohorts of 8000 participants. The stability of body type clusters was then evaluated using intra-
and inter-cluster consensus values: Body types with high intra-cluster consensus (F1-F4, M1)
can be regarded as compact and stable, while clusters with lower values (B1, F5, M4, M7) are
more uncertain (Fig 4b). Note that intra-cluster consensus and number of participants in the
body types are correlated with Pearson correlation coefficient of r = 0.5 indicating a direct rela-
tion between the size of the clusters and their stability: Highly populated body types collecting
prevalent body shapes tend to be more stable than rare ones.

men/women and also light and heavy persons. The numbers indicate the size of the respective sub-cohort.
Note that data was not complete for all participants.

doi:10.1371/journal.pone.0159887.g003

Fig 4. SOM cluster analysis of the participants. (a) The body map projects the 8,499 participants into a two-
dimensional grid. It reveals 15 distinct groups of participants with similar body shapes defined by separated cluster
regions. Each dot in the map represents one participant and is colored according to its gender and age stratification
as given in the legend within the map. (b) Intra-cluster consensus values for each of the body type clusters reflect the
degree of reliability and stability. (c) Hierarchical cluster dendrogram of body type clusters. Inter-cluster consensus
values were used as similarity measure to define the branching heights of the dendrogram.

doi:10.1371/journal.pone.0159887.g004
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Inter-cluster consensus estimates the degree of overlap between two clusters. We utilized
these values to generate a dendrogram of body types using hierarchical clustering with single
linkage (Fig 4c) which reveals a high degree of similarity between the types F3 and F4 located
together on the outer branches of the dendrogram. Further body types stratify successively
until two major, gender-specific branches remain: the leftmost branch contains mainly men
(M types and B2), the rightmost one mainly women (F types and B1).

Resolution of body types depends on cohort size
Stability analyses suggest that resolution of body types and the ability to detect rare body types
increases with the number of participants in the cohort. Here the question arises how many
clusters are generally detectable given a certain cohort size. We applied bootstrapped clustering
using different sub-cohort sizes ranging from 1,000 to 8,000. We then counted the number of
clusters in each of the bootstrapping iterations and for each of the different sub-cohort sizes to
estimate the cluster number and their robustness as a function of the cohort size. The number
of detectable body types increases with cohort size, as expected (Fig 5a). Moreover, the increase
of the mean number of body types as a function of sample size does not seem to flatten, sug-
gesting that the number of body types detected will exceed 15 in larger cohorts. The variability
of cluster numbers is calculated as standard deviation within the 100 bootstrapping iterations
for each sub-cohort size. It slightly decreases with increasing cohort size (Fig 5a), while the sta-
bility (i.e. mean intra-cluster consensus values) increases (Fig 5b) indicating that clusters
become more stable and their number possibly settles in a sufficiently large cohort exceeding
sample size of LIFE_ADULT with 10,000 participants. In particular, the maximum stability
level of hm(k)i> 0.60 was achieved only for cohorts larger than 8,000. Smaller sub-cohorts
with less than 6,000 participants give rise to a decrease to a value of about 0.50, accompanied
by a decrease of the cluster number to about 12. This leads to the important conclusion that
cohort size to a large degree determines the number of detectable body types. This result is
expected and implies that the detection of ‘rare’ body types in terms of stable clusters requires a
sufficiently large cohort size. The fifteen clusters detected in the LIFE cohort thus refer to the
cohort size used and might potentially be further refined in larger cohorts in the future.

The LIFE body types
Figs 6 and 7 characterize the 15 body types which were arranged according to gender composi-
tion: Body types B1 and B2 comprise larger fractions of both male and female participants, F1
to F6 mainly women, and M1 to M7 mainly men (see stacked bar plots in Figs 6d and 7d).
Each body type typically comprises a few hundreds of participants covering the range between
about 1% and 18% of total cohort size. Our clustering thus considers both rare and frequent
body types. The mean age per cluster ranges from 46.2 to 67.9 years (Figs 6a and 7a). Please
note, that participants younger than 40 years are strongly under-represented within LIFE-A-
DULT (5.5% in total).

The body surface images reflect a broad diversity of body shapes behind the clusters which
include long and lean (B1, M1 &M2) and short and thick (F4 & M4) persons, but also short
participants with short or long legs (M4 / F5) and arms (F2 / M3), respectively (Figs 6b and
7b).

Bodygrams visualize mean meta-measures of each body type (Figs 6c and 7c). They reveal
that each body type features a unique combination of meta-measure characteristics. For exam-
ple, both M6 and M7 are characterized by long upper bodies, but they differ in the size of their
limbs. Hence, bodygrams together with body surface images provide a thorough characteriza-
tion of body types emphasizing complementary aspects of body shape.
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We further use barplots to characterize each body type with regard to gender, age and body
height, and also the indices BMI, WHtR, WHR, and ABSI (Figs 6d and 7d): Gender composi-
tion facilitates the classification into male, female, and mixed body types. Age distribution of
body types reveals almost balanced compositions (most notably F3 and M1), but also body

Fig 5. Number of body type clusters resolvable and their stability as a function of the cohort size. (a) Cluster numbers and corresponding
standard deviation are obtained using 100-fold bootstrapped clustering for different sub-cohort sizes. (b) Mean intra-cluster consensus is given as
robustness estimate for each sub-cohort size.

doi:10.1371/journal.pone.0159887.g005
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Fig 6. Characteristics of the B* and F* body types.

doi:10.1371/journal.pone.0159887.g006
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Fig 7. Characteristics of the M* body types.

doi:10.1371/journal.pone.0159887.g007
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types enriched with young (B1, F1 & M1) and old participants (F5, F6 & M7). Height distribu-
tion reveals enrichment of smaller participants in female, and taller participants in male body
types as expected, with some body types collecting particularly small (F6; older women) and
tall participants (M1, M2; younger men), respectively. Our results clearly reveal gender specif-
ics in terms of size and shape of the human body subsumed as allometric differences between
the sexes for most of the body types [33].

The BMI and WHtR characteristics of the body types resemble each other. In particular,
obese participants (BMI>30) mostly show ‘apple-type’ body shapes (WHtR>0.6) whereas nor-
mal weight participants (18.5<BMI<25) are mostly ‘pear’-shaped (0.4<WHtR<0.5) [34].
WHR strongly resembles the WHtR patterns, but it tends to assign more participants to obese
state. In general, obesity as seen by BMI, WHtR andWHR indices is distributed over diverse
body types. ABSI is a body shape index reported to be non-correlated to other body measures
and indices [3]. The barplots in Figs 6d and 7d yet reflect the trivial tendency of older partici-
pants (in body types F5, F6 & M7) to show higher ABSI, i.e. higher mortality hazard. WHR
andWHtR show a similar age dependency, which in turn leads to an indirect association of
those indices and ABSI.

In summary, the body types reveal very heterogeneous body shapes with specific character-
istics beyond that of traditional body indices. In general, we found eight body types which
virtually exclusively comprise pre-obese and obese participants (>80% participants with
BMI> 25; body types F3, F4, F6, M3-M7). This fine resolution of participants with high BMI,
WHtR, and WHR shows that obesity associates with different body shapes and fat distribu-
tions, e.g. mainly at the torso (M5), arms (M4), or thighs (F3 & F4). This important result
potentially has impact on profiling obesity and obesity related health hazards.

The Leipzig Body Atlas
To describe mutual relations between body types we visualize the clusters along with associated
characteristics in the body map (Fig 8). In general, one finds a systematic shift of these charac-
teristics along different directions in the map as a result of their incremental changes along the
different body types. For example, gender changes predominantly in diagonal direction where
women are located mostly in the right and bottom part, and men mostly in the top left part of
the map (Fig 8a). Mixed gender clusters were found in an intermediate area in-between the
female- and male regions of the map. We characterized these mixed gender body types sepa-
rately for men and women (see S1 File for details). The gender-specific bodygrams of men and
women are very similar confirming the agreement of their body types although total body
height and weight differ markedly between women and men also in the mixed clusters.

The age map reveals body type clusters of especially young (F1 & M1) and old (F5, F6 &
M7) participants along the top border and in central position of the map, respectively (Fig 8b),
but mostly clusters of participants with a broad range of age. In general, mean age of partici-
pants changes predominantly in horizontal direction where younger participants accumulate
in the top left part of the map.

We also mapped the body indices BMI, WHtR, WHR, and ABSI into the body map (Fig 8c–
8f): The BMI, WHtR and WHRmaps reveal close similarity (but not identity) and a virtually
one-dimensional distribution of increasing values from the top to the bottom edge of the map.
The ABSI index shifts more in diagonal direction. It was reported to associate with mortality
hazard [3] and is trivially associated with age (compare age and ABSI maps). We also generated
tertile maps for each of the twelve meta-measures (S1 File). They visualize modular combina-
torics of meta-measures in the body types with high multivariate granularity and complemen-
tary to the bodygrams.
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Fig 8. Towards the Leipzig Body Atlas. Body maps color coded for (a) gender, (b) age, (c) BMI, (d) WHtR–
fruit types, (e) WHR, and (f) ABSI mortality index. Each colored pixel refers to the mean value averaged over
all participants mapped to a particular SOM node.

doi:10.1371/journal.pone.0159887.g008
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Discussion
We analyzed 3D body scanner data of a cohort of 8,499 adult participants sampled from the
population of Leipzig which constitutes one of the largest data sets of 3D body scanner data
currently available. We identified 13 meta-measures and 15 distinct body shapes which goes
far beyond the three clusters of identified before [21]. We were able to show that these features
are robust given the sample size available. The identification of robust meta-measures and
body type assignment was an essential first step. From here we can proceed to investigate the
associations of the 3D-body shapes with other phenotypic or genotypic traits, disease preva-
lences and health hazards. This is now becoming possible and will be reported based on the
LIFE-ADULT data elsewhere. One obvious step is to investigate how the 3D-body shapes is
linked to unhealthy body fat distribution. We have a subset of over 1,000 participants in whom
abdominal visceral fat is quantified fromMRI-scans. We also have extensive serum laboratory
traits on energy and lipid metabolism and cardiovascular assessments [23].

Our study has several limitations. The LIFE-ADULT cohort contained equal proportions of
women and men in the age of 40 to 80 years [23]. Only few data of younger participants were
available in this cohort. In addition, the study population is a population with a typical middle
European ethnicity. African, Hispanic, Asian and other ethnicities contribute to less than 1%
each. To broaden the database we are presently initiating a collaborative project with the Ger-
man National Cohort to obtain 3D-body scans in an additional large series of individuals aged
20–70 years.

We developed an analysis pipeline for 3D body scanning data. The preprocessing step com-
prises removal of missing values, normalization with respect to body height, and Z-normaliza-
tion of the individual body measures. Z-normalization translates the body measures into a
common scale, which is essential for the SOM algorithm that uses Euclidean distances as simi-
larity criterion. Normalization of participants’measures to their body height assumes a propor-
tionality model that scales body measures linearly with body height. The body types defined in
this publication consequently refer to human bodies artificially scaled to a common height.
This scaling allows to distinguish body shapes rather than separating participants on an abso-
lute height scale.

After preprocessing, the body measures provided by the scanner software aggregate into a
roughly tenfold reduced set of meta-measures each representing a cluster of correlated single
measures. Redundant information in the original data is thus mostly removed and dimension-
ality is reduced to relevant measures. In result, each participant is characterized by a set of
meta-measures, each of which estimates one relevant dimension of body shape. In a second
clustering step, participants were aggregated into fifteen body types. It can be expected that
with larger sample sizes one may be able to detect more subgroups.

We provide a novel methodological option to stratify large epidemiological cohorts into a
series of well-defined body types. The capabilities of SOMmachine learning to accomplish
body typing have been demonstrated, where particular strengths of this method can be seen in
the visualization capabilities, multidimensional mapping, and non-linear scaling of the data.
The resolution of our body types goes beyond a few main variables and reaches a high degree
of multivariate granularity.

We also demonstrated that 3D-body typing needs sample sizes of several thousands of par-
ticipants to obtain robust body types. The questions whether our body typing can provide new
standards for anthropometric health classifiers and whether the concept of multidimensional
‘body types’ has advantages compared to, e.g., one-dimensional body indices requires further
investigation. Forthcoming studies including tens of thousands of participants and, most
importantly, association of the body types with health states, environmental conditions and

Novel Anthropometry Based on 3D-Bodyscans

PLOS ONE | DOI:10.1371/journal.pone.0159887 July 28, 2016 17 / 20



lifestyle factors will allow judging the relevance of anthropometrical body screening in health-
care research. We expect that this work will open some of these perspectives.
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