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Abstract: The performance of an Artificial Neural Network (ANN)-based algorithm is subject to
the way the feature data is extracted. This is a common issue when applying the ANN to indoor
fingerprinting-based localization where the signal is unstable. To date, there is not adequate feature
extraction method that can significantly mitigate the influence of the receiver signal strength indicator
(RSSI) variation that degrades the performance of the ANN-based indoor fingerprinting algorithm.
In this work, a wavelet scattering transform is used to extract reliable features that are stable to small
deformation and rotation invariant. The extracted features are used by a deep neural network (DNN)
model to predict the location. The zeroth and the first layer of decomposition coefficients were used
as features data by concatenating different scattering path coefficients. The proposed algorithm has
been validated on real measurements and has achieved good performance. The experimentation
results demonstrate that the proposed feature extraction method is stable to the RSSI variation.
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1. Introduction

Indoor location-based services such as tracking, patient monitoring, navigation, and localization
are relevant for today’s society and smart cities [1,2]. However, the GPS system is generally inefficient
in indoor and some outdoor environments due to the signal attenuation and weakened or unavailable
signal respectively. To support such services and overcome the limitations of the GPS system,
several approaches have been investigated. Among them, approaches based on the receiver signal
strength (RSS) measurement such as fingerprinting algorithms have attracted a lot of attention.
The fingerprinting method consists of two main phases: the offline phase, and the online phase.
During the offline phase, the RSSI data is collected in the area of interest at some predefined points
called Reference Points (RPs) with known position coordinates. Then, the radio map is built from the
collected data. The radio map contains one sample of the RSSIs of each Access point (AP) at each
reference point. In the online phase, when a new RSSI data is collected in the same area, the location
of that measured RSSI is estimated by finding the closest match between the current measured RSSI
data and those in the radio map. The main advantage of RSS-based localization methods is that they
do not require a specific network infrastructure or hardware to effectively operate. Also, these days,
smartphones have built-in RSSI measurement functionalities that can accurately measure the RSSIs of
most available radio networks such as Wi-Fi and Bluetooth.
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However, RSSIs are very unstable and their variability degrades the performance of most existing
RSS-based localization methods. In the literature, a lot of research has been done to improve RSS-based
methods for outdoor environments based on different radio propagation models analysis [3]. Also,
weather conditions (snowing or raining) can impact on the outdoor RSS-based localization method [4].
Due to the indoor environmental charateristics, those outdoor localization models barely work in
indoor environments. Several studies have been carried-out to mitigate the effect of RSSI variation on
the positioning perfermance in both indoor and outdoor environments. Those studies include methods
called weighted centroid or relative-span exponential weighted localization which are accurate than a
generic k-nearest neighbor (KNN) or trilateration method [5]. These methods require a wise choice of
the weights.

Morever, there exist a dedicated event to indoor localization specifically International conference
on Indoor Positioning and Indoor Navigation (IPIN) [6]. IPIN presents most potential accurate indoor
localization algorithms including both accademic and industrial methods through different programs.
In addition, generally, RSSI fingerprinting-based algorithms are the methods which achieved the
best localization results at IPIN. Although the methods presented at IPIN achieved good localization
performance, the dataset used during such an event is still complex to exploit specifically the floor
ground labels. Therefore, few researchers have exploited this dataset in their performance evaluation.

Further approaches have been proposed to improve the localization performance through the use
of Artificial Neural Network (ANN). Unfortunately, such methods generally perform below par due to
the RSSI’s fluctuation. In fact, an ANN-based fingerprinting method requires a good feature extraction
method to achieve a good result. To improve the robustness of the features, several approaches have
been discussed such as approaches combining different types of data such as RSSI with magnetic,
and Time of Arrival (ToA) [7,8]. In an indoor environment these approaches are affected by multipath
propagation and scattering.

An ideal robust feature extraction method for ANN-based fingerprinting should maximize
the dissimilarity between classes (RP) while minimizing the difference within classes. There exist
many mathematical approaches to perform such tasks, and specifically methods based on scattering
transform. Linear Discriminant Analysis (LDA) is among such methods. However, the LDA requires
more samples per class to compute the scattering parameters. Also, in most available RSSI datasets,
there is almost one sample per reference point (RPs). This lack of samples per RP makes the LDA quite
difficult to implement. Moreover, the fact of replacing missing data by the same constant for all APs
can generate a problem of collinearity when applying the LDA. The wavelet Scattering transform [9]
is a promising approach since it has proved to deal with small deformation in signal processing.
The wavelet scattering transform possesses the same properties as the LDA to minimize the difference
within class while maximizing dissimilarity across classes.

In this paper, we proposed a neural network based fingerprinting algorithm using wavelet
scattering framework to extract the feature data from the fluctuating RSSI. The wavelet scattering
framework possesses the same properties used in deep learning to extract reliable features from data.
Those properties are multiscale contraction, linearization, and sparse representation. Additionally,
the wavelet scattering can extract reliable information at different scaling level of decomposition for
different scattering paths. Since, the extracted features are insensitive to translation, rotation, and small
deformation, the proposed method will not be affected by the handset orientation. Also, the proposed
method can be helpful when there is a lack of data by providing features of the same signal at different
scales. Such advantages of the wavelet scattering transform could be useful in dealing with RSSI
variation in a fingerprinting algorithm. In our work the extracted features consist of the concatenated
modulus coefficients of different scattering paths at different levels. The proposed algorithm was
evaluated on real environmental data and it has achieved better results in dealing with the impact of
RSSI variation.
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The rest of this paper is organized as follows: the next section surveys the works related to indoor
fingerprinting localization. Section 3 describes our method and in Section 4 the experimentation results
are presented. Section 5 discusses the results, then Section 6 concludes our work.

2. Related Works

2.1. Indoor Localization

Indoor localization based on radio signal characteristics has often been studied as a replacement
of GPS positioning and navigation system for an indoor environment. Those methods include the
Angle of Arrival (AoA) and its variant Time of Arrival (ToA) and especially the fingerprinting-based
methods [10,11]. However, the AoA and ToA are mainly subject to multipath propagation which is
natural for an indoor environment where there are many obstacles capable of scattering the signal. Thus,
the fingerprinting method has been widely implemented with various kind of RSSI, magnetic field,
accelerometer data, etc. In [12], the authors made use of Bluetooth and RFID RSSI. The combination
of these types of signal allowed to improve the localization performance by reducing the influence
of the RSSI variation. There are also several works that propose the use of magnetic data for indoor
localization based on fingerprinting. In [13] magnetic fingerprints are used to perform localization for
a multi-building environment. The magnetic field is measured along axes (x, y, z) and used with an
ANN. Such a method allows having good building identification based on magnetic pattern. An indoor
localization method based on the magnetic field using deep learning is proposed in [14]. In that model,
the authors used light intensity data to refine the result obtained with magnetic field.

However, in an indoor environment where users are moving with their handset, the magnetic
field can be significantly perturbated. Furthermore, different approaches have been studied to improve
the fingerprinting based on the RSSI data. Such methods include the most advanced machine learning
algorithms [15,16]. Yu Zhang et al. [17] introduced a tensor decomposition based model to model
the fingerprinting data. In addition, to deal with anomaly reading of the data during the collection.
The main aim in this work is to distinguish anomaly reading from correct reading and not to address
the RSSI fluctuation. Also, methods exploiting the ANN to mitigate the Wi-Fi RSSI fluctuation have
been proposed [9,18–21].

These methods used DNN autoencoder approach to extract discriminative features from
the fluctuating RSSI and applied a DNN classifier for target classifications. Such an approach
achieves good results in some cases but it is still affected by the RSSI instability. To date, there
is no adequate framework for extracting the reliable features from the unstable RSSI signal. Also,
the existing ANN-based fingerprinting methods are not stable to small deformations and they are not
rotation invariant.

2.2. Wavelet Sattering

Recent decades have seen a growing interest in applying wavelet frameworks to signal processing.
These works include wavelet transform, wavelet scattering transform and wavelet signal denoising [22].
Mallat et al. [23–26] have largely investigated the wavelet scattering transform framework and its
properties. They demonstrated how the wavelet scattering transform can extract reliable information
at different scales. The Scattering transform was tested on handwriting image data to extract the
features where it achieved good performance. Also, it has been proved in the literature that the wavelet
scattering coefficients are more informative than a Fourier transform when dealing with short variation
signals or small deformation and rotation invariant [27,28]. In [29], discrete wavelet transform is used
to compressed the input data for an ANN-based localization method. The use of wavelet transform
in that work was to compress the input signal to facilitate its use by the ANN. The method has been
evaluated on simulation data and has achieved good results.
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3. Materials and Methods

The main contribution of our study is to extract reliable features from fluctuating RSSI using
one-dimensional wavelet scattering transform.To do that, the raw RSSI data is assimilated to a time
series data collected at a fixed frequency. In addition, the wavelet scattering transform of the raw
RSSI is computed and then the complex coefficients modulus are the inputs of the DNN classifier as
described in Figure 1. A trained model consisting of the best fitting weights is obtained after training
the model with the scattering coefficient modulus. This trained model is then used to estimate targets’
location probabilities in relation to the RPs. The prediction probabilities are used to estimate the
targets’ position.

Figure 1. Proposed system architecture.

3.1. Wavelet Scattering Transform

Wavelet techniques are effective tools for good data representations and feature extractions which
can be used with most available classification algorithms. The wavelet scattering transform allows us
to produce reliable features that are locally stable to small deformations which we can use in conjuction
with a deep neural network. To produce a wavelet scattering transform of a time series input signal
X, three successive main operations are required such as convolution, nonlinearity, and averaging
as described in Figure 2. The input signal X = [x1, x2, . . . , xn] is a nn-dimensional vector data whose
length is the number of APs.

Figure 2. Wavelet scattering transform processes, where X is the input data, Ψ1 a wavelet function and
φJ an averaging low-pass filter.

In the rest of this paper, j and J are integers whin j ≤ J where j is the maximum level of scattering.
The wavelet functions used in the scattering transform process are dilated mother wavelets with
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different scaling levelsa. A well-known example of mother wavelet is Mortlet wavelet noted by ψ as
defined in Equation (1) where i is the complex number such as i2 = −1.

ψ(µ) = C1(eiξ.µ − C2)e−|µ|
2/(2σ2), (1)

where ξ is the frequency σ is a measure of the spread or support, and C1, C2 are constants such as∫
ψdµ = 0 and

∫
ψ2dµ = 1.

The dilated mother wavelet is computed by scaling the mother wavelet with a scaling factor of
the form 2−j j ∈ N. Let’s assume Ψ be the mother wavelet to be dilated with a scaling factor 2−j with
j varies from 1 to J the maximum scattering level order. Let denote by Ψ2j its dilated form. This dilated
wavelet can be expressed as shown in Equation (2).

Ψ2j(µ) = 2−jΨ(2−jµ). (2)

Similar to the dilated wavelet, the low-pass filter or averaging function φJ for a scattering
transform at scale 2J is a dilation form of a low-pass filter φ. that we defined as φJ(u) = 2−Jφ(2−Ju).
A general representation of the wavelet scattering transform is presented in Equation (3). We denote by

Ψ(X) = eiη.Xφ(X), (3)

where η is the frequency and i complex number such as i2 = −1. The Fourier transform φ̂(ω) of φ(x)
is a real valued function with primary support in low-frequency centered around ω = 0. Therefore,
Ψ2j is localized around 2−jη [23,26].

A wavelet scattering transform for a maximum scale factor of 2J begins with convolving the input
signal X with a low-pass filter (averaging function) φJ which performs an averaging operation on
the raw input data to produce an approximative representation which is called scattering coefficient
of order 0 at scale 2J that we denote by SJ []X . Let X = [x1, x2, . . . , xn] be the input RSSI for a given
RP in the RSSI database. The zeroth order scattering coefficient is computed by SJ []X(µ) = X ? φJ(u).
In fact, the wavelet scattering transform downsamples the signal with respect to the filter bank
length and input signal length. Although the coefficients’ modulus is an approximation of the input.
Its representation is smooth and differs from the input data as presented in Figure 3. The zeroth

order wavelet scattering coefficients’ modulus containS most of the signal energy and are the closest
representation of the original signal than other scattering orders. Additionally, the signal energy
decreases with the level of scattering. Therefore, the high level of scattering coefficients will have lower
energy. A wavelet can be considered as a band-pass filter and its dilated form is a dilated band filter.
The scaling function or low-pass filter captures the lower signal details whereas the wavelet Ψ captures
high-frequency components, thus higher details of the input signal. So, at each level, the lower details
of the signal are extracted. Figure 3 shows the difference between the raw RSSI of a single measurement
at an RP and its zeroth-order scalogram.
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(a) RSSI repartition (b) zeroth-order scattering

Figure 3. RSSI and its zeroth-order scattering scalogram.

Figure 3b represents the zeroth-order scattering coefficcients of an RSSI measurement from 77 APs.
The result of the scattering transform is a vector of 10 elements.

After computing the zeroth-order of scattering coefficients, the remaining scattering process starts
by convolving the input signal with dilated wavelet as shown in Equation (4) whose modulus is then
convolved with the averaging function to produce the first scattering order. To simplify notations, we
denote λ = 2j, j ≤ J, and ψλ(u) = 2−jψ(2−ju).

WJ X = (X ? ψλ), (4)

where X is the input signal, and ψ(u) is the mother wavelet (e.g., Morlet). The modulus |WJ Xn| of
this convolution result is computed and an averaging operation is performed on the result using the
low-pass filter as |WJ X| ? φJ to produce the scattering coefficients modulus of first order. The input
of the next stage is the modulus of |WJ X| and the same operations are repeated. We denote U[λ]X =

|X ? ψλ| the wavelet modulus operator for the sub-band λ. let φJ denote the low pass averaging filter
and P = (λ1, . . . , λm) a scattering path with m represents the number of sub-band frequencies or which
is the length of P. In other words P the ordered product of non-linear and non-commuting operators.
The cascading operation for computing U[P]X is written as below in Equation (5).

U[P]X = U[λm] . . . U[λ1]U[λ1]X = |||X ? ψλ1 | ? ψλ2 | . . . | ? ψλm |, (5)

with U[]X = X for the empty path. The output signal at each stage of the scattering transform is
rewritten as a function of the modulus and the lowpass averaging function is described in Equation (6)

SJ [P]X(u) = U[P]X ? φJ(u) = ∑
v,u

U[P]x(v)φJ(u− v) (6)

where SJ [P]X(u) denotes the scattering coefficients modulus of order or level m at scale 2J , with m the
length of P. To simplify notations, we denote SiX, i = 1, 2, . . . , m the scattering coefficients’ modulus
of order i, E0X = SJ []X.

During the scattering process, the information lost in a stage is recovered in the next stage. As far
as the scattering level increases the energy of the scattering coefficients tends to zero. Thus, it does
not require to have an infinite level of decomposition as a Fourier transform. To derive discriminative
information from the scattering decomposition, one can use one level’s coefficient or combination
or concatenation of more than two different levels’ coefficients’ modulus. Assume that we are at
3 levels of decomposition, the feature data can be either {S0X, S1X, S2X} , a subset of this set
or a combination of elements from this set. In the following Figure 4 one can choose SS2[λ1]X or a
subset of S1X = {SJ [λ1]X, SJ [λ2]X, SJ [λ3]X, SJ [λ4]X} or a combination of elements of the second level
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order coefficients’ modulus S2. The choice of scattering for feature representation is made based on
experimental results.

Figure 4. Wavelet scattering decompossition.

The following diagram Figure 4 describes a multiresolution wavelet scattering transform
propagator using four paths at each stage where SJ [∅]X = X ? φJ the zeroth order coefficients’ modulus,
Sj[λ1]X = U[λ1]X ? φJ = |X ? Ψλ1 | ? φJ , and Sj[λ1, λ2]X = U[λ1]U[λ2]X ? φJ = ||X ? Ψλ1 | ? Ψλ2 | ? φJ
The other coefficients are computed based on this procedure as described in Equations (5) and (6).

Different experiments were conducted, then the choice of the scattering coefficients for each
datasets was depending on their performance on that dataset. Therefore, different level of scattering
coefficient were used.

3.2. Neural Network Architecture

This section describes the Deep Neural Network model (DNN) used to exploit the extracted
features. DNN model predicts the probable RP based on the scattering coefficients from different
scattering paths. DNN model consists of four hidden layers and a SoftMax output layer Table 1.
The output of the Softmax layer constitutes the prediction probabilities.

We assume that there are N RPs, Hl last hidden layer output, and WL corresponding weights.
We denote by wLi the weights used to ouput the ith Rp prediction. The input of the SoftMax Layer is
given by WL

T HL = [wLihLi] i = 1, . . . , N. let Q = [q1, q2, . . . , qN ] denote the output of the Softmax
function and qi the ith element of Q associated with the ith RP. Then the output of the DNN network is
defined by Equation (7)

qi =
ehLiwLi

∑N
j=1 ehLjwLj

i = 1, . . . , N. (7)

We constructed the DNN classifier based on the parameters mentioned in the following Table 1.
In addition, we adopted a multi-labels classification scheme by using a binary cross entropy loss
function to train the network.

Table 1. Neural network parameters.

Parametter Values

Hidden layer 4
hidden neurons 128

hidden activation relu
output SoftMax
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The location is derived from the SoftMax output by taking the first 3 RPs which are predicted to
be the most closer to the target node with prediction probability greater than a threshold. For m test
points Tj, j = 1, . . . , m with exact coordinates. We consider only the reference point RPi, i ≤ 3 with
prediction probably greater than the threshold that we defined in a descending order with coordinates
respectively (xi, yi), i = 1, . . . , 3. Assume that thresh denotes the threshold and (x̂j, ŷj) the estimated
position of each taget Tj which is computed by Equation (8).

x̂j =
∑i xi.qi

∑i qi

ŷj =
∑i yi.qi

∑i qi
,

(8)

where i ≤ 3 and qi ≥ thresh. This equation means: for each test point j find the first three RPs i such as
pi ≥ thresh with strong probability pi and compute the target position based on these RPs coordinates
and those probabilities. The localization error err for m test points is defined as in Equation (9).

err =
1
m

m

∑
j=1

√
(x′j − x̂j)2 + (y′j − ŷj)2. (9)

4. Experimentation Results and Analysis

To evaluate the performance of the proposed method, experiments were carried out on two
different datasets. Matlab wavelet scattering toolbox [30] was used to compute the scattering transform.
Then google tensorflow [31] was used to build the DNN model. The same DNN architecture is used
for all experiments. All datasets used in this paper are Wi-Fi RSSI datasets.

4.1. Local Corridor Experiment

The first experimental data was collected at the corridor of Woncheon Hall at floor four of the
department of Electrical and Computer Engineering. An area of 50 m × 1.95 m where 21 RPs were
defined and 100 samples per RP was collected with a frequency of 12 seconds between samples.
The data was collected by the same user with a Samsung Galaxy S8+. We only used the six strongest
APs per RP. A total of 36 APs were retained. Matlab wavelet toolbox was used to achieve the wavelet
scattering decomposition. Then the zero order coefficients or scalogram coefficients modulus were
used for training as well as for testing data where there were only 11 test samples. We chose the
zeroth-order scattering coefficients because these coefficients are those which provided good test
accuracy. The data has been normalized before feeding into four layers DNN. The results of the
corridor experimentation are presented in Table 2. The experimentation results compared to those
in [21] show that the proposed method has reduced the positioning error to around 46%.

Table 2. Experimentation results on the corridor.

Method Mean Positioning Error in Meter

SAE + DNN 1.27
MNN 1.58

Proposed 0.68

4.2. Experiment with a Publicly Available Dataset

The proposed method has also been evaluated on a publicly available dataset [32]. This dataset
contains 25 subsets of datasets (categorized in months) where each subset contains some training sets
(15 for the first month and 1 for others) and test sets (5 per month) separately. This database also
contains separated subsets of dataset with some test data collected at the same point as the training
data. This makes it useful for checking whether the proposed algorithm is stable to RSSI variation.
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The performance of the proposed algorithm was evaluated in the first month collection where there
are 15 training sets (trn01rss to trn15rss) and 5 test sets l(tst01rss to tst05rss) collected on an area
of 308.4 m2 with 576 samples per dataset. In these databases, there are 12 samples for each location
where measurements were collected. Also, the test sets tst01rss and tst05rss were collected only at
the same points with all training data. The training data contains 48 RPs in total and 24 per floor
which can be identified by combining the location coordinates and the floor id (x, y, Floor). Three
scenarios were defined to evaluate the proposed method in which evaluation metrics were the floor
prediction and the location estimation in two-dimensional coordinates. Floor rate corresponds to the
floor classification accuracy.

The first option was defined to prove whether our approach reduces the influence of RSSI variation
on the localization performance. In this case, we want the algorithm to find the closest RP or perfect
matching RP. To achieve that, we used the test set tst01rss whose targets’ position coincide with RPs’
position in the training data. Training set trn01rss were used and only the first scattering scattering
coefficients provided the best results. Thus all experiments using this dataset were based on the first
level scattering coefficients. The experimental results presented in Table 3 shows that the proposed
method outperformed other methods. In this scenario the autoencoder model (SAE + DNN) was the
worst localization method. However, the autoencoder model (SAE + DNN) has been tested with the
proposed feature extraction method and has achieved similar results as the proposed algorithm. When
applying KNN with the proposed feature extraction method the positioning error become 3.04.

Table 3. Experimentation results for option 1.

Method Floor Rate (%) Average Positioning Error (m)

SAE + DNN 50–60 5–17
KNN 100.0 3.07

Proposed 100.0 0.0

In the second scenario, we evaluated the proposed algorithm using the same evaluation approach
presented in the database paper [32] but we only focused on the first month data. In this scenario,
all test data were used and the model was trained only with the first training dataset. Below Table 4 we
present the experimental results of the scenario 2 or option 2. The proposed algorithm achieved around
99.64% on floor classification and the location error was between 4 m and 5 m with minimum error
4.15 m which is higher than the positioning error achieved by KNN as shown in Table 4. In addition,
the autoencoder model presented in [9,21] applied to this database merely achieved 60% on floor
classification. The same observation has been proved as in the first option. The (SAE + DNN) model
achieved the same performance as the proposed model when using the proposed feature extraction
method and there is no much change for the KNN. For the KNN implementation only the first three
neighbors were used.

Table 4. Experimentation results for options 2.

Method Floor Rate (%) Average Positioning Error (m)

SAE + DNN 50–60 6–10
KNN 100.0 3.17

Proposed 99.6 4.15

To conclude the performance evaluation of the proposed method, another experiment was
carried out which used the first training data of the first month and the first test data of the 25th
month. This experimentation is the same as the first scenario only that the test data has been changed.
The experimental results (Table 5) show that the proposed method achieved the lower positioning
error whereas the SAE + DNN model achieved a good result on this test data than the previous test
but it still has a positioning error greater than the proposed method. The KNN was significantly
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affected by the RSSI variation. The minimum error for the proposed method was 4.27 against 5.43 m
for the DNN + SAE.

Table 5. Experimentation results for option 3.

Method Floor Rate (%) Average Positioning Error (m)

SAE + DNN 100.0 5–6
KNN 50.0 7.46

Proposed 95.0 4–5

5. Discussion

In this study, we proposed a one-dimensional wavelet scattering transform-based feature
extraction approach for RSSI-based fingerprinting localization. A deep neural network (DNN) model
was adopted to classify RSSI samples by matching the extracted features with one of the RPs. The DNN
classifier provides the probabilities that a given sample is close to an RP. To predict the a target node
position after classifying its RSSI measurements, a KNN approach strategy is applied using the
coordinates of the first three RPs whose probabilities are greater than 0.2. During the evaluation
phase, we did perform several experimentations to determine which combination of scattering
coefficients is suitable for the datasets used in this paper. The zeroth scattering coefficient were
the best choice for the corridor data and the first scattering coefficient was a better choice for the public
dataset.Experimentation results showed that the proposed method compared with some existing
methods used in this paper has improved the DNN-based fingerprinting localization performance.
These results demonstrate that the use of scattering transform can reduce the influence of RSSI variation
on an RSSI-based fingerprinting method. Therefore, Wavelet scattering transform is still a promising
tool for mitigating the impact of RSSI fluctuation. An explanation of the higher positioning error
achieved by the proposed algorithm on the second scenario of the second experiment may be due to
an overfitting.

Although we cannot claim that the proposed method is the best existing RSS-based fingerprinting
localization method, in our opinion, it provides a new approach for indoor fingerprinting algorithm
that can be investigated for localization performance improvements. Further investigations can be
done to improve the fingerprinting algorithm based on wavelet scattering transform, such as the
used of Support Vector Machine with the scattering coefficients, the exploitation of time-frequency
information, Shannon entropy, and autoregressive features.

6. Conclusions

In this paper, to reduce the impact of RSSI fluctuation that degrades RSS-based indoor localization
methods, a wavelet scattering based feature extraction method for a DNN-based fingerprinting
localization method was proposed. The small deformations invariant properties of the wavelet
scattering transform coefficients were exploited to reduce the impact of the fluctuating RSSI.
The proposed model was evaluated on different datasets. In addition, the results demonstrated
that it is a promising approach to deal with the instability of the RSSI. In future works, further
investigations can be done using other functionalities of the wavelet framework.
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