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In adults with COVID-19 (the disease caused by infection with severe 
acute respiratory syndrome coronavirus, SARS-CoV-2), the prevalence 
of acute neurologic symptoms (e.g., headaches, anosmia, seizure) and 

conditions (e.g., encephalopathy, stroke, delirium, encephalitis) ranges 
widely, from 4.4% to 100% of cases (1, 2). Neurologic manifestations in chil-
dren younger than 18 years with COVID-19 is also relatively common. For 
example, in the United States, of nearly 3,700 cases, 17% had nonspecific 
neurologic conditions such as headache, fatigue, and myalgia, and 1% pre-
sented with encephalopathy, seizures, and meningeal signs (3). Worldwide, 
a report of nearly 1,400 pediatric patients described similar prevalence of 
headache (4%), anosmia (2%), seizures (0.7%), and cerebrovascular stroke 
(0.7%) (4).

The pathophysiology of acute and postacute neurologic manifestations of 
COVID-19 is likely multifactorial. Each of the following mechanistic path-
ways could interactively or independently cause disease: 1) direct viral inva-
sion and replication in the CNS, 2) large vessel or microvascular insufficiency 
due to vasoconstriction and/or occlusion, 3) nonspecific effects of severe sys-
temic COVID-19 illness or treatment, and 4) immune system dysregulation 
and autoimmunity.

VIRAL INVASION OF THE NERVOUS SYSTEM

Cellular invasion by the SARS-CoV-2 begins with binding of the viral spike 
protein to a transmembrane receptor, followed by viral membrane fusion 
with the cellular membrane after activation of the spike protein by cellular 
proteases.

SARS-CoV-2 binds to the angiotensin-converting enzyme (ACE) 2 re-
ceptor, a protein coexpressed with the protease transmembrane serine 
protease 2 (TMPRSS2) in endothelial cells throughout the body. ACE2 is 
particularly abundant in the small intestine, kidney, lungs, and heart (5). 
ACE2 is also present in human adult and fetal brain, with highest expres-
sion in the pons and medulla oblongata (6). In mice, brain ACE2 protein is 
higher in the early postnatal period than in the adult, whereas ACE2 activity 
is similar (7). ACE2 is also expressed in components of the cerebral vascula-
ture and blood-brain barrier (BBB): that is, the endothelium, pericytes, and 
contractile cells (8–10). Purkinje cells, cortical layer V neurons, astrocytes, 
and micrglia also express ACE2 and TMPRSS2 (10). SARS-CoV-2 may bind 
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instead, or also, to the neuronal adhesion mole-
cule neuropilin (1 and undergo activation by Furin, 
an ubiquitous protease, to allow entry into the host 
cell (11). Neuropilin 1 is a glycoprotein essential for 
normal nervous and cardiovascular system formation 
and function in vertebrates. It is expressed in immune 
(i.e., macrophages, microglia) and nonimmune cells 
(i.e., endothelia, neurons) (12, 13). Neuropilin 1 has 
essential roles in axon guidance, dendrite formation, 
and cerebral vasculogenesis, among other processes. 
Indeed, mouse brain neuropilin 1 expression is two 
to three times higher in embryonic than adult tissues  
(14, 15). Of note, the developing brain expresses the 
main receptors and proteins considered necessary for 
SARS-CoV-2 invasion into neural cells. Therefore, di-
rect viral invasion of the CNS or peripheral nervous 
system is biologically plausible across the age spec-
trum, but evidence supporting this mechanism as 
the sole or predominant pathophysiologic process 
in patients is scarce (16). Direct viral invasion of 
the CNS would require either viremia and BBB dis-
ruption or transsynaptic viral passage along cranial 
nerves V, VII, IX, and X, using nasopharyngeal, res-
piratory, and/or gastrointestinal tracts as entry points 
(16, 17). Figure 1A illustrates transsynaptic passage 
starting at the nasal neuroepithelium traveling via ol-
factory pathways to the brain stem and cortical areas. 
Viral entry via the respiratory system (Fig. 1B) leads 
to systemic inflammation and viremia, setting the 
stage for CNS invasion via BBB disruption (Figure 1, 
C and D).

Transsynaptic entry into the brain via the nasal 
cavity is supported by data from human autopsy and 
biopsy tissues and by work using animal models (10, 
18, 19). The nasal olfactory epithelium is a neuroep-
ithelium containing neural stem cells, sustentacular 
(or supporting) cells and olfactory sensory neuronal 
dendrites in which ACE2 messenger RNA and pro-
tein are coexpressed with neuronal markers (19). 
Sustentacular cells express ACE2 messenger RNA and 
protein at levels similar to those found in the respira-
tory epithelium (18). Sustentacular cells wrap around 
the apical dendrites of olfactory sensory neurons, 
the bipolar neurons whose axons pierce the cribri-
form plate to synapse at the olfactory bulb. Whether 
or not sustentacular cells can transfer SARS-CoV-2 to 
these neurons, possibly via exosomes as noted in some 

herpesviruses, is unknown (10, 18). SARS-CoV-2 
could thus travel transsynaptically from the olfactory 
bulb to the olfactory tubercule and cortex and/or to 
the brainstem and medulla (17, 19).

The likely importance of the olfactory route as 
a pathway to the CNS is supported by reports of 
MRI confirmed involvement of the olfactory cortex 
and brainstem in both adults and children (20, 21). 
However, reports of clinical encephalitis, meningitis, 
and intracranial ischemia/hemorrhage, in general, 
lack evidence of SARS-CoV-2 in the cerebrospinal 
fluid (CSF) (16, 22). Polymerase chain reaction SARS-
CoV-2 positivity in brain slices has been noted (23, 
24), but pathologic evidence of viral-specific injury in 
autopsy studies is lacking.

THE PROTHROMBOTIC STATE AND 
THE CNS (IMPAIRED LARGE VESSEL 
OR MICROVASCULAR BLOOD FLOW)

A feature that distinguishes neurologic disease as-
sociated with COVID-19 from that seen in most 
other respiratory viruses is the marked prothrom-
botic state and increased risk of stroke, particularly 
ischemic rather than hemorrhagic (16). Thrombotic 
and thromboembolic strokes have been reported in 
COVID-19 patients across the age spectrum, rang-
ing from the elderly to those as young as 7 years (25, 
26) depicted schematically in Figure  1E. SARS-
CoV-2 infection is associated with cerebral large 
vessel and microcirculatory occlusion or insuffi-
ciency in young adults and children (25, 27, 28). 
Case reports of thrombotic and hemorrhagic stroke 
in children with acute COVID-19 are growing (4, 
29–31).

Loss of ACE2 activity secondary to SARS-CoV-2 
infection is likely to play an important role in the 
cerebral vascular insufficiency, endotheliopathy, 
and neuropsychiatric manifestations of COVID-19. 
Microcirculatory insufficiency and endotheliopa-
thy in the CNS of COVID-19 patients (32) are sup-
ported by the predominance of hypoxic injury and/
or microvascular plugging (Fig. 1E) in brain autop-
sies from adults who died from COVID-19 even in 
those without systemic hypoxia or respiratory failure 
(24, 26). As shown in Figure 2, SARS-CoV-2 bound 
to cell surface ACE2, followed by viral entry, depletes 
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ACE2 (9). ACE2 loss has multiple effects. First, 
ACE2 normally counteracts angiotensin II, a potent 
vasoconstrictor, procoagulant, and inflammatory 

neuropeptide, via a number of pathways. ACE2 not 
only directly inactivates angiotensin II but it also pro-
duces angiotensin 1–7, an agonist at the Mas receptor 

Figure 1. Schematic of hypothesized neuropathology of COVID-19 neurologic manifestations. A, Expanded view of the neuroepithelium 
(arrow) showing olfactory neurons, neural stem cells, and sustentacular cells. Olfactory neurons are bipolar, projecting axons that traverse 
the cribriform plate apically and the nasal cavity basally. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binding to 
angiotensin-converting enzyme (ACE) 2 on sustentacular cell membranes enveloping basal dendrites may allow viral invasion into olfactory 
neurons followed by transsynaptic spread via cranial nerves and olfactory pathways to enter the brainstem, basal ganglia, and cortex.  
B, Inhaled viral particles easily bind to ACE2 on respiratory epithelium to replicate and enter the bloodstream. C, Shows a cross-section of 
the vasculature with a cartoon of viremia, the “cytokine storm” and the ACE2-expressing vascular endothelium. SARS-CoV-2 binding to 
endothelial ACE2 enhances viremia and multiple organ involvement. D, Schematically shows the blood-brain barrier and ACE2 expressing 
pericytes. ACE2 loss decreases flow in the cerebral microcirculation, in part by pericyte action on cerebral vessels. Finally, E shows cerebral 
microinfarcts from vascular plugging and vasoconstriction. IL = interleukin, TNFα = tumor necrosis factor-α.
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(MasR) that counteracts the actions of angiotensin 
II by promoting anti-inflammatory, anticoagulant, 
vasodilatory, and antioxidant effects downstream of 
MasR. MasR agonists are protective against ischemia 
in vitro and in vivo (33). Hence, ACE2 depletion and 
subsequent renin-angiotensin system (RAS) dise-
quilibrium could produce the endothelitis, inflam-
mation, and prothrombotic state associated with 
COVID-19 (34, 35). ACE2 acts on numerous other 
substrates in the brain, including the endogenous 
opioid neuropeptides known as dynorphins. (36) 
ACE2 loss leading to unopposed bradykinin, neu-
rotensin, and dynorphin levels could help explain 
increased vascular permeability, delirium, and high 
sedative requirements in COVID-19 patients (37). 
Preclinical studies show that the ACE2/angiotensin 
1–7/MasR-axis affects cognition, anxiety, depression, 
and other mood disorders. In support of the role of 
ACE2, high circulating angiotensin II levels are corre-
lated with disease severity in critically ill COVID-19 
patients (38). In summary, ACE2 loss could account 
for vascular and nonvascular neurologic manifesta-
tions associated with COVID-19.

SYSTEMIC FACTORS (CRITICAL 
ILLNESS AND THE CNS)

Seizures, delirium, and encephalopathy observed in 
many critically ill patients with COVID-19 are likely 
related in whole or in part to hepatic and/or renal 
failure, medications, hypoxia, and hypotension. The 
pooled estimates of seizure and encephalopathy fre-
quency in children with severe COVID-19 are 3.1% 
and 12.6% of cases, respectively (3).

IMMUNE DYSREGULATION AND THE 
CNS

Immune dysregulation resulting in “cytokine storm” 
and macrophage activation, possibly related to ineffi-
cient innate immunity and impaired viral clearance, 
could produce neurologic manifestations from sys-
temic effects and/or BBB breakdown (39). Acute or 
late neurologic manifestations of COVID-19 in adults 
and children may also be triggered by autoimmunity. 
Immune profiling suggests that autoantibodies in mul-
tiystem inflammatory syndrome in children (MIS-C)  
(the COVID-19–associated MIS-C) play a role in organ 

Figure 2. Angiotensin-converting enzyme (ACE) 2 and Mas receptor (MasR) pathways. Renin, produced in the kidney, acts on 
circulating angiotensinogen to produce angiotensin I. Angiotensin I is the physiologically inactive precursor of angiotensin II. The 
conversion of angiotensin I to angiotensin II is catalyzed by ACE, a type I integral membrane protein found primarily in the vascular 
endothelium of the lungs and kidneys. Angiotensin II exerts vasoconstrictive procoagulant, proinflammatory, and prooxidant effects 
via the angiotensin receptor (AT1R). Angiotensin II may instead be inactivated by the ACE2, a homologous type I integral membrane 
protein expressed in the vascular endothelium, lungs, kidney, adrenal cortex, arterioles, and brain. ACE2 also converts angiotensin I and 
angiotensin II into angiotensin 1–9 and angiotensin 1–7, respectively. Angiotensin 1–7 activates the MasR to promote anti-inflammatory, 
anticoagulant, vasodilatory, and antioxidant effects. SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.
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dysfunction including the brain (40, 41). Shared se-
quence similarity between SARS-CoV-2 and sialic 
acid residues on neural tissue as well as the postinfec-
tious nature of MIS-C supports an autoimmune hy-
pothesis in neurologic manifestations of COVID-19  
in adults and children alike after resolution of the acute 
infection (22, 40, 42). Serum and CSF from a series of 
adult patients with severe COVID-19 infection contained 
high-affinity SARS-CoV-2–neutralizing antibodies that 
cross-react with mammalian self-antigens, including 
self-antigens found in the CNS (43). Postinfectious neu-
rologic manifestations include Guillain-Barre syndrome 
and acute disseminated encephalomyelitis (3, 44, 45). In 
COVID-19, the presence of antiphospholipid antibodies 
in patients with severe thrombosis and the correlation be-
tween anti-interferon antibodies and severity of disease 
also support the possible role of autoimmunity (46, 47).

CONCLUDING REMARKS ABOUT 
THERAPIES

Knowledge about mechanisms of neurologic disease 
and immunologic response to SARS-CoV-2 is scarce, 
but rapidly growing. Experimental and clinical data 
suggest a major role for inflammation in the genesis of 
neurologic complications of COVID-19 in adults and 
children, with potential pathophysiologic involvement 
of disequilibrium in the RAS. This growing knowledge 
about potential mechanisms as outlined in this PCCM 
Concise Clinical Science review supports the currently 
used clinical interventions such as steroids in COVID-19 
and steroids and IV immunoglobulin in MIS-C. Future 
potential immunologic interventions include blocking 
agents (against interleukin-1 and -6, for example) and 
autoreactive cell and autoantibody depletion with plas-
mapheresis and/or anti-CD20 monoclonal antibodies to 
ameliorate neurologic complications of COVID-19.

Other possible pharmacologic approaches include 
combatting RAS disequilibrium induced by ACE2 
loss using MasR agonists. In this regard, a clinical trial 
(NCT04452435) of the MasR agonist C21 for treating 
nonneurologic complications of COVID-19 was recently 
completed (48). This group had previously demonstrated 
successful treatment of rodent stroke after nasal delivery 
of C21, suggesting the potential for future trials for treat-
ing or preventing neurologic complications of COVID-
19 (49). There are also ongoing mechanistic studies of the 
cytokine storm in pediatric COVID-19, with or without 
MIS-C (NCT04538495; NCT04588363), which should 

yield highly valuable insights into systemic disease path-
ogenesis. However, studies using biosamples and im-
aging relevant to the CNS and peripheral nervous system 
are needed to gain further understanding of the mecha-
nisms of neurologic disease in pediatric COVID-19.
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