
SOFTWARE Open Access

NucBreak: location of structural errors in a
genome assembly by using paired-end
Illumina reads
Ksenia Khelik1, Geir Kjetil Sandve1, Alexander Johan Nederbragt1,2 and Torbjørn Rognes1,3*

Abstract

Background: Advances in whole genome sequencing strategies have provided the opportunity for genomic and
comparative genomic analysis of a vast variety of organisms. The analysis results are highly dependent on the
quality of the genome assemblies used. Assessment of the assembly accuracy may significantly increase the
reliability of the analysis results and is therefore of great importance.

Results: Here, we present a new tool called NucBreak aimed at localizing structural errors in assemblies, including
insertions, deletions, duplications, inversions, and different inter- and intra-chromosomal rearrangements. The
approach taken by existing alternative tools is based on analysing reads that do not map properly to the assembly,
for instance discordantly mapped reads, soft-clipped reads and singletons. NucBreak uses an entirely different and
unique method to localise the errors. It is based on analysing the alignments of reads that are properly mapped to
an assembly and exploit information about the alternative read alignments. It does not annotate detected errors.
We have compared NucBreak with other existing assembly accuracy assessment tools, namely Pilon, REAPR, and
FRCbam as well as with several structural variant detection tools, including BreakDancer, Lumpy, and Wham, by
using both simulated and real datasets.

Conclusions: The benchmarking results have shown that NucBreak in general predicts assembly errors of different
types and sizes with relatively high sensitivity and with lower false discovery rate than the other tools. Such a
balance between sensitivity and false discovery rate makes NucBreak a good alternative to the existing assembly
accuracy assessment tools and SV detection tools. NucBreak is freely available at https://github.com/uio-bmi/
NucBreak under the MPL license.

Keywords: Genome assembly, Assembly errors, Illumina paired-end reads, Assembly accuracy assessment, Structural
variant detection

Background
Advances in whole genome sequencing technologies
have led to a greatly increased number of organisms
with sequenced genomes over the recent years. This has
provided the opportunity to make genomic and com-
parative genomic analysis of a vast variety of organisms.
The analysis results are highly dependent on the quality
of the genome assemblies used. Any errors in an

assembly directly impair analysis predictions and infer-
ences based upon them [1]. The assessment of assembly
accuracy may significantly increase the reliability of ana-
lysis results and is therefore of great importance.
There are several tools developed for genome assembly

accuracy assessment, i.e. REAPR [2], FRCbam [3] and
Pilon [4]. These tools identify regions with various in-
consistencies in the alignments of reads mapped back to
the assembly and detect the locations of assembly errors.
The inconsistencies include abnormal read coverage, ab-
normal distance between reads in a pair relative to the
insert size, wrong orientation of one or both reads in a
pair, and a large percentage of soft-clipped reads (reads
that are partly mapped to an assembly: the one end of

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: torognes@ifi.uio.no
1Biomedical Informatics Research Group, Department of Informatics,
University of Oslo, PO Box 1080 Blindern, NO-0316 Oslo, Norway
3Department of Microbiology, Oslo University Hospital, Rikshospitalet, PO Box
4950 Nydalen, NO-0424 Oslo, Norway
Full list of author information is available at the end of the article

Khelik et al. BMC Bioinformatics (2020) 21:66
https://doi.org/10.1186/s12859-020-3414-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3414-0&domain=pdf
http://orcid.org/0000-0002-9329-9974
https://github.com/uio-bmi/NucBreak
https://github.com/uio-bmi/NucBreak
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:torognes@ifi.uio.no

the read is mapped to the reference while the second is
not) and singletons (reads whose partner was not
mapped). The tools are aimed at detecting structural er-
rors including medium to long insertions and deletions,
as well as inversions, duplications, and inter- and intra-
chromosomal rearrangements. Pilon also enables detec-
tion of small insertions, deletions and substitutions and
performs local assembly to fix detected assembly errors
where possible.
The genome assembly accuracy assessment problem is

very similar to the structural variant (SV) detection
problem. The tools developed to detect structural vari-
ants between genomes of the same or closely related
species, such as Wham [5], BreakDancer [6] and Lumpy
[7], are based on the approaches similar to the ones im-
plemented in REAPR, Pilon and FRCbam. They exploit
the same types of inconsistencies in the read alignments
in their workflow. The usage of such tools may be a pos-
sible alternative to the tools developed for genome as-
sembly error detection.
In addition to the tools mentioned above, it is also

possible to use optical mapping data [8] or reads pro-
duced by the third-generation sequencing technologies,
such as Single-molecule real-time (SMRT) technology
developed by Pacific BioSciences (PacBio) [9] and the
Oxford Nanopore Technologies (ONT) [10]. Optical
mapping data and PacBio reads has been already suc-
cessfully used to detect assembly errors [11] and to de-
tect structural variants [12], respectively. The use of this
kind of technology and data may be more straightfor-
ward and accurate for detection of assembly errors than
relying on paired-end data, but it would also require
additional resources and expenses that may not be avail-
able. The methods presented in this work can be applied
without additional data.
Here we present a new tool called NucBreak aimed at

genome assembly accuracy assessment. In contrast to
other tools examining reads that do not map very well
to the assembly, like discordantly mapped reads, soft-
clipped reads and singletons, NucBreak rather investi-
gates the reads that map well. NucBreak analyses the
alignments of these properly mapped reads (where both
reads in a pair are fully aligned in correct orientation at
a reasonable distance) and exploits information about
the alternative read alignments to detect the locations of
assembly structural errors. The tool has been compared
to REAPR, FRCbam and Pilon, the only existing tools
detecting assembly error locations, as well as BreakDan-
cer, Lumpy, and Wham. We have chosen BreakDancer,
Lumpy, and Wham because they were developed to per-
form the analysis in whole genomes of different species
and detect various types of structural variants compared
to other existing SV detection tools. All tools have been
tested for their ability to detect errors in assemblies by

using either simulated or real datasets. The test results
have shown that NucBreak enables prediction of assem-
bly errors with lower false discovery rate (FDR) than
other tools, keeping relatively high level of sensitivity at
the same time.

Implementation
NucBreak is a tool created to detect structural errors in
an assembly by using paired-end Illumina reads. The
reads are first mapped to the assembly, and then the
mapping results are rigorously analysed to detect the as-
sembly errors locations. The NucBreak workflow is
shown in (Additional file 1: Fig. S1).

Read mapping
The error detection process starts with mapping reads
to the assembly by using Bowtie2 [13]. Bowtie2 is run
separately for each read file with the parameter settings
“--sensitive_local --ma 1 -a” to report all local align-
ments with an added nucleotide match bonus. The
resulting sam files contain all possible alignments for
each read not depending on the second read in a pair. A
read alignment may contain either a full read sequence
or a read sequence clipped on one or both ends. The
read clipping is performed when one or both ends of a
read accumulate a high number of differences compared
to the assembly. The clipped part of a read may be
mapped to another location in the assembly or remained
unmapped. There may be a few short substitutions, in-
sertions and/or deletions inside mapped reads or their
parts.

Properly mapped read pair formation and categorization
Once the mapping results have been obtained, NucBreak
combines reads into properly mapped read pairs and
categorizes the pairs into several groups. A pair of reads
is considered to be properly mapped if all of the five fol-
lowing conditions are fulfilled:

1. Both reads are mapped to the same assembly
sequence.

2. The reads have different orientations relative to the
assembly sequence.

3. The read with the reverse orientation is located at
the same position or further down on the sequence
compared to the mapping locations of the forward-
oriented read.

4. The beginnings of the read sequences (the first
bases of the read sequences as they are given in the
input files) are not clipped. The exception is made
only for the forward-oriented read mapped to the
very beginning of the assembly sequence and the
reverse-oriented read mapped to the very end of
the assembly sequence.

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 2 of 11

5. The reads have a proper insert size (see (Additional
file 1) for the details about the insert size detection
approach).

The alignments of properly mapped reads may contain
short substitutions, insertions and deletions.
To combine reads into properly mapped read pairs,

NucBreak analyses all possible combinations of the read
mapping locations for each input read pair and forms
properly mapped read pairs from those reads whose lo-
cations satisfy the five conditions mentioned above. Each
input read pair may give rise to none, one or several
properly mapped read pairs (see (Additional file 1: Fig.
S2)).
Then the created properly mapped read pairs are di-

vided into 4 groups, based on the presence of alternative
alignments for each read in a pair:

1. Single group - consisting of pairs where both reads
are mapped uniquely to a sequence. The pairs from
this group point to the non-repeated regions of a
genome (Additional file 1: Fig. S3a).

2. Single_Multiple group - consisting of pairs where
the forward-oriented read is mapped uniquely to a
sequence and the reverse-oriented read has multiple
alternative mapping locations. The pairs point to
the regions where non-repeated regions end and re-
peated regions start (Additional file 1: Figure S3b).

3. Multiple_Single group - consisting of pairs where
the forward-oriented read has multiple alternative
mapping locations and the reverse-oriented read is
mapped uniquely to a sequence. The pairs point to
the regions where repeated regions end and non-
repeated regions start (Additional file 1: Figure S3c).

4. Multiple group - consisting of pairs where both
reads have multiple mapping locations. The pairs
point to the repeated regions of a genome
(Additional file 1: Fig. S3d).

Read path creation and path gap detection
During the third step, reads from each group are merged
together to form continuous paths. This is done separ-
ately for forward- and reverse-oriented reads. Only
neighbouring reads having an overlap of more than 5
bases are involved in the merging process. There may be
small substitution, deletion and insertion differences in
reads inside the overlapping regions. If neighbouring
reads overlap with 5 or less bases, the overlapped bases
are clipped, creating an uncovered region between them.
The 5-base limit has been introduced to exclude over-
laps appearing due to uncertainties in alignment rather
than actual overlaps of positions. The obtained paths
represent the fragments of a genome that are considered
free of assembly errors.

Usually, several paths of the same type and orientation
cover a full assembly sequence. The assembly sequence
regions located between paths of the same type and
orientation are called path gaps (see Additional file 1:
Figure S4). The path gaps may potentially contain as-
sembly errors and, therefore, are extensively analysed by
NucBreak during the next step.

Path gap analysis
There can be several reasons for path gaps to appear.
First, a path gap may appear due to the presence of an
assembly error in this region. Second, a path gap may
correspond to a region covered by paths of other types.
Third, a path gap may appear when there is not enough
read coverage to provide the required overlap between
reads. Such a situation may occur when: (1) a genome or
its fragments were sequenced with a very low coverage,
(2) read pairs from these regions are absent due to se-
quencing errors in reads, (3) read pairs are filtered out
due to a violation of condition 4: when there are sequen-
cing errors in the beginning of one of the read in a pair,
and (4) there are gaps (a subsequence of N’s) in the
genome.
The goal of the fourth step is to exclude path gaps that

do not contain assembly errors. NucBreak starts with ex-
cluding path gaps that do not overlap with path gaps be-
tween paths of the same type in the opposite orientation
(Fig. 1a). Such situations are often observed in Single
and Multiple paths and are due to low coverage by ei-
ther forward- or reverse-oriented reads.
Then NucBreak detects path gaps appearing because

of the alternation of paths of different types. To ac-
complish this, NucBreak analyses the location order
of path types and the locations of paths separately for
the forward- and reverse-oriented paths. The path
types should appear in a fixed order, like a cycle:
Single, Single_Multiple, Multiple, Multiple_Single,
Single, and so on (Additional file 1: Figure S4). The
cycle may start with any type. If one type is skipped
or repeated (Fig. 1b), it indicates an error in this re-
gion. There is also a requirement for the locations of
paths: both a path and the following path gap should over-
lap with the next path with more than 5 bases. However,
we make some exceptions for type order and path loca-
tions in special cases (see Additional file 1: Figure S5 for
the details). In this way, NucBreak excludes a path gap if
the beginning of the path gap is covered with a path that
has a correct type order and location.
Unfortunately, it is not always possible to exclude all

path gaps located in the assembly sequence regions that
do not contain errors. The path gaps that have appeared
due to low read coverage or are located in the regions
containing subsequences of N’s of appropriate lengths
are never excluded.

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 3 of 11

Error location adjustment
All non-excluded path gaps are treated as containing as-
sembly errors. To narrow down the region where an error
is located, NucBreak shortens the path gaps during the
fifth step. To accomplish this, it first combines the paths
of all types with the same direction together. Then for
each path gap, it determines whether the end of any path
is inside the path gap region. If it is, the path gap begin-
ning is shifted to the path end (or to the right-most end in
case of several paths detected, Fig. 2a). Finally, it deter-
mines whether the beginning of any path is inside the path
gap region. If it is, the path gap end is shifted to the path
beginning (or to the left-most beginning in case of several
paths detected, Fig. 2b). If any path gap is fully covered by
any path, then this path gap is excluded.

To pinpoint the locations of errors, NucBreak first finds
the union of the adjusted path gaps of all types. This is
carried out separately for path gaps located on forward-
and reverse-oriented paths. Then NucBreak finds the
intersection of the obtained forward- and reverse-oriented
unions of regions and pinpoints the error locations. Errors
in the beginning and at the end of a sequence (inside the
regions with lengths equal to the read length) are excluded
by NucBreak, because in most cases they are due to the
lack of perfectly mapped read pairs.

Data sets
For the testing purposes, we created four different data-
sets. For the first and second datasets, we constructed arti-
ficial reference genomes and assemblies, and generated

Fig. 1 Path gap exclusion. The black line represents an assembly. The assembly regions marked by red colour correspond to repeated regions.
The repeated regions are identical or near-identical copies of the same repeat or copies of different repeats. The arrows represent read paths. (a)
Exclusion of a path gap fully covered by a read path of the same type and another orientation. The rectangles between read paths indicate path
gaps. Path gap 1 is excluded due to the presence of a required read path. The path gaps marked by number 2 are not excluded and require
further analysis. (b) Exclusion of a path gap appeared due to alternation of paths of different types. The black squares mark the locations of
assembly errors. The rectangles between read paths indicate path gaps that are not excluded. The path gaps marked by number 3 is not
excluded due to the repetition of read path types (e.g. the Single forward-oriented path is followed by another Single forward-oriented path
instead of the Single-Multiple forward-oriented path). The path gaps marked by number 4 are not excluded because one read path type is
missed (e.g. Multiple forward-oriented path is followed by Single forward-oriented path instead of Multiple-Single forward-oriented path)

Fig. 2 Error location adjustment. The black line represents an assembly. The arrows represent read paths of any type. The rectangles represent
initial path gaps. The red areas in the rectangles in cases a) and b) correspond to the adjusted path gaps with the shortened beginning and
end, respectively

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 4 of 11

simulated Illumina paired-end read libraries. In both
datasets, the reference genomes were constructed
from random DNA sequences by introducing different
interspersed and tandem repeats. The assemblies were
generated from the reference genomes sequences by
introducing controlled modifications (e.g. relocations,
deletions, duplications of different fragments and so
on). The detailed description of introduced modifica-
tions is given in (Additional file 1: Table S1). De-
pending on the datasets, different approaches were
applied to create an Illumina paired-end read library
in each case. For the first dataset, one read library
was generated with the help of ART (Q version 2.5.8)
[14] run with the “-ss MSv3 -l 250 -p -m 700 -s 40”
settings with 40x read coverage for each reference
genome. For the second dataset, read libraries with
5x,10x, 40x,100x, and 200x read coverages were gen-
erated by ART run with the “-ss MSv3 -l 250 -p -m
700 -s 40” settings.
The third dataset was created on the base of the data

provided by the Assemblathon 1 project [15]. An artifi-
cially evolved human chromosome 13 (hg18/NCBI36),
simulated Illumina paired-end read library with 40x
coverage, and genome assembly obtained by PE-
assembler [16] were downloaded from the Assemblathon
1 website [17]. To increase the number of errors and to
introduce more variability of error types, we deleted all
gaps from the assembly.
The fourth dataset consisted of 8 bacterial genomes

(Bordetella pertussis str. J081, Brucella melitensis str. 1,
Enterobacter cloacae str. AR_0136, Escherichia coli str.
2014C-3599, Klebsiella pneumoniae str. SGH10, Pseudo-
monas aeruginosa str. AR_0095, Salmonella enterica str.
CFSAN047866, and Staphylococcus aureus str.
CFSAN007896), MiSeq Illumina paired-end reads libraries
provided for these genomes, and assemblies generated
using the ABySS (version 2.0.2) [18], SPAdes (version
3.11.0) [19] and Velvet (version 1.2.10) [20] assem-
blers. The genomes were downloaded from the NCBI
database [21], and the reads were downloaded from
the EBI database [22]. The genomes accession num-
bers and information about the read libraries are
given in (Additional file 1: Table S2). The parameter
settings used to run ABySS, SPAdes and Velvet are
described in (Additional file 1). As in the third data-
set, we have removed all gaps from the assemblies be-
fore testing.

Results
We have created a tool called NucBreak that is aimed at
detection of structural errors in assemblies by analysing
the placements of properly mapped reads and exploiting
information about the alternative alignments of the
reads. In this section, we examine the ability of

NucBreak as well as REAPR (version 1.0.18), FRCbam
(version 1.2.0), Pilon (version 1.22), BreakDancer (ver-
sion 1.3.6), Lumpy (version 0.2.13), and Wham (version
1.8.0) to detect assembly errors in real and simulated
datasets.
All tools, except REAPR, FRCbam and partly Nuc-

Break, were run with their default settings. The param-
eter settings used to run REAPR, FRCbam and
NucBreak are described in (Additional file 1). To valid-
ate the results, we compared the obtained results of each
test with the ground truth results consisting of real er-
rors. Depending on the test performed, the ground truth
results were generated during the simulation process or
produced using NucDiff [23], the tool which enables
comparison of reference genomes with assemblies. Nuc-
Diff was run with the default parameter settings. The
ground truth and obtained results were compared using
BEDTools (version 2.17.0) [24] to get sensitivity and
FDR for each tool and each dataset (see (Additional file
1) for more details).
We studied sensitivity and FDR for each tool allowing

various degrees of slack in the location of each region in
the comparison by adding flanking regions of different
sizes to the ground truth regions. We added 1, 5, 10, 20,
50, 100, 200, 400, and 600 bp both up- and downstream
of each ground truth entry. The flanking regions were
introduced to investigate the positional accuracy of the
tools tested. In addition, for the flanking region size
equal to 600 bp, we identified the ability of each tool to
detect ground truth errors depending on the read cover-
age value in one of the tests.

Accuracy assessment in simulated datasets
We created a simulated dataset consisting of ten artifi-
cial reference genomes, assemblies, and Illumina paired-
end read libraries, as described in Section Data sets (the
first dataset), and ran NucBreak, Pilon, REAPR, FRCbam
Lumpy, Wham and BreakDancer to detect errors in the
assemblies. To enable validation of the obtained results,
we also generated the ground truth results during the
simulation process. All ground truth errors were divided
into several groups according to their types and sizes: in-
sertion, duplication, tandem duplication, deletion, dele-
tion of interspersed repeats or their parts, deletion of
tandem repeats or their parts, inversion, relocation
(intra-chromosomal rearrangements) with either
inserted regions between misjoined regions or without
them, and relocation with overlapped misjoined regions
groups with error sizes between 10 and 49 bp, 50 and
299 bp, and greater than 299 bp. The overall sensitivity
and FDR are presented in Fig. 3. The sensitivity for each
ground truth error group is shown in (Additional file 1:
Figures S6-S8). The number of ground truth errors in
each group is given in (Additional file 1: Table S3).

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 5 of 11

As can be seen from (Additional file 1: Figures S6-S8),
the sensitivity of each tool largely depends on the types
and sizes of errors and size of the flanking region. For
Pilon and NucBreak, the sensitivity constantly increases
with respect to flanking region size increment in all
cases where sensitivity is larger than zero. Wham’s and
REAPR’s sensitivity either increases with respect to the
flanking region size increase or remains approximately
the same, depending on the error types and sizes. In case
of BreakDancer, FRCbam and Lumpy, sensitivity in-
creases starting from medium- or long-sized flanking re-
gions depending on an error group.
As expected, all tools perform best with 600 bp

flanking region. For this flanking region size, Pilon
obtains sensitivity equal to 1 in almost all error
groups and outperforms other tools in many cases.
NucBreak’s and REAPR’s sensitivity is the same or
close to Pilon’s one in most groups. Wham shows
relatively high sensitivity in many groups, while
BreakDancer, FRCbam and Lumpy have low sensitiv-
ity in almost all cases.
As shown in Fig. 3, the overall sensitivity increases

rapidly for FRCbam, NucBreak, Pilon, and REAPR to-
gether with the flanking region size increase and is more
than 0.8 with 600 bp flanking region for all the men-
tioned tools, except FRCbam. The overall sensitivity for
the other tools does not increase significantly and is less
than 0.5 for all flanking regions. Overall FDR does not
change much for Wham and FRCbam and decreases
rapidly for all other tools together with the flanking

region size increase. All tools except Pilon and FRCbam
reach FDR less than 0.2 with a 600 bp flanking region.

Accuracy assessment in simulated datasets depending on
read coverage
To explore the influence of read coverage on the results
of NucBreak, Pilon, FRCbam, REAPR, Wham, Lumpy,
and BreakDancer, we created ten simulated reference ge-
nomes, assemblies, and Illumina paired-end read librar-
ies with 5x, 10x, 40x, 100x, and 200x coverage as
described in the Section Data sets (the second dataset).
As well as in the Section 3.1, the ground truth errors
were generated during simulation process and divided
into different groups based on the error types and size.
The sensitivity and FDR values were calculated with a
600 bp flanking region. The 600 bp flanking region was
chosen because all tools performed best with this flank-
ing region size in the previous section. The sensitivity
for each ground truth error group are presented in
(Additional file 1: Figures S9-S11) and the overall sensi-
tivity and FDR are shown in Fig. 4.
As indicated in provided plots, NucBreak’s and

REAPR’s sensitivity either decreases with the coverage
increase or is approximately the same starting from 10x
coverage. Pilon’s and FRCbam’s sensitivity decreases or
increases depending on the error type and coverage
values, while in case of Wham, BreakDancer, and Lumpy
sensitivity always increases, except a small number of
cases when the sensitivity remains approximately the
same.

Fig. 3 ROC-like plot based on the simulated datasets with varying flanking region size. The sensitivity and false discovery rate (FDR) are plotted
for seven tools (indicated with different colours) using varying flanking region sizes (indicated with different symbols). The flanking region size
corresponds to the amount of slack allowed in the position of correct predictions

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 6 of 11

The overall sensitivity decreases for NucBreak and
REAPR and increases for Pilon, Wham, and Lumpy to-
gether with the coverage increase. However, the overall
sensitivity for NucBreak and REAPR never drops below
0.7. In the case of BreakDancer and FRCbam the overall
sensitivity either increases or decreases depending on
coverage values. REAPR, NucBreak, and Pilon demon-
strate a fast decrease of FDR with up to 40x coverage.
Starting from 40x coverage, FDR remains the same or
slightly decreases. In the case of FRCbam, BreakDancer,
and Wham, FDR remains approximately the same for all
coverage values or slightly changes with coverage in-
crease. In contrast to other tools, Lumpy is the only tool
that demonstrates a rapid increase of FDR together with
the coverage increase.

Accuracy assessment in an assembly obtained from
simulated reads
To validate the ability of NucBreak, Pilon, REAPR,
FRCbam, Lumpy, BreakDancer, and Wham to detect er-
rors in real assemblies, we ran the tools with a dataset
where reads were created for an artificially evolved diploid
genome and an assembly was generated by the PE-
assembler (see Section Data sets, the third dataset for
details). The ground truth results were obtained by
comparing the assembly with the reference genome using
NucDiff. All ground truth errors were divided into types
according to the error types and sizes provided by
NucDiff: substitution, insertion, duplication, tandem du-
plication, deletion, deletion of interspersed repeats or their

parts, deletion of tandem repeats or their parts, inversion,
reshuffling (several neighbouring genome regions are
placed in a different order in an assembly), and two
groups of rearrangements (arrangement and rearrange-
ment with overlap) with sizes between 10 and 49 bp, be-
tween 50 and 299 bp, and greater than 299 bp. The
rearrangement group consisted of relocation and trans-
location (an inter-chromosomal rearrangement) errors
with either inserted regions between misjoined regions or
without them. The relocation with overlap group con-
tained relocation and translocation errors with overlapped
misjoined regions. The sensitivity for each ground truth
error group and overall sensitivity and FDR are presented
in Fig. 5 and (Additional file 1: Figures S12-S15). The
number of ground truth errors in each group is given in
(Additional file 1: TableS3).
As we see from (Additional file 1: Figures S12-S15),

the sensitivity increases with increasing flanking region
size for all tools in all groups. As expected, all tools per-
form best with a 600 bp flanking region. For this flanking
region size, Pilon shows high sensitivity in almost all
error groups and outperforms other tools in many cases.
The sensitivity results of the other tools largely depend
on types and sizes of detected errors. However, all tools
show high sensitivity in some groups.
The overall sensitivity is quite low for all tools for all

flanking regions. Such a low sensitivity can be explained
by the fact that there are a lot of small substitutions in
the tested assemblies (225,721 small substitutions versus
6933 small deletions, which form the second largest

Fig. 4 ROC-like plot based on the simulated datasets with varying sequencing coverage. The sensitivity and false discovery rate (FDR) are plotted
for seven tools (indicated with different colours) using varying sequencing coverage (indicated with different symbols)

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 7 of 11

ground truth error group), that are rarely detected by
any tool. The overall FDR decreases together with in-
creasing flanking region size for all tools. All tools ex-
cept FRCbam obtained the lowest FDR value with a 600
bp flanking region. The FDR values for FRCbam are
greater than 0.8 for all flanking region sizes.

Accuracy assessment in an assembly obtained from real
reads
We also explored the ability of NucBreak, Pilon,
REAPR, FRCbam, Lumpy, BreakDancer to detect er-
rors in assemblies obtained from real reads. For this
purpose, we downloaded reads for eight bacterial ge-
nomes, generated assemblies by using ABySS, SPAdes,
and Velvet (see Section Data sets for full description
of data and assembler parameter settings used) and
ran NucBreak, Pilon, REAPR, FRCbam, Lumpy, Break-
Dancer, and Wham. Unfortunately, REAPR crashed
during execution and was therefore eliminated from
the evaluation process. The ground truth errors were
obtained by comparison of assemblies with the refer-
ence genomes by using NucDiff and categorized into
several types according to the error types and sizes
provided by NucDiff, in the same way as it was de-
scribed in Section Accuracy assessment in an assem-
bly obtained from simulated reads. The sensitivity for
each ground truth error group and overall sensitivity
and FDR were first computed separately for each as-
sembly and genome and then combined together. The
final results are presented in Fig. 6 and (Additional

file 1: Figures S16-S19). The number of ground truth
errors in each group is given in (Additional file 1:
Table S3).
The sensitivity results indicate that Pilon and

NucBreak (with some small exceptions) enable detec-
tion of ground truth errors in all non-empty groups,
and other tools predict errors only in some cases.
Pilon outperforms other tools in almost all groups
with respect to sensitivity. However, in half of the
cases, the NucBreak results are comparable to Pilon’s
ones. Pilon and NucBreak have relatively high sensi-
tivity in many cases, while sensitivity of other tools,
except Wham’s and FRCbam’s sensitivity in one case,
is quite low or equal to 0.
Like with the dataset from the Assemblathon 1 project,

the overall sensitivity is low for all tools for all flanking
region sizes due to a large number of small substitutions
(8000 small substitutions versus 437 small deletions that
form the second largest groups), that are rarely detected
by any tool. The overall FDR are very high for all tools
except NucBreak. NucBreak has relatively low FDR, even
with short flanking regions.

Discussion
In this paper, we have introduced a tool called NucBreak
that detects errors in assemblies by using short paired-
end Illumina reads. Neither a reference genome nor a
long jump library are required. NucBreak enables detec-
tion of assembly errors of all types and sizes, except (1)
small insertions, deletions and substitutions that do not

Fig. 5 ROC-like plot based on Assemblathon 1 datasets with varying flanking region size. The sensitivity and false discovery rate (FDR) are plotted
for seven tools (indicated with different colours) using varying flanking region sizes (indicated with different symbols). The flanking region size
corresponds to the amount of slack allowed in the position of correct predictions

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 8 of 11

change repeat copy numbers, (2) deletions of copies of
long interspersed repeats together with bases between
repeat copies or long tandem repeat units, and (3) relo-
cations and translocations with long overlapped mis-
joined regions. The inability of NucBreak to detect such
types of assembly errors can be explained by two facts.
First, NucBreak does not analyse small errors (approxi-
mately up to 30 bp) that are detected during the map-
ping process, and, thus, misses small insertion, deletion
and substitution assembly errors. Second, NucBreak can-
not detect errors in the regions that are covered with
overlapping properly mapped reads, and, as the result,
deletions of copies of long repeats together with bases
between repeat copies and rearrangements with long
overlapped misjoined regions remain unnoticed. The
benchmarking results have shown that NucBreak detects
all other assembly errors with low FDR and relatively
high sensitivity. Such a balance between sensitivity and
FDR makes NucBreak a good alternative to the existing
assembly accuracy assessment tools and SV detection
tools.
We have compared NucBreak with several existing

tools for assembly accuracy assessment, namely Pilon,
FRCbam and REAPR, as well as with some SV detection
tools, including BreakDancer, Lumpy and Wham. Only
Pilon, REAPR, and Wham detect assembly errors of
most types and sizes with high sensitivity. However, the
high sensitivity of these tools is always combined with
higher FDR compared to NucBreak. All other tools dem-
onstrate quite low sensitivity and high FDR, showing

good sensitivity results only for some specific assembly
error types and sizes.
The results reveal that all tested tools do not output

their predictions with a single-nucleotide positional ac-
curacy. All tools obtain better sensitivity when the flank-
ing region size increases. However, Wham and Lumpy
do not show such rapid growth of sensitivity as other
tools. It means that their initial predictions were more
proximal to the annotated assembly errors when at all
detected.
It has been also observed that the read coverage is an

important factor for detecting structural errors. In the
case of REAPR and NucBreak, increase in coverage leads
to decrease of sensitivity, while in case of Wham, Break-
Dancer, and Lumpy it helps to improve sensitivity. The
sensitivity of Pilon and FRCbam either decreases or in-
creases with coverage increment, depending on the types
and sizes of detected assembly errors. In addition, we
have noticed that NucBreak shows high sensitivity in all
error groups when coverage is low. However, this is not
a real advantage of the proposed algorithm but rather a
coincidence, since the FDR is quite high in such cases.
The reason for this behaviour in low coverage areas is
that the number of regions where reads do not overlap
are quite high, and many assembly errors are therefore
predicted just by chance. With increased coverage, the
number of uncovered regions is reduced, leading to a
sensitivity and FDR decrease.
In case of the Assemblathon 1 dataset and the bacter-

ial genome datasets, the ground truth has been

Fig. 6 ROC-like plot based on bacterial genome datasets with varying flanking region size. The sensitivity and false discovery rate (FDR) are
plotted for six tools (indicated with different colours) using varying flanking region sizes (indicated with different symbols). The flanking region
size corresponds to the amount of slack allowed in the position of correct predictions

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 9 of 11

generated using NucDiff. NucDiff has some limitations
that may influence the results. First, the locations of the
detected differences between the two sequences com-
pared may be shifted a few bases off compared to the
real difference locations due to accidental base similarity
at the region borders [23]. This influences the sensitivity
and FDR results obtained for short flanking regions (1
bp or 5 bp long). Second, a partial loss of information
about the types of differences are observed in cases
when both relocations/translocations and duplications
are involved at the same time [23]. In this case, duplica-
tions may be detected as insertions. This could lead to
misclassification of errors to the wrong group and thus
influences the sensitivity results for the insertion and du-
plication groups.

Conclusions
We have presented the tool NucBreak aimed at detec-
tion of structural errors in assemblies by using Illumina
paired-end reads. NucBreak’s approach is unique in that
it exploits information about alternative read alignments
and analyses the reads that map properly to the assem-
bly, in contrast to alternative tools that are based on
analysing reads that do not map properly. It enables
localization of insertions, deletions, duplications, inver-
sions, and different inter- and intra-chromosomal rear-
rangements. However, it does not annotate detected
errors. We have compared NucBreak with REAPR,
FRCbam, Pilon, BreakDancer, Lumpy, and Wham. The
benchmarking results have shown that in general Nuc-
Break predicts assembly errors with relatively high sensi-
tivity and with lower FDR than the other tools. We have
also obtained evidence that Lumpy, BreakDancer and
Wham, the tools developed for SV detection, can be
used for assembly error detection, although in general
the sensitivity of these tools, except Wham, is much
lower compared to Pilon, REAPR and NucBreak.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3414-0.

Additional file 1: Supplementary materials. Figure S1. NucBreak
workflow. Figure S2. Properly mapped read pair formation. The black
line represents an assembly. The arrows represent all possible read
mapping locations. The cases a) and b) correspond to the situations
when no read pairs are formed or just one read pair is formed,
respectively. The cases c) and d) show examples when several read pairs
are formed from two given reads. The case d) is an example of the
situation when reads are mapped to a tandem repeat. Figure S3.
Properly mapped read pair categorization. The black line represents an
assembly. The assembly regions marked by red colour correspond to
repeated regions. The repeated regions are identical or near-identical
copies of the same repeat. The arrows represent all possible read map-
ping locations. Figure S4. Read paths and path gaps. The black line rep-
resents an assembly. The assembly regions marked by red colour
correspond to repeated regions. The repeated regions are identical or

near-identical copies of the same repeat or copies of different repeats.
The arrows represent read paths. The arrows of the same colour corres-
pond to the read paths of the same type. The rectangles between the
read paths indicate path gaps. The example demonstrates the correct
order of the read paths in the absence of assembly errors. Figure S5.
Possible type order and locations of read paths in the absence of break-
points. Figure S6. Sensitivity results for the insertion, duplication and
tandem duplication groups, obtained using the simulated datasets. Fig-
ure S7. Sensitivity results for the deletion, deletion_repeat and deletion_-
tandem groups, obtained using the simulated datasets. The
deletion_repeat group contains deletions of interspersed repeats or their
parts. The deletion_tandem group contains deletions of tandem repeats
or their parts. Figure S8. Sensitivity results for the inversion, relocation
and relocation_overlap groups, obtained using the simulated datasets.
The relocation group consists of relocations with either inserted regions
between misjoined regions (size varied between 10 and 1000) or without
them (size is equal to 0). The relocation_overlap group consists of reloca-
tions with overlapped misjoined regions. Figure S9. Sensitivity results for
the insertion, duplication and tandem duplication groups, obtained using
the simulated datasets. Figure S10. Sensitivity results for the deletion,
deletion_repeat and deletion_tandem groups, obtained using the simu-
lated datasets. The deletion_repeat group contains deletions of inter-
spersed repeats or their parts. The deletion_tandem group contains
deletions of tandem repeats or their parts. Figure S11. Sensitivity results
for the inversion, relocation and relocation_overlap groups, obtained
using the simulated datasets. The relocation group consists of relocations
with either inserted regions between misjoined regions (size varied be-
tween 10 and 1000) or without them (size is equal to 0). The relocatio-
n_overlap group consists of relocations with overlapped misjoined
regions. Figure S12. Sensitivity results for the insertion, duplication and
tandem duplication groups, obtained using the datasets from the Assem-
blathon 1 project. Figure S13. Sensitivity results for the deletion, dele-
tion_repeat and deletion_tandem groups, obtained using the datasets
from the Assemblathon 1 project. The deletion_repeat group contains
deletions of interspersed repeats or their parts. The deletion_tandem
group contains deletions of tandem repeats or their parts. Figure S14.
Sensitivity results for the inversion, rearrangement and rearrangement_o-
verlap groups, obtained using the datasets from the Assemblathon 1 pro-
ject. The rearrangement group consists of relocations and translocations
with either inserted regions between misjoined regions (size varied be-
tween 1 and 1000) or without them (size is equal to 0). The rearrange-
ment_overlap group consists of relocations and translocations with
overlapped misjoined regions. Figure S15. Sensitivity results for the
reshuffling and substitution groups, obtained using the datasets from the
Assemblathon 1 project. Figure S16. Sensitivity results for the insertion,
duplication and tandem duplication groups obtained using the bacterial
genome datasets. Figure S17. Sensitivity results for the deletion, dele-
tion_repeat and deletion_tandem groups, obtained using the bacterial
genome datasets. The deletion_repeat group contains deletions of inter-
spersed repeats or their parts. The deletion_tandem group contains dele-
tions of tandem repeats or their parts. Figure S18. Sensitivity results for
the inversion, rearrangement and rearrangement_overlap groups, ob-
tained using the bacterial genome datasets. The rearrangement group
consists of relocations and translocations with either inserted regions be-
tween misjoined regions (size varied between 1 and 1000) or without
them (size is equal to 0). The rearrangement_overlap group consists of
relocations and translocations with overlapped misjoined regions. Figure
S19. Sensitivity results for the reshuffling and substitution groups, ob-
tained using the bacterial genome datasets. Table S1. Genome modifica-
tions implemented during the simulation process. G and A denote a
reference genome and assembly, respectively. All other letters denote ref-
erence genome and assembly sequence regions. Diff means difference. C
′ is the reverse complement of C. Table S2. List of bacterial genomes.
Table S3. Number of ground truth errors in each group.

Abbreviations
bp: base pairs; FDR: false discovery rate; ONT: Oxford Nanopore
Technologies; PacBio: Pacific Biosciences; ROC: receiver operating
characteristic; SMRT: Single-molecule real-time; SV: structural variant

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 10 of 11

https://doi.org/10.1186/s12859-020-3414-0
https://doi.org/10.1186/s12859-020-3414-0

Acknowledgements
The authors wish to thank the Centre for Ecological and Evolutionary
Synthesis (CEES) for access to the computational infrastructure (‘cod’ servers)
that enabled the bioinformatics analysis for this project. The authors also
wish to thank Karin Lagesen for valuable input in the early phase of the
project.

Authors’ contributions
KK designed and implemented NucBreak. KK, GKS, AJN and TR suggested the
demonstration examples and other experiments performed. KK performed all
the experiments. KK and TR wrote the manuscript. GKS and AJN revised the
manuscript. All authors read and approved the final manuscript.

Funding
KK was funded by the Computational Life Science initiative (CLSi) at the
University of Oslo. The funding body played no role in the design or
conclusions of this study.

Availability of data and materials
• Project name: NucBreak
• Project home page: https://github.com/uio-bmi/NucBreak
• Operating system(s): Unix-like system such as Ubuntu Linux and MacOS X.
• Programming language: Python
• Other requirements: Python 2.7
• License: Mozilla Public License (MPL), version 2.0
• Any restrictions to use by non-academics: No
• Additional data: All data used is available as described in Section Data sets

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Biomedical Informatics Research Group, Department of Informatics,
University of Oslo, PO Box 1080 Blindern, NO-0316 Oslo, Norway. 2Centre for
Ecological and Evolutionary Synthesis, Department of Biosciences, University
of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway. 3Department of
Microbiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen,
NO-0424 Oslo, Norway.

Received: 11 September 2018 Accepted: 12 February 2020

References
1. Meader S, Hillier LW, Locke D, Ponting CP, Lunter G. Genome assembly

quality: assessment and improvement using the neutral indel model.
Genome Res. 2010 May;20(5):675–84. https://doi.org/10.1101/gr.096966.109.

2. Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD. REAPR: a
universal tool for genome assembly evaluation. Genome Biol. 2013;14(5):
R47. https://doi.org/10.1186/gb-2013-14-5-r47.

3. Vezzi F, Narzisi G, Mishra B. Reevaluating assembly evaluations with feature
response curves: GAGE and assemblathons. PLoS One. 2012;7(12):e52210.
https://doi.org/10.1371/journal.pone.0052210.

4. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon:
an integrated tool for comprehensive microbial variant detection and
genome assembly improvement. PLoS One. 2014;9(11):e112963. https://doi.
org/10.1371/journal.pone.0112963.

5. Kronenberg ZN, Osborne EJ, Cone KR, Kennedy BJ, Domyan ET, Shapiro MD,
Elde NC, Yandell M. Wham: identifying structural variants of biological
consequence. PLoS Comput Biol. 2015;11(12):e1004572. https://doi.org/10.
1371/journal.pcbi.1004572.

6. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al.
BreakDancer: an algorithm for high-resolution mapping of genomic
structural variation. Nat Methods. 2009;6(9):677–81. https://doi.org/10.1038/
nmeth.1363.

7. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework
for structural variant discovery. Genome Biol. 2014;15(6):R84. https://doi.org/
10.1186/gb-2014-15-6-r84.

8. Zhou S, Herschleb J, Schwartz DC. (2007). A single molecule system for
whole genome analysis. Perspectives in Bioanalysis. 2007;2:265–300. https://
doi.org/10.1016/s1871-0069(06)02009-x.

9. The SMRT science website. https://www.pacb.com/smrt-science/. .
10. The Oxford Nanopore Technologies website. https://nanoporetech.com/.

Accessed 21 Jan 2018.
11. Zhou S, Bechner MC, Place M, Churas CP, Pape L, Leong SA, Runnheim R,

Forrest DK, Goldstein S, Livny M, Schwartz DC. Validation of rice genome
sequence by optical mapping. BMC Genomics. 2007;8:278. https://doi.org/
10.1186/1471-2164-8-278.

12. Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari
F, et al. Resolving the complexity of the human genome using single-
molecule sequencing. Nature. 2015;517(7536):608–11. https://doi.org/10.
1038/nature13907.

13. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat
Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.

14. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read
simulator. Bioinformatics. 2012;28(4):593–4. https://doi.org/10.1093/
bioinformatics/btr708.

15. Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, et al. Assemblathon 1:
a competitive assessment of de novo short read assembly methods.
Genome Res. 2011;21(12):2224–41. https://doi.org/10.1101/gr.126599.111.

16. Ariyaratne PN, Sung WK. PE-assembler: de novo assembler using short
paired-end reads. Bioinformatics. 2011;27(2):167–74. https://doi.org/10.1093/
bioinformatics/btq626.

17. The Assemblathon 1 dataset website. http://korflab.ucdavis.edu/Datasets/
Assemblathon/Assemblathon1. Accessed 9 Aug 2018.

18. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a
parallel assembler for short read sequence data. Genome Res. 2009;19(6):
1117–23. https://doi.org/10.1101/gr.089532.108.

19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin
VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N,
Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly
algorithm and its applications to single-cell sequencing. J Comput Biol.
2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021.

20. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18(5):821–9. https://doi.org/10.
1101/gr.074492.107.

21. The NCBI database. https://www.ncbi.nlm.nih.gov/. Accessed 9 Aug 2018.
22. The EBI database. https://www.ebi.ac.uk/. Accessed 9 Aug 2018.
23. Khelik K, Lagesen K, Sandve GK, Rognes T, Nederbragt AJ. NucDiff: in-depth

characterization and annotation of differences between two sets of DNA
sequences. BMC Bioinformatics. 2017;18(1):338. https://doi.org/10.1186/
s12859-017-1748-z.

24. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26(6):841–2. https://doi.org/10.1093/
bioinformatics/btq033.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Khelik et al. BMC Bioinformatics (2020) 21:66 Page 11 of 11

https://github.com/uio-bmi/NucBreak
https://doi.org/10.1101/gr.096966.109
https://doi.org/10.1186/gb-2013-14-5-r47
https://doi.org/10.1371/journal.pone.0052210
https://doi.org/10.1371/journal.pone.0112963
https://doi.org/10.1371/journal.pone.0112963
https://doi.org/10.1371/journal.pcbi.1004572
https://doi.org/10.1371/journal.pcbi.1004572
https://doi.org/10.1038/nmeth.1363
https://doi.org/10.1038/nmeth.1363
https://doi.org/10.1186/gb-2014-15-6-r84
https://doi.org/10.1186/gb-2014-15-6-r84
https://doi.org/10.1016/s1871-0069(06)02009-x
https://doi.org/10.1016/s1871-0069(06)02009-x
https://www.pacb.com/smrt-science/
https://nanoporetech.com/
https://doi.org/10.1186/1471-2164-8-278
https://doi.org/10.1186/1471-2164-8-278
https://doi.org/10.1038/nature13907
https://doi.org/10.1038/nature13907
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1101/gr.126599.111
https://doi.org/10.1093/bioinformatics/btq626
https://doi.org/10.1093/bioinformatics/btq626
http://korflab.ucdavis.edu/Datasets/Assemblathon/Assemblathon1
http://korflab.ucdavis.edu/Datasets/Assemblathon/Assemblathon1
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1101/gr.074492.107
https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/
https://doi.org/10.1186/s12859-017-1748-z
https://doi.org/10.1186/s12859-017-1748-z
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Read mapping
	Properly mapped read pair formation and categorization
	Read path creation and path gap detection
	Path gap analysis
	Error location adjustment
	Data sets

	Results
	Accuracy assessment in simulated datasets
	Accuracy assessment in simulated datasets depending on read coverage
	Accuracy assessment in an assembly obtained from simulated reads
	Accuracy assessment in an assembly obtained from real reads

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

