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ABSTRACT

Classification of high-throughput genomic data is a
powerful method to assign samples to subgroups
with specific molecular profiles. Consensus parti-
tioning is the most widely applied approach to reveal
subgroups by summarizing a consensus classifica-
tion from a list of individual classifications gener-
ated by repeatedly executing clustering on random
subsets of the data. It is able to evaluate the sta-
bility of the classification. We implemented a new
R/Bioconductor package, cola, that provides a gen-
eral framework for consensus partitioning. With cola,
various parameters and methods can be user-defined
and easily integrated into different steps of an analy-
sis, e.g., feature selection, sample classification or
defining signatures. cola provides a new method
named ATC (ability to correlate to other rows) to ex-
tract features and recommends spherical k-means
clustering (skmeans) for subgroup classification. We
show that ATC and skmeans have better performance
than other commonly used methods by a comprehen-
sive benchmark on public datasets. We also bench-
mark key parameters in the consensus partitioning
procedure, which helps users to select optimal pa-
rameter values. Moreover, cola provides rich func-
tionalities to apply multiple partitioning methods in
parallel and directly compare their results, as well as
rich visualizations. cola can automate the complete
analysis and generates a comprehensive HTML re-
port.

INTRODUCTION

Subgroup classification is a basic task in high-throughput
genomic data analysis. Based on gene expression (1), DNA
methylation (2) or other omics data, samples are separated
into distinct groups with specific molecular profiles. Sub-
group classification is widely used for subtype identification
in cancer studies (3) and cell-type classification in single-
cell RNA sequencing (scRNA-Seq) (4). It can also be used
to establish relationships between the predicted subgroups
and known clinical annotations or to test whether there ex-
ist significant batch effects. Mostly, unsupervised clustering
methods, e.g., k-means clustering or hierarchical clustering,
are applied to predict subgroups without taking any prior
sample labelling into account. However, a single run of one
clustering algorithm can produce results which lack gener-
ality, i.e., which cannot be reproduced with other datasets
focusing on the same biological question or subject. Fur-
thermore, single clustering approaches do not reveal which
samples are stably classified in the identified structure, and
which samples have uncertain class assignments. To solve
these issues, consensus clustering or consensus partitioning
was proposed (5). It summarizes a consensus classification
from a list of individual classifications that are generated by
repeatedly executing clustering on randomly sampled sub-
sets of the data. Later, the stability of the consensus parti-
tion can be inferred from the individual partitions, e.g., by
calculating the probabilities of a sample belonging to every
subgroup.

One of the most commonly used R packages for consen-
sus partitioning is ConsensusClusterPlus (6), which parti-
tions samples by hierarchical clustering, k-means clustering
or partitioning around medoids. The individual partition
list is generated by randomly sampling from the original
matrix either by rows or columns. Another package, SC3 (4)
was recently developed especially for scRNA-Seq datasets.
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It runs k-means clustering on matrices obtained by trans-
formation (principal component analysis or graph Lapla-
cian transformation) of the original distance matrix (based
on either Euclidean distance, Pearson or Spearman correla-
tion). In SC3, the list of partitions normally contains six in-
dividual partitions resulting from the combinations of two
transformation methods and three distance methods. diceR
(7) applies consensus partitioning by summarizing over par-
titions from multiple clustering algorithms. Another popu-
lar method that can provide consensus partitioning is non-
negative matrix factorization (NMF) (8). The NMF pack-
age (9) generates individual partitions by randomly select-
ing seeds for the initialization of an NMF algorithm.

Consensus partitioning can be formalized into a uni-
form procedure where samples are first classified into k sub-
groups with trying a list of different k, and then statistical
metrics are applied to find the best number of subgroups.
To formalize the procedure of consensus partitioning, we
developed an R/Bioconductor package, cola, that provides
a general framework in which various methods can be user-
defined and easily integrated into different steps of the anal-
ysis, e.g., for feature selection, sample classification or def-
inition of signatures. cola provides a complete set of tools
for comprehensive subgroup analysis, including partition-
ing, signature analysis, functional enrichment, as well as
rich visualizations for interpretation of the results. More-
over, to find the method that best explains a user’s dataset,
cola allows running multiple methods simultaneously and
provides functionalities for a straightforward comparison
of results. cola is designed with a clean and simple user inter-
face while still retaining comprehensive access to the analy-
sis. With only a few lines of code, users can trigger the auto-
mated execution of a full set of analysis and the generation
of a detailed HTML report.

For genomic data with a very large number of features,
e.g., genes for expression data or CpG probes for methyla-
tion array data, partitioning is normally accompanied with
a feature selection step where only the top n features are se-
lected for partitioning (named top-value method in cola). In
addition to established top-value methods, cola implements
a simple yet powerful method (the ATC method) for select-
ing features based on the global correlation structure. Ad-
ditionally, we propose to perform partitioning via spherical
k-means clustering (skmeans) (10), based on benchmarks of
the performance of various methods with 435 public gene
expression datasets. We found that methods in which fea-
tures are selected by the ATC method or in which sam-
ples are partitioned by skmeans tend to generate more sub-
groups with high stability.

We also assessed the selection of key parameters in con-
sensus partitioning in the framework of comprehensive
benchmarks. First, we compared random sampling by rows
and columns in the process of generating random subsets
of the input data for partitioning. We found that row sam-
pling was in general slightly better than column sampling
for generating stable partitions. Second, we benchmarked
the number of random samplings for consensus partition-
ing. The number of random samplings did not affect the
consensus partitioning results significantly and increasing
the number of samplings only slightly improved the stabil-
ity of the partition. The difference of consensus partitions

between different numbers of samplings was ignorable if the
partitions were already stable. Additionally, we applied cola
on one methylation array dataset. The results showed that
variation-based top-value methods, e.g., standard deviation
(SD), were more efficient for selecting features for subgroup
detection while correlation-based methods, e.g., ATC, only
reveal subgroups based on global methylation differences.
We suggest to apply consensus partitioning to CpG probes
in different categories separately (e.g., from CpG islands or
seas), because they have different methylation profiles to
generate different classifications and they might reveal dif-
ferent regulation mechanisms for the investigated biological
system.

MATERIALS AND METHODS

Preprocessing the input matrix

cola accepts the input object as a numeric matrix. Fre-
quently, the input matrix contains values of gene expression
(e.g., from expression microarray or RNA sequencing) or
DNA methylation (e.g., from methylation arrays or whole-
genome bisulfite sequencing). More generally, the input ob-
ject can contain any type of measurements as long as it is
represented as a numeric matrix, e.g., a matrix where rows
correspond to genomic regions and values are the histone
modification intensities that are measured from a chromatin
immuno-precipitation sequencing (ChIP-Seq) experiment.
For all these types of matrices, cola expects samples to des-
ignate columns and this is the dimension in which the sub-
groups are to be found. Before performing consensus par-
titioning, an optional but important step is to clean the in-
put matrix. cola provides the function adjust matrix()
to impute missing values, adjust outliers and remove rows
with very small variance from the matrix (Figure 1, step 1).
It executes the following preprocessing sequentially:

1. Rows in which >25% of the samples have missing values
are removed;

2. Use impute.knn() from the R package impute (11) to
impute missing values if there is any;

3. In every row in the matrix, values larger than the 95th

percentile or less than the 5th percentile are replaced by
corresponding percentiles;

4. Rows with zero variance are removed;
5. Rows with variance less than the 5th percentile of all row

variances are removed.

Top-value methods

Top-value methods are used to assign scores to the rows of a
matrix. Later the scores are ordered and only the top n rows
with the highest scores are selected for consensus partition-
ing (Figure 1, step 2). This step is called feature selection
(12). cola provides three commonly used methods based on
the variability of rows: standard deviation (SD), median ab-
solute deviation (MAD) and coefficient of variation (CV).
CV is defined as s/(x̄ + a0) where s and x̄ are the standard
deviation and mean value of row i, and a0 is a penalty term
which is the 10th percentile from all row means. cola also
allows for user-defined top-value methods.
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Figure 1. The cola workflow. Steps are as follows: 1. Adjust the input ma-
trix by removing outliers and imputing missing values; 2. Select top n fea-
tures by a certain method, e.g., standard deviation; 3. Scale the matrix by
rows; 4. Randomly sample from the matrix and partition samples by a cer-
tain partitioning method; 5. Repeat Step 4 r times to obtain a list of par-
titions; 6. Construct the consensus partition; 7. Identify features discrim-
inating between subgroups; 8. Apply functional enrichment on signatures
if they can be annotated to genes.

Selecting the top rows from the matrix helps to keep the
most informative features for partitioning. In most studies,
the top rows are selected based on row variance, however,
this choice might deselect rows that are efficient for sub-
group classification. When the data contains a high amount
of random noise, e.g., in scRNA-Seq data, the most vari-
able genes sometimes are not able to detect any stable sub-
groups. Conversely, when assuming that stable subgroups
for the samples in the data exist, there must be groups of
rows showing similar patterns to support the subgrouping.
In other words, rows in the same groups should be highly
correlated. Thus, if one row correlates or anti-correlates
more strongly to a subset of the remaining rows, it has
more power to support stable subgroups for the samples.
According to this idea, cola implements the ATC (ability to
correlate to other rows) method as follows:

For row i in a matrix, denote the variable X as a vector
of absolute values of the correlation coefficients to all other
rows. Then the ATC score for row i is defined as:

ATCi = 1 −
∫ 1

0
FX (x) dx

where FX(x) is the cumulative distribution function (CDF)
of X. The ATC score corresponds to the area above the CDF
curve and the ATC score increases with increasing correla-

tions between row i and other rows. A more detailed expla-
nation of the ATC method with benchmarks on simulated
data can be found in Supplementary Material 1. The idea of
taking correlation structures into the selection of features is
already widely implemented in a variety of available meth-
ods (13), however, the ATC method can be very easily in-
tegrated into the cola framework and later in the paper we
will argue it works effectively in subgroup classifications.

Figure 2A-D compares the top 1000 genes scored by
the SD, CV, MAD and ATC methods from the HSMM
scRNA-Seq dataset (14). It clearly shows that the genes
with the highest ATC scores provide a clean pattern for
the subgroup classification. SD and MAD have weaker per-
formance for the segregation of subgroups as objectivated
by the heatmaps, and the level of noise is higher. CV per-
forms the worst for this dataset and barely distinguishes
any subgroups. More importantly, the top 1000 genes with
the highest ATC scores only have a small overlap with the
genes selected by the other three methods (686 genes are
uniquely selected by the ATC method, Figure 2E), which
highlights that the ATC method can uniquely capture in-
formative rows that other methods are not able to catch.
Gene Ontology (GO) enrichment analysis on the gene list
extracted by the ATC method showed it generated a large
number of unique significant GO terms (FDR < 0.01) re-
lated to cell cycle, signaling pathways and cell localization,
while gene lists extracted by SD and MAD only generated
small numbers of significant terms and the gene list ex-
tracted by CV generated almost no significant terms (Fig-
ure 2F). This implies that the ATC method is able to ex-
tract more genes with biological relevance. Supplementary
Material 2 compares the four top-value methods for other
datasets and they all support that ATC increases discrim-
ination between subgroups as compared to the other top-
value methods.

Partitioning methods

Partitioning methods are used to classify samples into k dis-
tinct subgroups with a given k. cola provides six partition-
ing methods: hierarchical clustering with cutree (hclust),
k-means clustering (kmeans), spherical k-means cluster-
ing (skmeans), partitioning around medoids (pam), model-
based clustering (mclust) and non-negative matrix factor-
ization (NMF). cola also supports user-defined partitioning
methods.

Hierarchical clustering. The clustering is performed by
function hclust() with Euclidean distance and ‘com-
plete’ clustering method. Later the dendrogram generated
from clustering is cut by function cutree().

Model-based clustering. The function Mclust() from
the R package mclust (15) performs partitioning by Gaus-
sian finite mixture models and is applied on the first three
principal components of the original matrix.

Spherical k-means clustering. Spherical k-means cluster-
ing is a variant of the standard k-means clustering, where
cosine similarity is used as the distance measurement. For
a matrix with n rows and m columns, to perform spherical
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Figure 2. Comparison of top-value methods. (A) Heatmap of the top 1000 genes extracted by SD, (B) CV, (C) MAD and (D) ATC methods. Expression
matrices are row-scaled by z-score transformation. (E) Euler diagram of the overlapping of top 1000 genes extracted by the four top-value methods. (F)
Heatmap of the similarities of significant GO terms (FDR < 0.01) from the gene lists generated by the four top-value methods. The green-white row
annotation shows for which top-value method the respective GO terms are significant. The word cloud annotation visualizes the summaries of biological
functions in each GO cluster. GO enrichment analysis was performed by hypergeometric test with the function functional enrichment() and GO
terms were clustered by the R package simplifyEnrichment. The analysis was done with the HSMM single-cell dataset. Annotations on the heatmaps are:
Hours: time points when the primary human skeletal muscle myoblasts (HSMM) cells were captured; Media: the conditions where the cells were expanded
(under high mitogen conditions (GM) and low mitogen media (DM)).

k-means clustering on columns, columns are first projected
onto the unit hypersphere, then the algorithm follows a sim-
ilar procedure as k-means clustering, to look for a partition
of k sets P = {P1, P2, . . . , Pk} to minimize the following
criterion:

k∑
i=1

∑
x∈Pi

(1 − cos (x, pi ))

where x is a vector in partition Pi and pi is the centroid
of all vectors in Pi. Spherical k-means clustering is per-
formed with the R package skmeans (16). Cosine distance
was shown to be efficient for separating groups for high-
dimensional datasets and robust to technical noise (17). In
later sections of this work, we demonstrate that on a vari-
ety of datasets spherical k-means clustering generates more
stable partitions compared to other methods.

Non-negative matrix factorization. NMF factorizes a non-
negative matrix V into the two matrices W and H, i.e., V ≈
W × H. For a given rank p which corresponds to the number
of subgroups, W is an n × p matrix, H is a p × m matrix and
V is an n × m matrix. V corresponds to the input matrix for
cola analysis and to make V non-negative, ‘min-max’ scal-
ing is applied to matrix rows in advance. The subgroup label
is inferred by taking the index of the row of H which has the

maximum value for the corresponding sample. NMF is per-
formed with the R package NMF (9).

Row scaling. Before applying partitioning methods,
proper scaling should be applied to the matrix rows to
remove the difference of absolute levels between rows that
might affect the partitioning (Figure 1, step 3). z-score
scaling is the most commonly used, while for partitioning
methods (e.g., NMF) which do not allow negative values,
‘min-max’ scaling is applied, defined as (x – min)/(max –
min). For certain datasets where the absolute levels (e.g.,
methylation values) should be taken into account for
partitioning, row scaling can be omitted.

Finding a consensus partition

Let M denote a sub-matrix of the initial data which contains
top rows from the original matrix selected by a certain top-
value method. A subset of rows or columns are randomly
sampled from M with a probability of p by applying a cer-
tain partitioning method, generating a partition Pa (the in-
dex a reflects the individual partition). In most cases, we
have no prior knowledge of the number of top rows that
gives the best results. Therefore, cola tries multiple numbers
of top rows of n1, n2, . . . , nt and integrates all partitions to
form a global consensus ensemble. If the random sampling
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is performed r times, the total number of partitions for a
given number of subgroups k is NP = t × r (Figure 1, steps
4–6).

The consensus subgroup labels are inferred from the NP
partitions by the function cl consensus() from the R
package clue (18) (Figure 1, step 6). Since the labels for in-
dividual partitions can be assigned randomly while the par-
titions are still kept identical, the subgroup labels for one
individual partition a are adjusted to the consensus labels
by choosing a proper mapping function ma() for relabelling:

si,a = ma
(
s ′

i,a

)
to maximize ∑

i

I (si,a, si,c)

where s ′
i,a is the original label for sample i in partition a, si,a

is the adjusted label and si,c is the consensus subgroup label.
I() is the indicator function where I(x = y) = 1 and I(x �=
y) = 0. The mapping function ma() is found by solving the
linear sum assignment problem, which is by the function
solve LSAP() from the R package clue (18).

The consensus matrix measures how consistently two
samples are attributed to the same subgroup. A value ci,j
in the consensus matrix denotes the probability of sample i
and sample j to be in the same subgroup in all NP partitions.
It is calculated as:

ci, j = 1
NP

NP∑
a

I
(
si,a, s j,a

)

where si,a and sj,a are the adjusted subgroup labels for sam-
ple i and j in partition a. The consensus matrix is used to
evaluate and visualize the stability of the consensus parti-
tioning.

Adjusting partition labels

Moreover, the partition labels can be adjusted between any
two sets of partitions. Similarly, the mapping function m()
are to be found to maximize∑

i

I (si,1, m (si,2))

where s1 is the first label set and s2 is the second label set.
The subgroup label adjustment is frequently used in cola

to help the visualization as well as comparisons of partitions
between different k and different partitioning methods. It
also helps for downstream analysis such as the calculation
of a consensus matrix or the concordance scores of the par-
titions which assume that the subgroup labels are already
adjusted. There are several levels of label adjustment, listed
as follows (cola adjusts them sequentially):

1. For a specific combination of methods and a specific k,
the consensus subgroup labels are ordered according to
the average distance in each subgroup, which means that
the subgroup with label 1 has the minimal within-group
distance.

2. Subgroup labels for individual partitions are adjusted
according to the consensus partition labels.

3. The subgroup labels for the consensus partition as well
as for individual partitions for k + 1 subgroups are ad-
justed according to the consensus labels for k subgroups.

4. If multiple methods are applied, for each k, the consen-
sus labels for method i + 1 are adjusted to method i. The
individual partition labels are then adjusted to the con-
sensus labels correspondingly.

Selection of the best number of subgroups

For consensus partitioning, the number of subgroups k is
a fixed and known parameter. In order to find the optimal
value of k, a list of values for k from 2 to a chosen kmax
are tested to find the best number of subgroups by apply-
ing various metrics. cola provides the following metrics to
determine the best k:

Silhouette score. The silhouette score measures how close
one sample is to its own subgroup compared to the closest
neighbouring subgroup. For sample i, the mean distance to
each subgroup is calculated and denoted as d1, d2, . . . , dk
(dk is the mean Euclidean distance between sample i and
every sample in subgroup k). The distance to the subgroup
to which sample i belongs is denoted as da and the silhouette
score si is defined as:

si = 1 − da

db

where db is the minimal distance excluding da:

db = mink
j �=ad j

The mean silhouette score averaged from all samples is
used to select the best k. The higher the mean silhouette
score, the better the metric for k.

PAC score. The PAC (the proportion of ambiguous clus-
tering) score measures the proportion of ambiguous sub-
group assignments and was originally proposed in (19). If
the subgrouping is stable across the NP partitions, sample i
and sample j are in most cases either in the same subgroup
or always in different subgroups, and therefore the consen-
sus value ci,j in the consensus matrix is either close to 1 or
to 0. Thus, the proportion of ci,j being far from 0 or 1 cor-
responds to the proportion of ambiguous subgroup assign-
ments, defined as F(x2) - F(x1), where F() is the CDF of the
consensus matrix, and x1 and x2 are the cutoffs defining ci,j
to be far from 0 and 1. cola removes the 5% most unstable
samples with the lowest silhouette scores before calculating
the PAC score. cola uses 1-PAC to determine the best k.

Concordance. This measure quantifies the mean concor-
dance of an individual partition with the consensus parti-
tion. It is calculated as follows: for each partition Pa, let ca
be the proportion of overlap with the consensus partition:

ca = 1
Ns

Ns∑
i

I (si,a = sci )

where Ns is the number of samples, si,a is the subgroup label
of sample i in partition a and sci is the consensus subgroup
label for sample i. Note subgroup labels in single partitions
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have already been adjusted to the consensus partition labels.
The final concordance score is calculated as:

1
NP

NP∑
a

ca

where NP is the total number of partitions. The higher the
concordance score, the better the metric for k.

Jaccard index. In some cases, when the number of sub-
groups increases from k – 1 to k, all metrics imply k is a
better choice than k – 1. However, when observing the con-
sensus heatmap, it can be found that a very small set of sam-
ples are separated to form a new subgroup (one example can
be found in Supplementary Material 3). In this scenario,
the subgrouping with k subgroups is highly similar to the
one with k – 1 subgroups and hardly provides new informa-
tion. cola uses the Jaccard index calculated by the function
cl agreement() from the R package clue (18) to measure
the similarity of two partitions with k – 1 and k subgroups.
For all pairs of samples, denote following symbols:

• a: the number of pairs of samples that are in the same
subgroup for k and in the same subgroup for k – 1.

• c: the number of pairs of samples that are in the same
subgroup for k and in different subgroups for k – 1.

• d: the number of pairs of samples that are in different sub-
groups for k and in the same subgroup for k – 1.

The Jaccard index is the ratio of the number of sample
pairs that are both in the same subgroup in the partitions at
k and k – 1 and the number of sample pairs that are both in
the same subgroup in the partitions at k or k – 1, calculated
as follows:

Jaccard = a
a + c + d

Rules to suggest the best k. cola suggests the best number
of subgroups based on the following rules:

1. All k with Jaccard index larger than 0.95 are removed
because increasing k does not provide enough extra in-
formation. If all k are removed, the dataset is marked as
no subgroups were detected.

2. For k with 1-PAC score larger than 0.9, the maximal k is
taken as the best k. Other k are marked as optional best
k.

3. If the second rule is not fulfilled, the k with the majority
vote among the highest 1-PAC score, the highest mean
silhouette, and the highest concordance is taken as the
best k.

Additionally, if 1-PAC score for the best k is larger than
0.9 (<10% ambiguity for the partitioning), cola marks the
partition to be stable. It should be noted that it is difficult
to find the best k deterministically, especially when k grows
larger. We encourage users to compare results for all k and
determine a proper one which best explains their studies,
i.e., matches prior knowledge.

Identification of signatures

We call signatures those rows which show statistically sig-
nificant specificity (as defined below) in one or more sub-
groups. (Figure 1, step 7). We use the term signature genes
for gene expression data or signature CpG probes for methy-
lation data. By default, cola removes samples with silhou-
ette scores less than 0.5 from the signature analysis because
they are ambiguous. cola provides the following four meth-
ods to apply the differential analysis. It also supports user-
defined methods to look for signatures.

• F-test. cola uses an F-test to identify rows that are signif-
icantly different between subgroups.

• Pairwise t-test. For each row, it looks for the subgroup
with the highest mean value, compares it to each of the
other subgroups by t-test and takes the maximum P-value
from all the t-tests, denoted as ph. Secondly, it looks for
the subgroup with the lowest mean value, compares it to
each of the other subgroups again by t-test and takes the
maximum P-values, denoted as pl. The smaller P-value
between ph and pl is selected as the final P-value for the
current row.

• One-versus-others. For each subgroup i in each row, it uses
a t-test to compare samples in the current subgroup to
all other samples, denoted as pi. The minimal P-value is
assigned for the current row.

• samr or pamr. cola uses the SAM (20) or PAM (21) meth-
ods to find rows with significant differences between sub-
groups.

Signatures can be grouped by patterns among subgroups.
In addition to the identification of signatures as described
above, cola applies k-means clustering on the signature pro-
files with automatically selecting the appropriate number of
signature groups (an example is in Figure 3I).

Functional enrichment

If the matrix rows correspond to genes (e.g., in the case of
a gene expression matrix, or in the case of a methylation
array data where CpG sites can be annotated to the tran-
scription start site of genes), cola performs functional en-
richment with hypergeometric tests by applying the R pack-
ages ClusterProfiler (22), DOSE (23) or ReactomePA (24)
(Figure 1, step 8) to the signatures. If signatures are already
classified into groups as described in the previous section,
functional enrichment is applied to each group of signatures
separately.

Implementation of the cola package

The core function consensus partition() performs
consensus partitioning for a single top-value method and a
single partitioning method. Both methods can be either se-
lected from the built-in methods or supplied as user-defined
functions. consensus partition() returns a Consen-
susPartition object and cola provides rich visualization tools
to comprehensively evaluate the consensus partitioning re-
sults. The major visualizations are:

• Diagnostic plots with various metrics for determining the
best number of subgroups.
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Figure 3. Visualizations implemented by cola. (A) Parallel consensus heatmaps from four top-value methods and six partitioning methods under three-
group classification, generated by the function collect plot(). (B) Heatmap of 1-PAC scores for the partitions in Figure A, generated by the function
collect stats(). (C) Partitions from 24 combinations of methods generated by the function collect classes(). Transparency of the heatmap
corresponds to the silhouette score for each sample and each method. (D) Euler diagram of top 500 genes extracted by SD, CV, MAD and ATC meth-
ods, generated by the function top row overlap(). (E) eCDF curve of the consensus matrix from partition by ATC:skmeans, generated by the func-
tion plot ecdf(). (F) 1-PAC scores versus the number of subgroups. The dashed line represents the cutoff for a stable partition. (G) Membership
heatmap for the individual partitions, generated by the function membership heatmap(). (H) PCA plot of samples, generated by the function dimen-
sion reduction(). (I) Heatmap of signature genes under three-group classification, generated by the function get signatures(). The analysis was
done with the Golub leukemia dataset.



e15 Nucleic Acids Research, 2021, Vol. 49, No. 3 PAGE 8 OF 16

• A consensus heatmap that visualizes the consensus ma-
trix.

• A membership heatmap that visualizes the membership
of every individual partition generated from random sub-
sets of the original matrix.

• Dimension reduction visualization by UMAP (25), t-
SNE (26), PCA or MDS.

• A signature heatmap that visualizes the rows with statis-
tically significant differences between subgroups.

• A heatmap that visualizes how subgroups are divided
when the number of subgroups increases.

cola provides a collect plots() function that can be
applied to the ConsensusPartition object and arranges all vi-
sualizations for different numbers of subgroups into a single
page.

In most cases, it is unclear which top-value method
and partitioning method yield the best results for the
dataset under analysis. cola provides a helper function
run all consensus partition methods() that
provides a convenient way to run multiple top-value
methods and partitioning methods simultaneously.
run all consensus partition methods() returns
a ConsensusPartitionList object and cola provides tools
to compare which combination of methods gives the
best prediction of subgroups in an easy way. The func-
tions top row overlap() and top row heatmap()
compare the top n rows from different top-row methods
either by Euler diagrams, UpSet plots or heatmaps, which
gives direct hints of which top-value method extracts
better rows for subgroup classification. The function
collect plots() can also be applied to the Consen-
susPartitionList object. In that setting it arranges plots
(e.g., consensus heatmaps) from multiple combinations of
top-value methods and partitioning methods into a single
page, making it straightforward to compare between meth-
ods and quickly find out the best combination of methods
to use. The function collect classes() generates a
heatmap which lists partitions from every combination
of methods, as well as a global consensus partitioning
averaged from all methods.

Other useful functions include test to known
factors() that performs chi-square test or one-
way ANOVA to test the associations between pre-
dicted subgroups and known factors, and func-
tional enrichment() that performs functional
enrichment analysis on the signatures if they can be
annotated to genes.

cola is implemented as a comprehensive toolbox for con-
sensus partitioning analysis. In addition, it provides an easy
user interface to perform the analysis and automatically
generates a comprehensive HTML report including all re-
sults of the analysis. To perform the complete cola analysis,
users only need a minimal set of code of using two functions,
such as:

rl = run all consensus partition methods
(matrix, ...)
cola report(rl, ...)

This design greatly helps researchers with limited knowl-
edge of R programming to perform the analysis. The re-

port also includes code for every individual analysis which
is rerunnable and makes the whole analysis reproducible. As
consensus partitioning may require substantial computing
time, e.g., it takes on average 10.7 hours for NMF or 1.5
hours for skmeans on the recount2 RNA-Seq datasets (27)
of approximately 200 samples (180–220 samples where all
datasets have 58037 genes) with 1 core (on a 1.2 GHz CPU,
Supplementary Material 8: Figure S8.1), cola natively sup-
ports multi-core both for computation and report genera-
tion.

Pre-preprocessing test datasets

The Golub leukemia dataset is available in the golubEsets
Bioconductor package (28,29). Values less than 1 were re-
placed by NA and later estimated by the function ad-
just matrix(). Samples were normalized by quantile
normalization. The Ritz ALL dataset is available in the
ALL Bioconductor package (30,31). Samples were normal-
ized by quantile normalization. The TCGA GBM dataset
was already processed and is available at https://gdc.cancer.
gov/about-data/publications/gbm exp. The HSMM single-
cell RNA-Seq dataset is available in the HSMMSingle-
Cell Bioconductor package (14). Expression values were
normalized by log10(FPKM + 1) and only the protein-
coding genes were used. The MCF10CA single-cell RNA-
Seq dataset is available at the EGA database with sam-
ple ID SAMEA4666651 and SAMEA4666652 (32). Raw
reads were processed by STAR (33) and HTSeq-count (34).
Cells with less than 2 million reads were removed and non-
protein-coding genes were filtered out. Genes with >5 reads
mapped in >50% samples were kept for analysis. Expres-
sion values were normalized by log2(TPM + 1). The GBM
450K methylation dataset is available at the GEO database
with ID GSE36278. Probes that are on sex chromosomes
and probes that overlap with known SNPs were removed.
cola analysis was performed on the complete probe sets and
on the probes annotated with CGIs, shores and seas sepa-
rately.

The recount2 RNA-Seq datasets (27) were down-
loaded from the recount2 website (https://jhubiostatistics.
shinyapps.io/recount/) on November 13, 2018. Datasets
with more than 500 samples or less than 50 samples were
removed. GTEx and TCGA datasets separated by tissues
were also downloaded from recount2 website. Raw counts
were normalized by the TPM method. Only the protein-
coding genes were used. Genes that have <2 reads in >50%
of samples were removed. Expression values of log2(TPM +
1) were used for cola analysis. The GDS datasets were down-
loaded from the GEO database by the R package GEO-
query (35) on March 12, 2019, with the query ‘Homo sapi-
ens’[porgn] AND 50[n samples]: 500[n samples] AND
‘gds’[Filter]. GDS1761 was removed from the analysis due
to an error of GEOquery. For each GDS dataset, rows where
there are no microarray probe IDs were removed. If the
value type for the dataset was not from a two-channel mi-
croarray, the distribution of expression values was tested
against normal distribution by the Kolmogorov-Smirnov
test. If the Kolmogorov-Smirnov statistic was larger than
0.3, we assumed the expression values did not follow a
normal distribution and log-transformation was applied.

https://gdc.cancer.gov/about-data/publications/gbm_exp
https://jhubiostatistics.shinyapps.io/recount/
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GDS2808 was additionally filtered whereby samples with
>25% NA values were removed. Finally, quantile normal-
ization was applied to the samples.

RESULTS

Case studies

We demonstrate the usage of cola by five gene expression
datasets which are the Golub leukemia dataset (28), the
Ritz ALL dataset (30), the TCGA GBM dataset (1), the
HSMM single-cell dataset (14) and the MCF10CA single-
cell dataset (32) among which the first three are microarray
datasets and the latter two are the RNA-Seq datasets. Four
top-value methods (SD, CV, MAD and ATC) and six par-
titioning methods (hclust, kmeans, skmeans, pam, mclust,
and NMF) generating 24 combinations of methods were ap-
plied to the datasets. Only results for the Golub leukemia
dataset are shown in the main text and the complete reports
of the five datasets can be found in Supplementary Material
4. In the following sections of this paper, for simplicity, we
refer to a choice of methods for the consensus partitioning
by the nomenclature A:B, where A is the top-value method
and B is the partitioning method, e.g., SD:hclust.

For two-group classification of the Golub leukemia
dataset, cola analysis reveals that ATC:kmeans (1-PAC
= 1), ATC:NMF (1-PAC = 0.97) and ATC:skmeans (1-
PAC = 1) generate stable partitions. For three subgroups,
ATC:skmeans generates a stable partition with 1-PAC score
of 0.96 (see cola report on Golub leukemia dataset in Sup-
plementary Material 4). Figure 3 illustrates the typical vi-
sualizations for interpreting the results. Figure 3A contains
the consensus heatmaps for three-group classification for 24
combinations of four top-value methods and six partition-
ing methods. It shows that skmeans generates more stable
partitions compared to other partitioning methods, espe-
cially in combination with ATC. Figure 3B quantitatively
visualizes the 1-PAC scores for all 24 consensus matrices,
which shows that partitioning by ATC:skmeans generates
the highest 1-PAC score (0.96) among all methods. Figure
3C compares the consensus subgroups from all 24 methods
where the transparency or shading of a field corresponds to
the silhouette score of the respective sample in each parti-
tion. 1-PAC scores are visualized as the bar plot annotation
on the right of the heatmap and rows are clustered based
on the similarity of partitions from different methods. Fig-
ure 3C illustrates that for three-group classification, most of
the methods generate similar partitions, however, the stabil-
ity of the partitioning differs. The Euler diagram in Figure
3D visualizes the overlap of the top 500 genes with the high-
est SD, CV, MAD and ATC scores, where the ATC method
generates a very distinct set of genes compared to the other
three top-value methods.

After having confirmed that ATC:skmeans generated the
most stable partition among all methods for this dataset, we
next looked at the diagnostic plots and performed down-
stream analysis for the partition generated by this specific
choice of methods (ATC:skmeans). Figure 3E shows the
eCDF curve of the consensus matrix for k = {2, . . . , 6} by
ATC:skmeans. A good k can be selected by aiming at the
flatness of the eCDF curve. In this case, that metric sug-
gests that k = 2 or 3 are good choices. Figure 3F visualizes

the 1-PAC scores for each k. According to cola’s definition
for the rule of selecting the best number of subgroups, k
= 3 (1-PAC = 0.96) is selected and k = 2 (1-PAC = 1) is
an optional best k. Figure 3G is the membership heatmap
which visualizes all the 50 × 5 individual partitions (50 ran-
dom samplings × 5 top-n values), where the subgroup labels
have been adjusted to the consensus subgroup labels. The
membership heatmap gives a straightforward way to con-
firm that the partitions are very stable among all individual
partitions, except for very few samples in some individual
partitions. Figure 3H shows the dimensionality reduction
by PCA on the samples where different colors represent dif-
ferent consensus subgroups and it confirms that the three
predicted subgroups are very well separated. The two am-
biguous samples with silhouette scores less than 0.5 are indi-
cated in the plot as crosses. Figure 3I visualizes the signature
genes that are significantly differentially expressed among
the three consensus subgroups (by F-test). Three ambigu-
ous samples with silhouette scores less than 0.5 are sepa-
rated to the right of the heatmap and marked by grey bar
plots. In the signature heatmap, rows are additionally clus-
tered by k-means clustering with automatic selection of a
proper number of groups, so that groups of rows with spe-
cific expression patterns can be directly inferred from the
heatmap.

ATC and skmeans generate more stable partitions

cola can run multiple methods simultaneously, which pro-
vides the possibility to benchmark the performance of dif-
ferent methods. We applied cola to 206 GDS microarray
datasets and 223 recount2 RNA-Seq datasets (27). For each
dataset, consensus partitioning was performed with four
different top-value methods (SD, CV, MAD and ATC) and
six partitioning methods (hclust, kmeans, skmeans, pam,
mclust and NMF), which yielded 24 combinations of meth-
ods. For each run, numbers of subgroups were tested from
2 to 6.

We compared the correlation of three metrics (mean sil-
houette score, concordance score and 1-PAC score) for de-
termining the best number of subgroups. Generally, for
the GDS datasets, the three metrics were highly correlated
(overall mean Spearman correlation 0.872 for mean silhou-
ette versus 1-PAC, 0.897 for concordance versus 1-PAC and
0.943 for mean silhouette versus concordance) and the cor-
relation slightly dropped as the number of subgroups in-
creased (Figure 4A). This finding was similar for the re-
count2 datasets (overall mean Spearman correlation 0.871
for mean silhouette versus 1-PAC, 0.905 for concordance
versus 1-PAC and 0.932 for mean silhouette versus concor-
dance, Figure 4E).

Since 1-PAC, mean silhouette and concordance were
highly correlated, the 1-PAC score was used as the main
metric for measuring the stability of the partitioning in the
following sections of the paper. Figure 4B visualizes the dis-
tribution of 1-PAC scores for the partitions with the best k
in the GDS datasets. The density heatmap shows that meth-
ods with ATC and/or skmeans generated partitions with
higher 1-PAC scores for the best k (marked in red under the
heatmap) while methods with hclust generated low 1-PAC
scores (marked in blue under the heatmap). Figure 4C visu-
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Figure 4. Benchmark of consensus partitioning methods with 203 GDS datasets and 223 recount2 datasets. (A) Pairwise Spearman correlations between
mean silhouette scores, concordance scores and 1-PAC scores among partitioning methods. (B) Distribution of 1-PAC scores for the partitions with the
predicted optimal number of subgroups. Column annotation below the plot: red: partitions generated by ATC and/or skmeans; blue: partitions generated
by hclust. (C) The proportion of partitions with the best number of subgroups that are stable. The order of the methods is the same as in Figure B. (D)
General similarity between partitioning methods. Figure A–D were generated from GDS datasets. Figure E–H are analogous to A–D but were generated
from recount2 datasets.

alizes the proportion of stable partitions (1-PAC > 0.9) for
a given best number of subgroups for each method, and as
expected, methods with ATC or skmeans gave more stable
partitions while methods with hclust gave fewer stable par-
titions. Interestingly, ATC:NMF and ATC:kmeans gave a
high proportion of stable partitions, however, the majority
of these stable partitions were only obtained for 2 or 3 sub-
groups (66.5% and 74.3%). As a comparison, ATC:pam and
ATC:skmeans not only gave more stable partitions overall
but also revealed more subgroups (48.5% and 45.1% for k
≥ 4). The results were very similar for the recount2 datasets
(Figure 4E–G).

Since cola allows performing analysis with multiple meth-
ods simultaneously, next we checked the similarity of par-
titionings obtained by different methods. In Figure 4D,
the dendrogram visualizes the similarity of partitions from
different methods averaged from individual GDS datasets
for k = 4 (Comparisons for other values of k can be
found in Supplementary Material 5). Since features ex-
tracted by the ATC method were very distinct from those
extracted by the other three top-value methods (Supple-
mentary Material 2: Figure S2.18), partitionings performed
on ATC features clustered apart from the other methods,
while other partitionings clustered by partition methods.
These effects were less consistent for the recount2 datasets
(Figure 4H).

Comparison of row and column sampling

In consensus partitioning procedures, subsets from the orig-
inal input matrix are generated by randomly sampling ei-

ther rows or columns. To benchmark the performance of
row and column sampling, we used the five gene expression
datasets as test sets. Only two top-value methods (SD and
ATC) and two partitioning methods (hclust and skmeans)
were tested. Numbers of subgroups were tried from 2 to 6
and cola was run 100 times for each combination of param-
eters. In Figure 5 we show the results for the TCGA GBM
dataset. Results for the other datasets can be found in Sup-
plementary Material 6.

Figure 5A visualizes the distribution of 1-PAC scores for
the row and column sampling. Generally, row sampling gen-
erated higher 1-PAC scores than column sampling, but the
difference was small. The mean 1-PAC for row sampling was
0.023 higher than for column sampling for SD:hclust, 0.019
higher for SD:skmeans, 0.037 higher for ATC:hclust, and
0.046 higher for ATC:skmeans (Figure 5B).

To test whether row and column sampling generate simi-
lar partitionings, we measured the mean concordance of the
partitioning from the two types of samplings (Figure 5C).
In general, row and column samplings generated very sim-
ilar partitionings, e.g., for ATC:skmeans with k = 3, parti-
tionings with row and column samplings were both stable
with mean concordance 0.939. The concordance dropped
as the stability of the partitioning decreased. We also evalu-
ated the mean concordance of partitions for row and col-
umn sampling separately (Supplementary Material 6). In
general, partitionings from row sampling were more con-
sistent than column sampling, but the difference was very
small. The effects described in this paragraph were similar
for other gene expression datasets (Supplementary Material
6).
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Figure 5. Comparison of the impact of row and column sampling on consensus partitioning. (A) Boxplots of 1-PAC scores of partitions by SD:hclust,
SD:skmeans, ATC:hclust and ATC:skmeans, generated from row and column samplings respectively. (B) Mean 1-PAC differences between row and column
samplings. (C) Average concordance of the generated partitions between row and column samplings. The analysis was done with the TCGA GBM dataset.

Number of random samplings

To assess how many random samplings are required to
gain stable consensus partitioning, we analyzed the TCGA
GBM dataset with the number of random samplings set to
25, 50, 100 and 200, respectively. For each setting, cola was
run 100 times to capture the variability of the partitionings.
Random samplings were applied on matrix rows.

Partitions became more stable with an increasing num-
ber of random samplings (average standard deviation was
0.0077 for 25 samplings, 0.0063 for 50 samplings, 0.0054 for
100 samplings and 0.0050 for 200 samplings, Figure 6A),
but this increase in stability was very small. The partition
concordance slightly increased with increasing number of
random samplings, e.g., for MAD:hclust with k = 2, the
mean concordance was 0.973 for 25 samplings and 0.991
for 200 samplings (Figure 6B). We also compared the con-
cordance of the generated partitions between 25 and 200
samplings, and we found that when the partitions were sta-
ble, 25 and 200 samplings almost completely agreed. In con-
trast, when the partitions became unstable, the discordance
got higher (Figure 6C). When applying column instead of
row sampling we observed very similar results, with an over-
all slightly higher variance than for row sampling (Supple-
mentary Material 7). Repeating this analysis on the HSMM
single-cell dataset confirmed these findings (Supplementary
Material 7).

Application to a methylation dataset

We applied cola to the GBM 450K methylation array
dataset (2). Only five partitioning methods, hclust, kmeans,

skmeans, pam and mclust, were used while NMF was ex-
cluded due to its long runtime. No row-scaling was applied
to the methylation matrix because the methylation values
were already on a fixed scale (i.e., from 0 to 1). A detailed
analysis report on the methylation dataset can be found in
Supplementary Material 9.

As opposed to gene expression datasets, variation-based
methods for feature extraction like SD enabled more sta-
ble subgroup classification in the methylation datasets while
the ATC method extracted features mainly associated with
global methylation changes. Figure 7A shows a clustering
of the top 5000 CpG probes with the highest SD scores. As
expected, the methylation profiles corresponded well to the
classification from the original study (DKFZ subtype) (2)
which had also been based on top probes with the high-
est variance. As a comparison, Figure 7B illustrates the top
5000 CpG probes extracted by ATC, which had a very small
overlap with the probes based on SD (1.76%), and also the
methylation profiles were completely different from those of
the probes extracted by SD.

Probes can be annotated with different genomic features
of the respective CpGs and grouped into categories: CpG
islands (CGIs), CGI shores and seas. We found that differ-
ent top-value methods have different ‘preferences’ on these
CpG feature categories. In the top 5000 probes selected by
SD, 60.6% were CGI probes while only 30.4% of all probes
in the 450K array were in CGIs. In contrast, there were only
6.6% CGI probes in the top 5000 probes selected by ATC,
and 72.9% of the probes were in CGI seas (Supplementary
Material 9: Figure S9.3). When setting SD as the top-value
method, CGI probes gave a very clean image for subgroup
classification and distinct groups can be observed from the
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Figure 6. Benchmark on the number of random samplings. (A) Scatter plots of standard deviations versus mean values of 1-PAC scores of the partitions
for every method and every k. The dot for ATC:mclust at k = 2 is removed from the plots because it is an outlier to all other dots and the complete plots
including ATC:mclust can be found in Supplementary Material 7. (B) Average concordance of partitions by MAD:hclust with different number of random
samplings. Similar plots for the other methods can be found in Supplementary Material 7. (C) The average concordance of partitions between 25 and 200
random samplings versus 1-PAC scores for the partitions with 25 random samplings. The analysis was done with the TCGA GBM dataset.

heatmap (Supplementary Material 9: Figure S9.4A). The
profiles for the top CGI probes became noisier from shores
to seas (Supplementary Material 9: Figure S9.4B, C). When
ATC was set as the top-value method, probes in shores or
seas generally separated samples into a high-methylation
group and a low-methylation group and they had very small
overlap with the probes extracted by SD/CV/MAD (Sup-
plementary Material 9: Figure S9.4–6).

Different CpG feature categories play different biolog-
ical roles. For example, CGIs are enriched at transcrip-
tional start sites (TSS) and are generally unmethylated
for actively expressed genes (36), while CGI seas over-
lap more with gene bodies or intergenic regions and nor-
mally relate to methylation changes in regions with long-
range interactions. Accordingly, probes associated with dif-
ferent CpG features exhibited different methylation pro-
files. Thus, it might be more meaningful to apply consen-
sus partitioning to the probes from different CpG features
separately. Figure 7C and D illustrate the cola classifica-
tion based on probes in the three CpG features using the
SD:skmeans and ATC:skmeans methods where all six clas-
sifications were stable under the selected number of sub-
groups. With SD:skmeans, CGIs and shores generated sim-
ilar classifications and which were highly similar to the orig-
inally published classifications, with the exception of a sub-

set of Mesenchymal samples which were classified into the
same group as the RTK II Classic subtype. For the clas-
sification based on CGI seas, Mesenchymal and RTK II
Classic subtypes were merged into one group and some
of the RTK I PDGFRA samples were classified into the
group of K27 subtype. For comparison, ATC:skmeans gen-
erated very different classifications from SD:skmeans. The
three different categories of CpG features all identified one
separate subgroup corresponding to the G34 subtype, and
merged K27 and RTK I PDGFRA subtypes into one sub-
group. Partitioning based on CGI probes could still sepa-
rate the IDH subtype, while it merged Mesenchymal and
RTK II Classic into one subtype. Partitioning based on
shore probes did not separate IDH, Mesenchymal and RTK
II Classic subtypes at all, and partitioning based on Sea
probes generated a classification which seems independent
of IDH/Mesenchymal/RTK II Classic subtypes.

DISCUSSION

Many analyses of high-throughput genomic data require
classification. Samples with specific molecular profiles need
to be classified into distinct subgroups based on various
omics data. Consensus partitioning solves this task with a
special focus on the stability of the classification procedure.
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Figure 7. Application of cola to the GBM 450K methylation array dataset. (A) Methylation heatmap of the top 5000 CpG probes scored by SD and (B)
by the ATC method.Column annotation reflects a classification system from the original publication, encoded as ‘DKFZ subtype’, and row annotation is
based on classification of the CpG probes into different categories (island, shore, sea) based on prior knowledge from the annotation of 450K probes. (C)
cola classification based on CpG probes separately for each category (island, shore, sea) with method SD:skmeans and (D) with method ATC:skmeans.
Column annotation again reflects a classification system from the original publication, encoded as ‘DKFZ subtype’. The DKFZ subtype is the classification
from the original study where the subtypes were predicted by top genes with the highest SD scores and by k-means consensus clustering with the R package
ConsensusClusterPlus.

In this work, we present cola, an R/Bioconductor pack-
age which provides a general framework for this important
type of analysis. cola provides comprehensive functionali-
ties and an easy-to-use interface. As a general framework,
cola allows various methods to be user-defined and easily
integrated into different steps of an analysis. This includes
feature selection, sample classification or identification of
signatures, i.e., features discriminating between the identi-
fied subgroups, and, if the data type permits, functional en-
richment. cola provides rich functionalities to directly per-
form analyses and to compare results from multiple parti-
tioning methods in parallel, as well as rich visualizations,
which alleviates the difficulty of choosing methods which

best explain a given dataset. In addition to flexibility in the
choice of parameters and methods, cola offers standardiza-
tion of the analysis workflow; it can automate the complete
analysis and generates a comprehensive HTML report by a
simple piece of code (minimal two lines of code). Further-
more, a new top-value method, i.e., a method to select in-
formative features for the classification procedure, named
ATC, is implemented in cola. Beyond the description of
the software package cola itself, here we additionally re-
port on extensive benchmarks addressing key parameters
in the consensus partitioning procedure using 435 publicly
available datasets on gene expression and DNA methyla-
tion. This includes whether to perform random sampling by
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matrix rows or columns, how many random samplings are
sufficient for consensus partitioning, and the impact of row
scaling on the consensus partitioning. The results can help
users to select optimal parameter values for their studies.
The HTML reports, as well as the code for cola analyses of
these 435 datasets, are all publicly available in a repository
on GitHub, which can serve as an online database where
researchers can query subgroupings in these datasets.

In addition to established variance-based top-value
methods, in cola we have implemented ATC, a top-value
method which is correlation-based. The benchmark on pub-
licly available gene expression datasets demonstrates that
consensus partitioning with the ATC method generates sta-
ble partitions. Among the different combinations of top-
value methods and partitioning methods as encoded in the
nomenclature A:B, where A is the top-value method and
B is the partitioning method, those involving ATC had the
highest stability as objectivated by 1-PAC and the highest
concordance on gene expression data. When comparing the
different partitioning methods, skmeans performed best in a
majority of combinations, and ATC:skmeans was the most
stable combination in our benchmark. This superiority per-
sisted across different values of k, the number of subgroups.
In particular, the combination ATC:skmeans had the high-
est resolution in the sense that it still yielded stable parti-
tions even for higher numbers of k. Based on the fact that
ATC is the only correlation-based top-value method in our
benchmark, it extracts a unique set of features with little
overlap with the features extracted by other top-value meth-
ods (Supplementary Material 2: Figure S2.16). The high
stability of the ATC method can be explained by the features
or rows selected by this top-value method. By definition,
ATC selects features which upon pairwise comparison are
highly correlated or anti-correlated and which form clusters
of features. When performing several partitions with ran-
domly selected subsets of features, few features of the vari-
ous clusters may be deselected, but the overall presence of
the clusters of features is not altered, which is the basis for
stability.

We also compared variance-based and correlation-based
top-value methods on a methylation array dataset. The
results showed that SD had better performance and the
probes it selected clearly separated samples into groups,
while the probes selected by ATC only reflected global
methylation difference which is of less interest. Since ATC
only considers the correlation while ignoring the absolute
variation in features, it may prioritize features showing con-
sistent patterns but with very small differences among sam-
ples, which is sometimes caused by small batch effects, e.g., a
sequencing batch. In those cases, the predicted partition
may be statistically meaningful, but it hides the real bio-
logical subgroups. A typical example is that in the methy-
lation dataset high ATC scores are more often assigned to
features in non-CGI regions, reflecting genome-wide methy-
lation differences. Thus, users need to be careful and a rec-
ommendation is to use the function top row heatmap()
to directly visualize the patterns of the top features.

In the analysis of the methylation dataset, with the SD
method, we found that partitionings were more determined
by the CGI probes while partitionings generated by the
ATC method were dominantly determined by CGI sea

probes. We recommend using SD as the top-value method
for methylation datasets because the methylation profile for
the top probes it selected was efficient for subgroup classi-
fication and moreover, the majority of the top probes were
located in CGIs and also functionally more related to the
changes in gene expression. We found that different CpG
features might generate different subgroup classifications,
especially for the CGI seas, which is especially important for
genome-level methylation profiles (e.g., from whole-genome
bisulfite sequencing) because the proportion of CpG sites in
seas from the whole genome (85.2% from a WGBS dataset)
are much higher than the methylation array (46.2% in 450K
methylation array). These different classifications probably
reflect different and complementary aspects of the underly-
ing biological system. Thus, it is meaningful to apply con-
sensus partitioning on different CpG features separately.

In addition to an appropriate selection of top-value
method and partitioning method, preprocessing also has
an impact on the result of a consensus partitioning proce-
dure. In particular, row scaling helps to remove the abso-
lute difference between features while focusing on consistent
regulation directions. While in general, applying row scal-
ing on gene expression datasets can be recommended, users
need to be cautious. In this work, we chose one dataset,
the Golub leukemia dataset, for comparison and performed
cola analysis with and without row scaling. This resulted
in two different classifications, and both were biologically
meaningful.

In the original study of the Golub leukemia dataset, a
self-organizing map (SOM) was applied to the entire expres-
sion matrix without row scaling. The authors found a two-
group classification of the samples with very good agree-
ment with the biological classification of acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL)
(29). The original analysis only applied SOM once and
thus did not consider the stability of the clustering. As
shown in Supplementary Material 10, in the cola analy-
sis, when the number of subgroups was set to 2 and rows
were scaled, ATC:kmeans, ATC:NMF and ATC:skmeans
generated stable partitions. The consensus classification of
the three methods had a very high agreement, but a sub-
set of the ALL samples were classified in the same group as
AML samples. The top-value methods SD, CV and MAD
combined with hclust, kmeans, mclust and NMF separated
the samples along with the AML/ALL separation, how-
ever, the partitions were not stable. Of note, if rows were not
scaled, variance-based methods generated stable partitions,
e.g., MAD:skmeans or SD:kmeans, while correlation-based
methods lost stability. The two different classifications both
separated samples well in the PCA analysis and both had
high numbers of signature genes (1810 signature genes in the
two-group classification by ATC:skmeans with rows scaled,
1057 signature genes by MAD:kmeans with rows unscaled,
with an overlap of 704 genes in the two sets of signature
genes, FDR < 0.05). The two sets of signature genes both
had a number of enriched biological functions, which im-
plies that both classifications were biologically meaningful.

The Golub leukemia study also classified samples into
three groups where ALL samples were additionally classi-
fied into two subgroups which corresponded to T-cell and
B-cell lineage (29). With three-group classification by cola
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(Supplementary Material 11), we found that ATC:skmeans
with row scaling was the only method that generated a
stable partition where ALL samples were separated into
two groups. SD:skmeans without row scaling generated the
most similar partition as the original Golub classification,
however, the partition was highly unstable, especially for the
B/T-cell classification. Interestingly, being different from
the B/T-cell classification for ALL samples, ATC:skmeans
generated a different classification for ALL samples. The
signature genes for the two partitions were very different
where ATC:skmeans with row scaling selected 1200 signa-
ture genes while SD:skmeans without row scaling only se-
lected 228 signature genes. The number of common sig-
nature genes was only 17. Functional enrichment analysis
showed that ATC:skmeans signature genes enriched many
terms in the agreement with prior biological knowledge.
Thus, this novel classification might provide a new view on
the subgroups of ALL.

Using the same datasets as in the benchmarks above, we
also varied other parameters and assessed their influence
on stability as well as optimality criteria. In the consen-
sus partitioning process, random samplings can either be
performed by rows or columns of the matrix. Through the
benchmarks on public datasets, we found that the final par-
tition results were highly consistent between both samplings
and partitions from row sampling were slightly more stable
than from column sampling. Column sampling ran ∼1.5
times longer than row sampling, which might be an issue
for the partitioning methods that need longer runtime, e.g.,
NMF (Supplementary Material 8). We also evaluated the
impact of the number of random samplings on the repro-
ducibility of consensus partitioning. We found that con-
sensus partitioning was well reproducible even for 25 sam-
plings, especially when the partition was already stable. One
reason is that the consensus partition is already summarized
from a huge amount of single partitionings. cola takes 50
samplings as the default parameter, which is a balance be-
tween the stability of the partitionings and runtime.

cola provides a function get classes() that can be
applied to the ConsensusPartitionList object and generates
a global classification by averaging consensus partitions
from all methods by weighting the mean silhouette score
in each method. This process is also visualized by the func-
tion collect classes() and an example can be found
in Figure 3C. However, consensus classification across dif-
ferent methods should be applied with care because the as-
signment of weights to partitions from the various methods
is a complex task. Furthermore, as demonstrated with the
Golub leukemia dataset, different partition methods can
yield complementary and still valid classifications (Supple-
mentary Material 10). Samples having different classifica-
tion labels between groups will be assigned as ambiguous
samples if all methods are merged. In this case, it is worth-
while to look at different classifications separately since they
might illustrate different aspects of the data and underlying
biological systems.

One popular field to apply partitioning analysis is
scRNA-Seq. cola can be applied to scRNA-Seq datasets
if the number of cells is intermediate (∼500), however,
the runtime and the memory usage might not be accept-
able if the number of cells becomes very high, e.g., sev-

eral thousands. Nevertheless, we can propose the follow-
ing two strategies to partially solve this problem. (i) A ran-
domly sampled subset of cells which take relatively short
runtime (e.g., 100–200 cells) can be first supplied to cola,
from which a specific combination of top-value method and
partitioning method that gives the best results can be pre-
selected. Later the user can then apply only these two spe-
cific methods to the complete dataset. This will be much
faster than blindly running cola with many methods in se-
quence. (ii) The selected subset of cells can be treated as a
training set to generate a classification. Then, the class la-
bels of the remaining cells can be predicted, e.g., by test-
ing the distance to the centroid of each cell group, without
rerunning consensus partitioning. cola implements a func-
tion predict classes() for this purpose. To simplify
the use even more, cola implements a function consen-
sus partition by down sampling() that automati-
cally performs the analysis proposed in the second strategy.
Note, since these two strategies are performed by sampling
a small subset of cells from the cohort, the cell clusters with
small sizes might not be detectable. However, if sufficient
annotation is available, the sampling strategy may also be
chosen in a semi-supervised way to select representatives of
known groups.

cola is a statistical framework for unsupervised partition-
ing analysis with no assumption on the data types and the
biology subjects. Nevertheless, cola provides functions that
help to interpret biological implications of the classification.
The function functional enrichment() does this by
analyzing the biological functions of the signature genes
that best separate subgroups. If more external data is pro-
vided, e.g., clinical data such as survival data, the biologi-
cal interpretation of the classification can be validated. cola
provides the function test to known factors() that
helps to check the correspondence between cola classifica-
tion and the known annotation tables by statistical tests.

CONCLUSIONS

We developed cola, an R package that provides a com-
prehensive analysis for consensus partitioning. We demon-
strated the usage of cola and benchmarked the key param-
eters in the consensus partitioning procedure, which gives
valuable hints for users to select proper parameters for their
studies. cola is designed with an easy user interface and al-
lows integrating user-defined methods into the partitioning
framework. We believe it will be convenient for de novo sub-
group identification in studies, as well as for benchmarking
new partitioning methods.

DATA AVAILABILITY

The cola package is available on Bioconductor (https:
//bioconductor.org/packages/cola/). Note that for repro-
ducibility of the analyses presented in this work, the version
of cola should be ≥1.3.2. The cola reports for 206 GDS and
223 recount2 datasets, as well as the six public datasets used
for demonstration, are publicly available at https://jokergoo.
github.io/cola collection/. The scripts to perform the com-
plete analysis are available at https://github.com/jokergoo/
cola manuscript. The Supplementary Materials are avail-
able at https://jokergoo.github.io/cola supplementary/.
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