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Abstract

Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or
mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable,
suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase d
(Pol d) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic
suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels
but collapse when the rate exceeds 1023 inactivating mutations per gene per cell division. Variants that escape this error-
induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site
changes in Pol d that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural
locations of the Pol d changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of
eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications
for the role of mutator phenotypes in cancer.
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Introduction

Accurate DNA replication ensures the faithful transmission of

genetic information between mother and daughter cells. To

accomplish this important task, organisms have evolved a network

of conserved pathways that govern DNA replication fidelity

(reviewed in [1]). Polymerase proofreading and postreplication

mismatch repair (MMR) are key determinants of fidelity,

functioning to correct errors introduced by DNA polymerases

during cell division (reviewed in [2–4]). Defects in these and other

DNA repair pathways produce mutator phenotypes, which are

characterized by increased rates of spontaneous mutation.

Mutator phenotypes arise spontaneously in nature and have

mixed biological consequences (reviewed in [5–10]). In Escherichia

coli and other bacteria, changing environmental conditions favor

high mutation rates, which increase the likelihood of genetic

adaptation [11–16]. However, after adaptation, mutator bacteria

progressively lose fitness as they accumulate deleterious mutations

in other genes [14,17], and clones with lower mutation rates can

evolve from mutator populations [14,16,18–20]. Thus, mutation

rates in E. coli rise and fall as populations cycle through periods of

adaptive and non-adaptive growth.

Mutators also impact eukaryotes. In mammals, mutator

phenotypes fuel oncogenesis by providing the genetic diversity

necessary for emergence of malignant clones [21,22]. Many

sporadic human tumors show signs of an elevated mutation rate

[23], and inherited defects in polymerase proofreading [24–26] or

MMR (reviewed in [27,28]) confer mutator phenotypes and

increase cancer risk. In the budding yeast Saccharomyces cerevisiae,

loss of proofreading or MMR also elevates spontaneous mutation

[29–34], and defective MMR can facilitate adaptation to changing

environments [35,36].

Similar to bacteria, eukaryotic mutator alleles are detrimental in

the long-term. Deleterious mutations accumulate faster in mutator

compared to non-mutator yeast strains [37,38], and mutators

eventually become extinct in a mutational meltdown process after

serial passage through population bottlenecks [39]. This decline is

accelerated in yeast with extreme mutation rates. Diploids that are

homozygous defective for both proofreading and MMR grow

slowly and have mutations rates that are elevated 10,000-times

above wild-type levels [40–42]. Double-mutant spores germinate

but arrest at various cell-cycle stages after 6–7 mitotic divisions

[40], suggesting that the accumulation of DNA replication errors

drives the extinction of haploid mutator strains.

Here, we experimentally define the threshold of error-induced

extinction in haploid S. cerevisiae and show that cells readily escape

extinction via genetic suppression. These escape mutants emerge

rapidly and carry second-site mutations that suppress the mutator
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phenotype. Our findings show that mutators are intrinsically

unstable and that spontaneous suppressors moderate high

mutation rates in yeast.

Results

Abrupt Loss in Viability with Increased Mutation Rate
To obtain a range of mutator strains suitable for defining the

maximal mutation rate in yeast, we conducted a mutagenesis

screen of the POL3 gene, which encodes the catalytic subunit of

DNA polymerase d (Pol d). We used a plasmid shuffling strategy

[29,43] to introduce mutated pol3 alleles into strains proficient

(MSH6) or deficient (msh6D) for MMR (Figure S1). The screen

focused on conserved residues in the proofreading exonuclease

domain of Pol d [44,45] that, when mutated in msh6D cells, are

expected to preferentially increase base-substitution and 61

frameshift mutations [40,46–49].

Our analysis identified 21 amino acid substitutions in the Pol d
proofreading domain that individually conferred a range of

increased spontaneous mutation frequencies (Figure S2). These

alleles had no observable effect on colony formation in MSH6

cells. However, four alleles (pol3-01, pol3-F406A, pol3-D407A and

pol3-Y516F) did not yield visible colonies when shuffled into

msh6D cells. This result is consistent with previous reports of

synthetic lethality between the proofreading-deficient pol3-01

allele and MMR-defective alleles pms1D, msh2D, or msh6D
[40,41,50].

To determine whether the loss of growth capacity correlated

with mutator strength, we quantified the spontaneous mutation

rates of a subset of pol3 alleles in the presence or absence of

MSH6 (Figure 1A). Alleles that imparted a 2- to 8-fold increase in

the mutation rate of MSH6 cells (R459A, G400A, Y401A, D396A,

Y410A, K491R and D463A) were compatible with survival when

MSH6 was deleted. These pol3 msh6D double-mutants had

mutation rates that were 15- to 150-times greater than the

corresponding pol3 MSH6 strains, consistent with synergy

between pol3 mutators and msh6D. In contrast, pol3 alleles that

increased the mutation rate 25- to 50-fold in MSH6 cells (D407A,

pol3-01, Y516F and F406A) conferred a loss of colony-forming

capacity in msh6D cells (,1 colony/105 cells plated; Figure 1B).

Thus, the transition to no colony formation occurred over a

narrow range of increasing mutation rates. This abrupt loss of

growth capacity implies the existence of a threshold for error-

induced extinction.

Mutants That Escape Error-Induced Extinction
During our shuffling experiments, we observed occasional

colonies that escaped pol3 msh6D synthetic lethality (Figure 2A).

We speculated that second-site changes in Pol d might rescue yeast

from error-induced extinction by increasing DNA replication

fidelity and thereby reducing the spontaneous mutation burden.

To test this idea, we sequenced pol3 plasmids from error-induced

extinction (eex) mutants that escaped synthetic lethality between

msh6D and pol3-01, pol3-F406A or pol3-D407A. The plasmids

retained the original pol3 mutator alleles, but also harbored

additional second-site mutations in each pol3 sequence. Our initial

experiment yielded three eex mutants encoding single amino-acid

substitutions in Pol d (E594G or W821C in pol3-01; T711P in pol3-

D407A) and two mutants with multiple substitutions (K689E,

S725L and I1076V in pol3-F406A; R470C and T655A in pol3-

D407A). Another mutation (A894G) was found in a large-colony

variant of pol3-D463A msh6D cells. When the second-site eex

mutations were re-engineered into new plasmids together with

their corresponding mutator alleles (pol3-01, pol3-F406A or pol3-

D407A), they rescued colony-forming capacity in msh6D cells and

decreased the mutation rate of MSH6 cells 10- to 33-fold

(Figure 2B). The eex mutations appeared to be functionally

interchangeable; T711P (the pol3-D407A suppressor) also rescued

pol3-01 msh6D lethality, and either T711P or E594G (a pol3-01

suppressor) restored normal growth to pol3-D463A msh6D cells.

Considered together, these initial findings suggested that eex

mutations within POL3 confer escape from error-induced

extinction by exerting an antimutator phenotype.

To obtain a broader view of escape mechanisms, we performed

a large-scale screen for mutants that suppress the synthetic

lethality between pol3-01 and msh6D (Figure 2C). Mutants

emerged from nearly every pol3-01 msh6D parent clone, and there

was wide fluctuation in the number and size of mutant colonies,

suggesting that escape variants arise randomly prior to selection on

FOA. We isolated 113 independent eex mutants (Table S1).

Seventy-four of these eex mutants carried pol3-01 plasmids that still

conferred lethality in a fresh msh6D strain. We infer that these

mutants harbor mutations in chromosomal genes that influence

DNA replication fidelity. The remaining 39 eex mutants carried

pol3-01 plasmids that did not cause synthetic lethality when

isolated and independently re-shuffled into msh6D cells. DNA

sequencing of these plasmids showed that, in addition to the pol3-

01 allele, each plasmid contained a different secondary mutation

in pol3. These secondary mutations encoded single amino-acid

changes in Pol d (Figure 3 and Figure 4) and rescued colony-

forming capacity when engineered de novo into pol3-01 plasmids

and shuffled into naı̈ve msh6D cells. Consistent with our initial

experiment, all of these intragenic eex mutations suppressed the

pol3-01 mutator phenotype, as measured at two different genetic

loci (Figure 2D and Table 1). The weakest eex alleles suppressed

mutation rates three-fold, while the strongest suppressors lowered

mutation rates to wild-type levels (Figure 2D). Thus, cells escape

pol3-01 msh6D lethality by acquiring any one of a variety of

second-site mutations that suppress the mutator effect of Pol d
proofreading deficiency.

Author Summary

Organisms strike a balance between genetic continuity
and change. Most cells are well adapted to their niches
and therefore invest heavily in mechanisms that maintain
accurate DNA replication. When cell populations are
confronted with changing environmental conditions,
‘‘mutator’’ clones with high mutation rates emerge and
readily adapt to the new conditions by rapidly acquiring
beneficial mutations. However, deleterious mutations also
accumulate, raising the question: what level of mutational
burden can cell populations sustain before collapsing?
Here we experimentally determine the maximal mutation
rate in haploid yeast. We observe that yeast can withstand
a 1,000-fold increase in mutation rate without losing
colony forming capacity. Yet no strains survive a 10,000-
fold increase in mutation rate. Escape mutants with an
‘‘anti-mutator’’ phenotype frequently emerge from cell
populations undergoing this error-induced extinction. The
diversity of antimutator changes suggests that strong
mutator phenotypes in nature may be inherently transient,
ensuring that rapid adaptation is followed by genetic
attenuation which preserves the beneficial, adaptive
mutations. These observations are relevant to microbial
populations during infection as well as the somatic
evolution of cancer cells.

Escape from Error Extinction
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Contributions of MMR and Proofreading to DNA
Replication Fidelity In Vivo

The eex mutants provided an opportunity to assess the

proportion of Pol d errors that are repaired by proofreading and

MMR in vivo. Taking advantage of the viability of pol3-01,eex

msh6D cells, we first compared the mutation rates of isogenic

strains that lack Pol d proofreading and differ only in their MMR

activity. The average increase in mutation rate in pol3-01,eex

strains after deletion of MSH6 was 157-fold (Table 1), consistent

with Msh6-dependent repair of greater than 99% of the errors

generated by proofreading-deficient Pol d. As expected from the

mutation biases conferred by pol3-01 or msh6D alone [40,46–48],

spontaneous mutations in pol3-01,eex msh6D strains were almost

exclusively base substitutions (Figure S3 and Table S2). Thus, our

estimate primarily reflects the efficiency of base-base mismatch

repair. This estimate is an average across multiple scoreable sites

in CAN1; MMR efficiencies at individual sites may vary widely

[51].

To similarly estimate the efficiency of Pol d proofreading in

vivo, we initially determined the influence of eex alleles on

mutation rates in the presence of proofreading. Most MMR-

proficient pol3-eex strains had no discernable mutator phenotype

(Figure 2D, Table 2). However, in the absence of MSH6 many of

the pol3-eex alleles produced slightly higher mutation rates than

the POL3 msh6D control (Table 2). These alleles were excluded

from our analysis, because their weak mutator phenotypes may

result from altered partitioning or other defects that reduce

proofreading efficiency [4,52]. Eight pol3-eex msh6D strains

exhibited mutation rates within two-fold of POL3 msh6D:

G204D, H620Y, T711A, E594G, Y808C, W821C, H879Y, and

S968R. The mutation rates of these pol3-eex msh6D strains were

compared to rates of the corresponding pol3-01,eex msh6D cells.

This strategy allowed us to examine isogenic strains that differ

only in their Pol d proofreading activity and lack the masking

effects of Msh6-mediated MMR. Proofreading deficiency in-

creased mutation rates an average of 163-fold, indicating that the

Pol d exonuclease corrects greater than 99% of polymerase errors

across the CAN1 reporter gene. Assuming Pol d proofreading and

Msh6-dependent MMR act in series [40], we estimate their

combined contribution to DNA replication fidelity in yeast at

greater than 104. Proofreading and MMR contribute similarly to

replication fidelity in bacteria [53].

Defining the Threshold of Error-Induced Extinction
The pol3-01,eex MMR-proficient strains formed colonies with

similar size and efficiency as the POL3 control (Figure 5A, left).

Thus, the corresponding eex mutant polymerases must suffice for

the essential functions of Pol d in replication [54]. However, in the

absence of MSH6, pol3-01,eex alleles with the strongest mutator

phenotypes impaired growth (Figure 5A, center). We used these

mutants, together with synthetic-lethal alleles, to estimate the

maximal mutation rate compatible with haploid yeast prolifera-

tion.

The upper and lower limits of the maximal rate were

determined as follows. First, we calculated the predicted mutation

rates of msh6D strains harboring synthetically lethal pol3 alleles

(pol3-01, pol3-F406A, pol3-D407A or pol3-Y516F) as the mutation

rate of each pol3 MSH6 strain (Figure 1A) times 157 (the average

increase in rate observed upon deletion of MSH6; see preceding

section). These predicted rates ranged from 261023 Canr mutants

per cell division for pol3-01 msh6D and pol3-D407A msh6D to 4610-

3 for pol3-F406A msh6D (Figure 5B). Second, we determined the

growth capacities of all mutator and suppressor strains in our

collection using a semi-quantitative scale based on colony size.

Wild-type colony-forming capacity (+++) was consistently observed

at rates as high as 561025 Canr mutants per cell division

(Figure 5B). As the mutation rate exceeded 5610-5, several strains

exhibited a slow-growth phenotype (++), and a single strain (pol3-

01,H879Y msh6D) showed a severe growth deficit (+) at a mutation

rate of 161023. These results demonstrate that the maximal

mutation rate is reached when there are ,1023 inactivating

mutations in CAN1 per cell division (Figure 5B). Rates exceeding

this maximum result in a failure to form visible colonies (i.e., error-

induced extinction).

If the observed decline in viability is due to an error threshold,

additional mutation stress should exacerbate the growth defect.

We introduced pol3-01,eex alleles into msh2D cells, which are

defective in both Msh6- and Msh3-mediated MMR and thus

have Canr mutation rates that are 2- to 3-fold higher than msh6D
cells [3,41,47,48]. Colonies were observed only in pol3-01 msh2D
strains with the strongest mutator suppressor alleles (Figure 5A,

right). Collectively, these data suggest that pol3-01 msh6D cells

with weak mutator suppressors are on the edge of error-induced

extinction and that eliminating MSH2 increases mutation rates

beyond an extinction threshold. Although pol3-01 msh2D strains

with strong mutator suppressors formed distinct colonies, these

colonies were generally smaller and less uniform than the POL3

msh2D control. This variability in colony size suggests that viable

pol3-01,eex msh2D cells quickly accumulate deleterious mutations

that compromise replicative fitness. The observation that growth

is impaired at mutation rates 10-times less than the 1023

threshold (Figure 5B) suggests that accumulation of random

mutations can impose a loss in fitness and shows that the growth

capacity of haploid yeast declines even under conditions of non-

lethal mutation burden.

Discussion

Mutators accelerate microbial adaptation and mammalian

oncogenesis. However, the fitness cost of increased mutation

imposes indirect selection pressure to reduce mutation rates. This

counter-selection will occur after adaptation to a stable environ-

ment where conditions no longer favor the genetic potential of

mutators. One possible mechanism to reduce mutation rates is the

acquisition of compensatory alleles at modifier loci that suppress

the mutator phenotype.

In this study, we took advantage of synergies between Pol d
proofreading and MMR to titrate yeast mutation rates up to lethal

levels and study the fate of mutators under strong counter-

selection. We found that msh6D cells carrying hypomorphic

proofreading alleles abruptly lose viability over a narrow range

of increasing mutation rates (Figure 1). Thus, cell survival requires

both proofreading and MMR to limit potentially lethal mutations

introduced by Pol d. Mutant clones that escape this error-induced

extinction arose spontaneously (Figure 2), frequently due to

second-site changes in Pol d (Figure 3 and Figure 4) that conferred

antimutator phenotypes (Figure 2 and Table 1). Using our

collection of mutator and antimutator strains, we found that the

maximum mutation rate compatible with haploid yeast survival

corresponds to ,10-3 inactivating mutations in CAN1 per cell

division (Figure 5). These studies provide evidence for an error

threshold in yeast and demonstrate that genetic suppressors of

error-prone replication spontaneously arise in eukaryotic mutator

cells.

Below we consider error thresholds in relation to genetic

complexity and mutational robustness, and we discuss potential

mechanisms of mutator suppression.

Escape from Error Extinction
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Error Thresholds, Genetic Complexity, and Mutational
Robustness

We observed loss of growth capacity when the CAN1 mutation

rate exceeds ,1023 inactivating mutations per cell division

(Figure 5). The yeast genome is comprised of ,6000 genes

(http://www.yeastgenome.org). Thus, a mutation rate of 1023

corresponds to the random inactivation of ,6 genes per cell per

replication cycle (assuming CAN1 is typical). On average, one of

these six mutations will involve a gene required for haploid cell

viability [55,56]. Thus, there is a high probability that cells above

the maximal mutation rate will acquire a lethal mutation after a

few cell divisions. The restoration of cell growth via antimutator

alleles (Figure 2) supports this hypothesis. Stalled DNA synthesis at

nascent 39 mispairs [57] and S-phase checkpoint signalling [58]

could also contribute to growth arrest in strong mutators.

However, it is not evident how MMR defects would exacerbate

39 mispair extension by Pol d, and simultaneous loss of

proofreading and MMR does not halt growth specifically in S-

phase [40]. Rather, proofreading/MMR double mutants arrest

with varied cell morphologies [40] that resemble those observed in

a systematic promoter-repression screen of essential genes [59]

(Figure S4). Considered together, the evidence suggests that

random mutations in essential genes are a primary cause of error-

induced extinction. Synthetic cooperative interactions of non-

lethal alleles will also contribute as cells accrue multiple mutations

[60,61]. In a similar manner, bacteria exhibit a replication error

threshold that correlates with the number of indispensable genes

[62], suggesting that maximal mutation rates can be used to

estimate the genetic complexity of vital pathways in other

organisms.

Error thresholds are also evident in diploids. Although diploid

genomes generally buffer cells against the deleterious effects of

mutation accumulation [63], haploinsufficient alleles still pose a

significant threat to fitness. In a comprehensive library of diploid

yeast heterozygotes, up to 20% of the hemizygous mutant strains

exhibit reduced fitness during growth competition [64]. Observa-

tions of mutation meltdown in MMR-deficient cells [39] and

lethality conferred by a hyper-mutator Pol d variant [65] argue that

diploid yeast are subject to an error threshold. The combined loss of

Pol d proofreading and MMR is also synthetically lethal in mice

[25]. Similar to the situation in yeast [40], mouse cells defective for

both proofreading and MMR are initially viable but arrest after a

limited number of mitotic divisions [25]. This cessation of growth

presumably results from an accumulation of mutations in genes

required for cell propagation and embryo development.

Although cells eventually succumb to error-induced extinction,

they tolerate substantial increases in mutation rate before losing

viability. This mutational robustness is apparent in yeast, E. coli

and mouse cells (Figure 6). We show that haploid yeast tolerate

more than a 1,000-fold increase in mutation rate before exhibiting

overt loss of colony-forming capacity (Figure 5B), and a

comparable increase in mutation rate is required to cause

catastrophic errors in E. coli [62], suggesting that prokaryotes

and haploid eukaryotes share similar degrees of robustness toward

Figure 1. Evidence for a threshold of error-induced extinction. A) Entry into error-induced extinction. Mutated pol3 alleles were introduced
into haploid MSH6 and msh6D yeast by plasmid shuffling (Figure S1), and mutation rates were measured by fluctuation assays and calculated using
the maximum likelihood method. Each bar represents the spontaneous mutation rate, expressed as canavanine-resistant (Canr) mutants per cell
division, conferred by a specific POL3 allele in MSH6 or msh6D cells. Mutation rate values (x 1027) are indicated on each column. Error bars show 95%
confidence intervals. WT, wild-type POL3; black, MSH6; gray, msh6D; X, no growth. B) Synthetic lethality of strong pol3 mutator alleles with msh6D.
Serial dilutions of haploid yeast containing POL3–URA3 and pol3–LEU2 plasmids were plated on SC FOA medium to select for cells that spontaneously
lost POL3–URA3. Similar numbers of cells (,105, 104 and 103) were plated for each set of alleles in the MSH6 and msh6D strains. Failed growth of
msh6D cells carrying pol3-D407A or pol3-01 indicates synthetic lethality (right two panels). pol3-F406A and pol3-Y516F also failed to support colony
formation in msh6D cells (not shown). Note the small size of pol3-D463A msh6D colonies.
doi:10.1371/journal.pgen.1002282.g001
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Figure 2. Escape from error-induced extinction. A) Emergence of colonies that escape pol3-01 msh6D synthetic lethality. Each segment of an
FOA-containing SC plate (eight segments per plate) was streaked with an individual colony of POL3–LEU2 POL3–URA3 msh6D (left) or pol3-01–LEU2
POL3–URA3 msh6D (right) cells to select for loss of the POL3–URA3 plasmid (see Figure S1). Resultant POL3 msh6D cells formed abundant visible
colonies (left), whereas pol3-01 msh6D cells did not (right). Colonies that escape pol3-01 msh6D synthetic lethality (eex mutants) arose at low
frequency near the outer margins of the plate (circled) where cell densities were highest. Similar results were seen when pol3-F406A or pol3-D407A
were shuffled into msh6D cells (not shown). B) Antimutator effects of eex alleles encoding second-site changes in Pol d. Rates of spontaneous
mutation to canavanine-resistance (Canr) conferred by pol3-01, pol3-F406A or pol-D407A alone (filled symbols) and combined with intragenic eex
alleles (open symbols) were determined in MSH6 cells. Downward arrows illustrate the reduction in mutation rates (i.e., the antimutator effect) caused
by the second-site, amino-acid substitutions indicated beneath each datum point. Error bars show 95% confidence intervals. C) Representative plate
from large-scale screen for eex mutants. Approximately 106 cells from multiple independent pol3-01–LEU POL3–URA msh6D parent colonies were
plated separately in ,1-cm spots on FOA-containing SC medium. LEU-only and POL3–LEU plasmids were also shuffled into msh6D cells as controls.
FOA-resistant colonies arose at varied frequencies from each parent clone. Insert, magnified view showing colonies that are candidate eex mutants.
plasmid, LEU-only plasmid with no POL3 gene. D) Mutation rates of eex mutants. Rates of spontaneous mutation to FOA-resistance (FOAr) were
measured in a MMR-proficient strain with a chromosomal URA3 reporter gene. Each datum point represents a different POL3 allele. Mutation rates
were determined from multiple independent fluctuation analyses of each allele. Confidence intervals (95%) are shown for POL3 and pol3-01. Mutation
rates and confidence intervals of individual eex alleles are in Table 1 and Table 2.
doi:10.1371/journal.pgen.1002282.g002

Escape from Error Extinction
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DNA polymerase errors. In comparison, diploid yeast and mouse

cells retain replication capacity at mutation rates 10,000-times

higher than wild-type levels (Figure 6; [25,40,66]). Thus, diploidy

extends the threshold of error-induced cell death by five- to

tenfold. These data suggest that cells can survive and persist during

periods of high mutational loads. The maximal mutation rate will

likely vary, depending on environmental conditions [67,68],

genetic redundancy [63,69,70], the plasticity of genetic interac-

tions [71,72], and the ability of cells to buffer deleterious changes

in essential proteins [73].

Structural Implications of the eex Amino-Acid
Substitutions

We observed that escape mutants readily emerge when

moderate mutators are pushed above the error threshold

(Figure 2). One-third of the escape mutants resulted from

second-site changes in Pol d that suppress the proofreading-

deficient mutator phenotype. Recent structural studies of S.

cerevisiae Pol d [74] provide insight into potential mechanisms of

mutator suppression by these intragenic eex alleles (Figure 4,

Figures S5 and S6).

Many eex mutations alter amino acids around the polymerase

active site that are predicted to influence dNTP binding or

catalysis (Figure 4B). Effects may be mediated by direct

interactions of mutated residues with the metalNdNTP substrate

or via packing interactions that indirectly affect the substrate

binding pocket. Other eex mutations map to a stretch of amino

acids that bind the template near the active site and buttress the

fingers domain, which contains residues that contour the

templateNdNTP base pair (Figure S5). Amino-acid changes

affecting active-site geometry, positioning of the template nucle-

otide, or stability of the catalytic conformation may act as

antimutators by increasing selectivity for correct dNTPs or by

slowing the rate of catalysis so that mispaired templateNprimers

have more time to dissociate from Pol d. A model of dissociation

and subsequent editing by an alternative enzyme [20,75] may best

explain eex mutations that change amino acids along the DNA

binding track (Figure 4C). Similarly, eex mutations in the

exonuclease domain may impart structural changes that promote

Pol d dissociation during failed proofreading attempts (Figure S6).

Intriguingly, two eex amino-acid substitutions (E642K and D643N)

are located on the solvent-exposed surface of Pol d (asterisk in

Figure 4A), suggesting that changes in protein-protein interactions

influence mutagenesis. Proteins encoded by eex loci extragenic to

POL3 (Table S1) are candidate interacting partners.

Several alternative enzymes may function to edit Pol d errors in

the eex mutants. One candidate is proofreading by Pol e. Yeast

with deficiencies in both Pol d and Pol e proofreading exhibit a

synergistic increase in mutation rate, suggesting one or both

polymerases may proofread for the other [46]. Other candidates

include the 39R59 exonuclease activities of MRE11 [76] and

Apn2 [77], or endonucleases such as Rad1/Rad10 or Mus81/

Mms4 that cleave 39 flap structures during replication fork restart

[78–82]. An important consideration is that such alternative

editing pathways may be redundant, with multiple activities

masking the contributions of any one nuclease.

The locations of several eex substitutions in Pol d resemble those

of antimutators previously identified in bacteriophage T4

polymerase [4,83–86] and in herpes simplex virus polymerase

[87–89], two B-family DNA polymerases similar to Pol d (Figure 3).

Genetic screens have also identified E. coli DNA polymerase I and

III antimutator variants, and similar to our findings, these E. coli

antimutators result from diverse amino-acid substitutions through-

out the polymerase structures [19,20,90–92]. Some amino-acid

substitutions in T4 pol are thought to increase polymerase fidelity

by promoting ‘hyper-editing’ of the primer terminus by the

integral proofreading exonuclease (reviewed in [4]). However, the

eex mutations we describe mediate their antimutator effects without

the aid of an active exonuclease domain, similar to previously

isolated E. coli antimutators [19,20,90].

Taken together, this structural analysis suggests two general

antimutator mechanisms for Pol d eex mutations: 1) increased

dNTP discrimination, thereby making Pol d more accurate, and 2)

increased dissociation from mispaired primer-templates, thereby

allowing other enzymes to proofread Pol d errors. eex mutations

could also decrease errors at Okazaki fragment junctions by

suppressing the strand-displacement activity of proofreading-

deficient Pol d [52,93–95].

Evidence for Other Pathways of Mutator Suppression
Our study took advantage of synthetically lethal interactions

between Pol d proofreading and MMR alleles to select for

antimutators. Several lines of evidence indicate that mutator

suppressors also arise under non-lethal conditions and are not

restricted to the Pol d proofreading – MMR pathway. Morrison

and Sugino observed mutator suppression in a yeast clone

defective for Pol e proofreading and MMR [46], and an

engineered second-site mutation in Pol e suppresses the mutator

effect of Pol e proofreading deficiency [96]. In E. coli, suppressors

of diverse mutator pathways (MMR, proofreading and DNA

damage repair) emerge spontaneously in strains that are well

below the error threshold [14,18–20]. In our studies, large-colony

variants of slow-growing mutators were frequently observed (see,

for example, Figure 5A), and in the one variant we pursued, we

found the A894G suppressor mutation. Collectively, these studies

show that many defects in DNA replication fidelity can be

genetically suppressed and suggest that both moderate and strong

mutators are intrinsically unstable.

The facile emergence of mutator suppressors that we observed

in yeast suggests that similar pathways of suppression exist in

multicellular eukaryotes. This has implications for the role of

mutator phenotypes in cancer [22,97]. During neoplastic trans-

formation, mutator alleles that promote the formation of tumor

cells are likely to incur a fitness cost due to an increase in

mutational load. To offset this cost, suppressor alleles that reduce

the mutation rate may emerge during the later stages of

oncogenesis after genetic barriers to immortalization and metas-

Figure 3. Amino-acid changes in Pol d eex mutants. Aligned sequences of five B-family DNA polymerases: Saccharomyces cerevisiae Pol d (S.c.
pol d), Mus musculus Pol d (M.m. pol d), Thermococcus gorgonarius (T.g. pol B), bacteriophage T4 (T4 pol), and herpes simplex virus 1 (HSV1 pol).
Secondary structural elements of yeast Pol d [74] are indicated below the alignment and color coded to depict their domain locations (see Figure 4A):
rectangles, a-helices; arrows, b-strands; solid lines, loops; dotted lines, structure not solved. Conserved polymerase (Pol) and exonuclease (Exo) motifs
are framed [44,45,120]. Amino-acid substitutions of interest in yeast Pol d are placed underneath the alignment at the relevant positions, highlighted
according to the following scheme: no highlight, pol3-01,eex mutations; green, pol3-D407A,eex mutations (R470C and T655A in one mutant, T711P in
another); orange, pol3-F406A,eex mutations (three substitutions in the same mutant); blue, A894G mutation that rescued slow growth of pol3-D463A
msh6D cells; yellow, pol3-01 (D321A,E323A); gray, pol3-t (D643N) and G447S (previously identified antimutator alleles; [121,122]). Residues that
increase polymerase fidelity when mutated in T4 or HSV1 are indicated by aqua boxes in the alignment [4,84-89,123].
doi:10.1371/journal.pgen.1002282.g003
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tasis have been overcome. Although recent findings suggest that a

mutator phenotype persists in at least some types of human tumors

[23], our results raise the prospect that mutator phenotypes may

be transient during tumor progression due to genetic suppression.

An analysis of mutation rate dynamics in cancer is warranted.

Materials and Methods

Media and Growth Conditions
Yeast were grown at 30uC using YPD, synthetic complete (SC)

media or SC drop-out media deficient in specific amino acids as

needed to select for prototrophy [98]. Pre-formulated nutrient

supplements for SC and SC lacking uracil and leucine were

purchased from Bufferad. All other drop-out supplements were

made as described [98]. URA3-deficient cells were selected on SC

medium containing 1 mg/ml 5-fluroorotic-acid (FOA; Zymo

Research) and an additional 50 mg/L uracil [43]. TRP1-deficient

strains were selected on FAA selection media containing 0.5 mg/ml

5-fluroanthranillic acid (FAA) made as described [99]. Canavanine-

resistant mutants were scored on SC plates lacking arginine that

contained 60 mg/ml of canavanine. Reagents were obtained from

Sigma-Aldrich or Fisher Scientific unless otherwise indicated.

Figure 4. Locations of eex amino-acid substitutions in the S. cerevisiae Pol d structure. A) Overall distribution of eex amino-acid
substitutions. The catalytic subunit of yeast Pol d is shown as a ribbon diagram with color-coded structural domains: amino, gray; exonuclease (Exo),
red; palm, purple; fingers, blue; thumb, green. Other important elements are indicated as follows: DNA template strand, brown sticks; DNA primer
strand, yellow sticks; incoming dCTP, green CPK sticks; metal ions, small black spheres; active-site residues, gray CPK sticks extending out from the a-
carbon backbone in the palm and exonuclease domains. Residues changed by eex mutations are shown as light blue spheres. The asterisks mark
adjacent E642K and D643N eex substitutions located on the solvent-exposed surface of Pol d. Structure from [74] (Protein Data Bank accession code
3IAY). B) Amino-acid substitutions near the polymerase active site. Palm domain eex residues are shown as space-filling spheres (light blue) and
labeled to indicate the amino-acid substitutions. Important non-mutated residues proximal to the eex substitutions are also shown as space-filling
spheres (purple). The fingers and thumb domains have been removed for clarity. C) Amino-acid substitutions in the DNA binding track. View looking
down the DNA helical axis. The primer (yellow) and template (brown) are held by a series of interactions along the DNA minor groove. eex residues
are light blue. Amino acids positioned by eex residues and minor-groove ‘sensing’ residues in the palm domain (K813, K814 and R815; [74]) are shown
as space-filling spheres colored according to domain as in panel (A). The three unpaired 59 nucleotides of the template have been removed for clarity.
doi:10.1371/journal.pgen.1002282.g004
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Table 1. Mutation Rates (61027) of pol3-01,eex Mutant Strains.

Allele MSH6 a msh6D b
msh6D
effect e

FOAr Canr Canr

pol3-01 c 23 (19, 26) 135 (110, 157) —

+ G207R 6.2 (4.6, 8.1) — —

+ H879Y 5.7 (4.5, 7.0) 53 (41, 65) 11000 (7700, 15000) 209

+ Y808C 5.5 (4.2, 7.0) 31 (25, 37) 7700 (6300, 9000) 198

+ S968R 2.9 (2.1, 3.8) 34 (26, 43) 5200 (4100, 6300) 153

+ A894V 2.4 (1.6, 3.5) 33 (25, 40) 3100 (2500, 3700) 96

+ G400S 2.2 (1.6, 3.0) — —

+ G204D 2.1 (1.4, 2.9) 29 (22, 36) 4500 (3400, 5600) d 157

+ L411R 1.8 (1.0, 2.9) — —

+ E642K 1.6 (1.1, 2.4) 23 (17, 28) 2600 (2000, 3000) 113

+ F486S 1.6 (1.0, 2.3) — —

+ T711A 1.4 (1.0, 2.0) 33 (25, 41) 5900 (4700, 7100) 179

+ R839H 1.4 (0.9, 2.1) — —

+ W821C 1.3 (0.8, 1.9 33 (24, 41) 2600 (2100, 3000) 80

+ C365Y 1.3 (0.8, 1.9) — —

+ A786V 1.3 (0.8, 1.9) 12 (8, 15) 1600 (1200, 1900) d 135

+ F793I 1.2 (0.8, 1.9) 6 (4, 8) 1600 (1300, 1800) 258

+ R475G 1.2 (0.8, 1.8) — —

+ N610D 1.1 (0.7, 1.6) — —

+ L531P 1.0 (0.7, 1.6) — —

+ E594G 1.0 (0.6, 1.6) 26 (17, 35) d 1700 (1200, 2100) 63

+ R475I 0.9 (0.5, 1.5) 14 (10, 18) 2700 (2300, 3200) 197

+ D831G 0.9 (0.5, 1.3) 11 (8, 15) 1700 (1400, 1900) 150

+ G921D 0.9 (0.4, 1.3) — —

+ D643N 0.8 (0.4, 1.5) — —

+ V838A 0.8 (0.5, 1.3) — —

+ R923H 0.8 (0.4, 1.3) — —

+ E800K 0.7 (0.4, 1.2) 13 (10, 17) 1700 (1400 1900) 126

+ K891T 0.7 (0.4, 1.2) 18 (14, 23) 1900 (1500 2300) 103

+ H620Y 0.7 (0.4, 1.1) 15 (12, 18) 3700 (3000, 4400) 248

+ G731S 0.5 (0.2, 1.0) — —

+ S615N 0.5 (0.3, 0.9) — —

+ V546M 0.5 (0.3, 0.8) 14 (10, 19) 2400 (1900, 2800) 171

+ G555S 0.4 (0.2, 0.8) — —

+ P614S 0.4 (0.2, 0.8) 11 (8, 15) 2100 (1700, 2400) 185

+ Q563R 0.3 (0.1, 0.5) 13 (9, 17) 2000 (1500, 2500) 158

+ I558L 0.3 (0.1, 0.5) — —

Rates of FOA or canavanine resistance (FOAr or Canr mutants per cell division)
were determined by fluctuation analyses and maximum likelihood estimates
using data from multiple independent experiments (except where noted). pol3-
01,eex alleles are arranged from top to bottom according to the degree of
mutator suppression as determined from rates of FOA resistance. Confidence
intervals (95%) are in parentheses. A dash (–) indicates the mutation rate was
not determined.
aMutation rates were determined in two different strains: FOAr, BP4001; Canr, YP6.
bMutation rates were determined in strain MP4.
cpol3-01,eex alleles not analyzed: I616C, A677T, and P719T.
dMutation rate from a single experiment.
eThe fold-increase in mutation rate caused by loss of MSH6 (msh6D effect) was
calculated by dividing each pol3-01,eex msh6D mutation rate by the corresponding
pol3-01,eex MSH6 rate. On average, msh6D increased mutation rate 157-fold.

doi:10.1371/journal.pgen.1002282.t001

Table 2. Mutation Rates (61027) of pol3-eex Mutant Strains.

Allele MSH6 a msh6D b
pol3-01
effect e

FOAr Canr Canr

POL3 c 0.3 (0.1, 0.5) 4.9 (4.0, 5.8) 23 (20, 26)

+ G207R 0.4 (0.2, 0.7) — —

+ H879Y 0.4 (0.2, 0.6) 1.9 (1.4, 2.6) 56 (44, 67) 198*

+ Y808C 0.4 (0.2, 0.7) 2.1 (1.4, 2.9) 39 (30, 48) 198*

+ S968R 0.3 (0.1, 0.5) 2.2 (1.6, 2.8) d 23 (17, 30) 226*

+ A894V 0.6 (0.3, 0.9) 2.7 (2.0, 3.4) 110 (88, 130) 29

+ G400S 1.2 (0.8, 1.8) — —

+ G204D 0.7 (0.4, 1.1) 2.6 (1.9, 3.4) 54 (39, 70) 84*

+ E642K 0.5 (0.2, 1.0) 7.0 (5.6, 8.4) 150 (120, 180) 17

+ F486S 0.9 (0.6, 1.4) — —

+ T711A 0.3 (0.5, 0.6) 2.1 (1.7, 2.4) 22 (15, 39) 275*

+ R839H 0.5 (0.2, 0.9) — —

+ W821C 0.3 (0.1, 0.6) 3.0 (2.3, 3.8) 33 (27, 38) 78*

+ C365Y 0.3 (0.2, 0.5) — —

+ A786V 0.1 (0.0, 0.3) 6.1 (4.3, 7.9) d 80 (63, 98) 19

+ F793I 0.2 (0.1, 0.4) 2.8 (2.0, 3.6) d 89 (71, 110) 179

+ R475G 0.2 (0.1, 0.4) — —

+ N610D 0.5 (0.2, 0.9) — —

+ E594G 0.2 (0.1, 0.5) 8.3 (5.5, 11.2) d 15 (12, 18) 107*

+ R475I 0.4 (0.2, 0.8) 5.8 (3.6, 8.3) d 160 (130, 180) 18

+ D831G 0.9 (0.5, 1.4) 2.9 (2.1, 3.7) 64 (50, 78) 27

+ G921D 0.4 (0.1, 0.8) — —

+ V838A 0.5 (0.3, 0.9) — —

+ R923H 0.2 (0.0, 0.4) — —

+ E800K 0.7 (0.4, 1.2) 3.6 (2.7, 4.5) 120 (97, 160) 14

+ K891T 0.3 (0.1, 0.5) 6.6 (4.8, 8.3) d 220 (180, 260) 9

+ H620Y 0.3 (0.1, 0.6) 4.5 (2.8, 6.5) d 26 (19, 34) 141*

+ G731S 0.2 (0.1, 0.5) — —

+ S615N 0.3 (0.1, 0.7) — —

+ V546M 0.4 (0.2, 0.7) 4.3 (2.5, 6.5) d 71 (49, 93) d 33

+ G555S 0.6 (0.3, 1.0) — —

+ P614S 0.5 (0.3, 1.0) 4.4 (3.3, 5.6) 130 (100, 160) 16

+ Q563R 0.3 (0.1, 0.6) 4.3 (3.0, 5.7) 120 (98, 140) 17

+ I558L 0.5 (0.2, 0.8) — —

Rates of FOA or canavanine resistance (FOAr or Canr mutants per cell division)
were determined by fluctuation analyses and maximum likelihood estimates
using data from multiple independent experiments (except where noted). eex
alleles are arranged from top to bottom in the same order as Table 1.
Confidence intervals (95%) are in parentheses. A dash (–) indicates the mutation
rate was not determined.
aMutation rates were determined in two different strains: FOAr, BP4001; Canr,
YP6.

bMutation rates were determined in strain MP4.
cpol3-eex alleles not analyzed: L411R, L531P, I616C, D643N, A677T, and P719T.
dMutation rate from a single experiment.
eThe fold-increase in mutation rate caused by loss of Pol d proofreading (pol3-

01 effect) was calculated by dividing each pol3-01,eex msh6D mutation rate
(Table 1) by the corresponding pol3,eex msh6D rate (above). pol3,eex msh6D
strains marked with an asterisk (*) have mutation rates within 2-fold of the
POL3 msh6D strain, suggesting the eex alleles do not hamper primer
partitioning or exonuclease function. In these strains, pol3-01 increased
mutation rate an average of 163-fold.

doi:10.1371/journal.pgen.1002282.t002
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Figure 5. Defining the threshold of error-induced extinction. A) Plasmid shuffling experiments to reveal synthetic interactions between pol3-
01,eex alleles and MMR mutations. Ten-fold serial dilutions of yeast containing POL3–URA3 and pol3–LEU2 plasmids were plated on FOA-containing SC
medium to select for cells that spontaneously lost POL3–URA3. Similar numbers of colony forming units were plated for each set of alleles in the
MMR+, msh6D and msh2D strains. Failed growth indicates synthetic lethality. Small colonies reflect slow-growth phenotypes. Relative mutation rates
are the Canr mutation rates conferred by each pol3 allele relative to wild-type POL3 in MMR-proficient cells (see Table 1 and Table 2). Alleles are listed
in decreasing order of mutator strengths. Some alleles with statistically similar mutation rates (as reflected by overlapping confidence intervals) have
slightly different relative rates due to mathematical round-off. B) Relationship between growth capacity and CAN1 mutation rate for 62 haploid yeast
strains. Colonies of pol3-01,E642K msh6D, pol3-01,G204D msh6D, pol3-01,H879Y msh6D, and pol3-01 msh6D cells are shown to illustrate wild-type
(+++), moderately defective (++), severely defective (+), and failed (–) growth, respectively. The vertical dashed line indicates the estimated maximal
mutation rate compatible with haploid yeast colony formation, which is our functional definition of the replication error threshold. Filled symbols,
rates measured by fluctuation analyses. Open symbols, rates estimated as described in the text. Data in brackets with an asterisk (*) are pol3-01,T711A
msh6D, pol3-01,S968R msh6D, pol3-01,G204D msh6D, and pol3-01,Y808C msh6D.
doi:10.1371/journal.pgen.1002282.g005
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Yeast Plasmids and Strains
Plasmids. pGL310 is the CEN4/ARS1/URA3 plasmid,

YCp50 [100], modified to carry SUP11 and the wild-type POL3

gene under control of its native promoter [29,101].

YCplac111POL3 and YCplac111pol3 derivatives are CEN4/

ARS1/LEU2 plasmids derived from YCplac111 [102] and

contain the entire wild-type POL3 or mutant pol3 genes (with

native promoters) flanked by HindIII and EcoRI restriction sites.

pRS414POL3 and pRS414pol3-01 are derivatives of the CEN6/

ARS4/TRP1 plasmid, pRS414 [103], carrying the HindIII-

EcoRI POL3 DNA fragments from YCplac111POL3 and

YCplac111pol3-01, respectively. The construction of YCplac111

and pRS414 vectors and subsequent subcloning of eex mutants are

described in detail in Text S1.

Strains. Yeast strains and their genotypes are listed in Table

S3. Chromosomal gene disruptions were introduced using PCR

products generated with primers, templates, and protocols detailed

in Table S4 and Text S1. YGL27-3D (a kind gift from Michel

Simon and Gerard Faye, Institut Curie) is a haploid strain that

carries a lethal, partial deletion of chromosomal POL3 substituted

by HIS3 and complemented by pGL310. Chromosomal MSH6

was replaced with TRP1 to create YGL27-3Dmsh6dis4. To limit

gene conversion between the pol3 plasmids and residual POL3

sequences in the chromosome, the entire POL3 coding sequences

in YGL27-3D and YGL27-3Dmsh6dis4 were replaced with

kanMX [104], creating YP6 (previously called YGL27-pol3D
[105]) and MP4, respectively.

The S288c derivative, BY4733 [103], was modified to create a

set of isogenic strains in a standard genetic background. BY4733

was transformed with pGL310, and chromosomal POL3 was

deleted and replaced with HIS3 to create P3H3a. MSH2 was

deleted in P3H3a and replaced with TRP1 to create BP0109.

MSH6 was deleted in P3H3a and replaced with kanMX [106] to

create BP1506. P3H3a was modified as follows to allow mutation

rate measurements at URA3. First, P3H3a was transformed with

pRS414POL3 and plated on SC FOA to isolate a strain that lost

pGL310. Then, to create BP4001, AGP1 on Chromosome III was

replaced with URA3 oriented with the direction of transcription

towards ARS306 [107].

Plasmid Shuffling
Plasmid shuffling with pGL310-containing strains was carried

out essentially as described [29,43] (Figure S1). Cells transformed

with YCplac111pol3 plasmids, YCplac111POL3 (positive control),

or YCplac111 (negative control) were plated on SC lacking uracil

and leucine. Cells transformed with pRS414pol3-01, pRS414POL3

(positive control), or pRS414 (negative control) were plated on SC

lacking uracil and tryptophan. After three days at 30uC, individual

colonies were picked and resuspended in sterile H2O, and serial

dilutions containing approximately 105, 104, 103, or 102 cells were

plated onto SC or SC FOA to select for clones that spontaneously

lost the URA3 plasmid pGL310. A similar approach was used for

shuffling in strains carrying the TRP1 plasmid pRS414POL3;

BP4001 transformants containing both pRS414POL3 and YC-

Figure 6. Mutational robustness of yeast, E. coli, and mice. Comparison of spontaneous per-base-pair mutation rates of wild-type (WT) and
strong mutator strains of yeast (haploid and diploid), E. coli and mouse cells. Gray boxes indicate the mutation rate intervals that coincide with the
transition from wild-type growth (leftmost boundary) to failed growth (rightmost boundary). The data for haploid yeast mutators are from Figure 5B,
with the left boundary corresponding to the mutation rate of pol3-01,E642K msh6D cells (6.561027) and the right boundary corresponding to the
lethal threshold (4.161026). The mutation rates of pol3-01,G204D msh6D, pol3-01,H879Y msh6D, and pol3-01 msh6D haploid yeast are shown as
examples of progressively stronger mutators with slow (++), very slow (+) and no-growth (–) phenotypes, respectively. The data for pol3-01/pol3-01
pms1/pms1 diploid yeast are from Morrison et al. [40]; pol3-01/pol3-01 pms1/pms1 cells divide very slowly with a growth phenotype presumably in the
range of + to ++. The mouse Pold1e/e Mlh1D/D mutation rate is extrapolated from ouabain-resistance rates of cultured Pold1+/e Mlh1D/D fibroblasts as
described in Materials and Methods; a growth phenotype between + and ++ is assumed [25]. E. coli mutation rates and growth phenotypes are from
Fijalkowska et al. [62]; mutD5(pGW1842), mutD5 and dnaQ926 exhibit slow (++), very slow (+) and no-growth (–) phenotypes, respectively. The
positions of the gray boxes for diploid yeast, mouse and E. coli are estimates based on the mutation rate and growth capacity relationships observed
in haploid yeast (Figure 5B). The error thresholds (rightmost boundaries) for diploid yeast and mouse cells are not known. The yeast wild-type rate is
the average of multiple independent determinations (data herein and [40,108,114,124]). Wild-type mouse and E. coli mutation rates are from Drake et
al. [9,114].
doi:10.1371/journal.pgen.1002282.g006
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plac111-based plasmids were selected on SC lacking tryptophan

and leucine and then plated onto SC FAA to select for clones that

spontaneously lost the TRP1 plasmid.

eex Mutant Screen
For the systematic isolation of spontaneous pol3-01,eex mutant

alleles (Figure 2C), a pol3-01 plasmid was transformed into pol3D
msh6D + pGL310 yeast, and 1–56106 cells from independent

transformants were plated separately on SC FOA. FOA-resistant

clones were isolated in the MP4 strain carrying YCplac111pol3-01

or in BP1506 carrying YCplac111pol3-01 or pRS414pol3-01. Bona

fide eex mutants were distinguished from FOA-resistant clones that

result from ura3 mutation or pol3-01RPOL3 gene conversion by

using a genotyping assay described in Text S1. pol3-01 plasmids

from individual eex mutants were recovered and reshuffled into

naı̈ve pol3D msh6D + pGL310 cells to identify suppressors

intragenic to pol3-01. Plasmids that conferred consistent survival

upon reshuffling were purified, and the pol3 genes were sequenced

(primer sequences available on request). Intragenic eex alleles thus

identified were individually re-engineered into fresh YCplac111-

POL3 and YCplac111pol3-01 vectors and re-transformed into

MP4 or BP1506 stock strains as a final confirmation of the ability

of each allele to confer the eex phenotype. The re-engineered

mutants were used to assess the effects of eex alleles on mutation

rates and plating efficiencies.

Mutation Frequencies and Rates
For the scanning mutagenesis screen (Figure S2), sequence-

verified YCplac111pol3 plasmids were shuffled into YP6 or MP4

cells immediately prior to each experiment. Twelve to thirteen

independent FOA-resistant colonies of each genotype were

streaked onto SC plates in ,1-cm patches, grown two days at

30uC, and then replica-plated to canavanine plates to qualitatively

assess mutant frequencies based on the number of canavanine-

resistant colonies [47] (Figure S2A).

To measure mutation rates at the CAN1 locus, freshly streaked

YP6 or MP4 strains were transformed with YCplac111POL3 or

YCplac111pol3 plasmids, and multiple independent transfor-

mants were shuffled on SC FOA plates to obtain well-isolated

single colonies. For each genotype, seven to eleven independent

colonies, 1–2 mm in diameter, were excised as an agar plug,

resuspended in 1 ml of dH2O, and sonicated briefly. To estimate

the number of cell divisions (Nt) during colony formation, serial

dilutions were plated on SC media, and the number of colony-

forming units was counted after two days at 30uC. To determine

the number of mutants for wild-type and weak mutator strains, all

of the remaining cells were plated on canavanine plates; for

stronger mutators, the cell suspension was diluted 1:10 to 1:200 in

dH20 prior to plating. The numbers of canavanine-resistant

colonies on each plate were scored after three to four days at

30uC.

To measure URA3 mutation rates, BP4001 was transformed

with YCplac111POL3, YCplac111pol3-01, or their respective eex

mutant derivatives. Four FAA-resistant colonies from indepen-

dent transformants with each plasmid were inoculated into

separate 100-ml SC overnight cultures. The following morning

the cultures were diluted to 1000 cells/ml and, for each of the

four isolates, 12 parallel 100-ml cultures (100 cells/culture) were

set up in 96-well microtiter plates. The plates were sealed with

adhesive PCR plate sealers (Abgene, AB-0558) to minimize

evaporation [108]. After two days of growth at 30uC, the cells

were re-suspended by vigorous vortexing, and nine of the

replicate cultures were spot-plated in 200-ml volumes on SC

FOA plates. To estimate the total number of cell divisions, the

remaining three replica cultures from each isolate were

combined, diluted, and plated on SC plates. Colony numbers

were scored after 3–4 days. We confirmed that spot plating

accurately determines the number of FOA-resistant colonies for

the strongest mutator by dividing test cell suspensions in half and

comparing colony counts in a 100-ml spot with 100 ml of the same

suspension spread over an entire SC FOA plate.

Mutation rates were determined from the number of mutant

colonies in each replica by calculating an estimate for m by

maximum likelihood [109] using newtonLD in Salvador 2.1 [110]

with Mathematica 6.0 (Wolfram Research) and dividing by the

number of cell divisions inferred from colony forming units.

Where values for Nt from independent experiments differed by

less than 2-fold, the data sets were combined for the mutation rate

calculations [109]. In some instances, Nt values from independent

experiments differed by more than 2-fold. In most cases, the

independently-derived mutation rates were similar and a single

value was reported (noted in Table 1). Confidence intervals were

calculated in Salvador 2.1 using LRIntervalLD, which relies on

likelihood ratios [110].

From these mutation rates, the efficiency of Msh6-dependent

MMR (em6), expressed as the percentage of errors corrected, was

calculated using equation 1:

em6~ Mrmsh6Dpol3-01,eex{MrMSH6Dp�ol3-01,eex

� ��

=Mrm�sh6Dpol3-01,eex

�
|100

ð1Þ

where Mr is the relative mutation rate of the strain indicated in the

subscript. The efficiency of Pol d proofreading (edexo), expressed as

a percentage of errors corrected, was calculated similarly from

equation 2:

edexo~ Mrmsh6Dpol3-01,eex{Mrmsh6Dpol3-eex

� ��

=Mrmsh6Dpol3-01,eex

�
|100

ð2Þ

CAN1 Mutation Spectra
For each strain, we isolated up to 48 canavanine-resistant

mutants from 48 independent shuffling experiments. Cells were

treated with Zymolyase (ICN Biomedicals; 50 u/ml in 10 mM

TrisNHCl/0.1 mM EDTA, pH7.5 at 37uC for 30 min then 95uC
for 10 min), and the can1 coding sequence was PCR-amplified in

50-ml reactions with Phusion polymerase (NEB) using primers

can1F1N (59-GGTTAAGATAAGTAGATAAGAGAATGATA-

CG-39) and can1S1 (59-GCGTGGAAATGTGATCAAAGG-39)

with the following PCR conditions: 98uC, 1 min.; 356 (98uC,

10 sec.; 45uC, 30 sec.; 72uC, 90 sec.); 72uC, 1 min. The samples

were treated with 5 units each of Antarctic phosphatase and Exo1

(New England Biolabs) to degrade excess primer and dNTPs,

heated at 80uC for 20 min to inactivate the enzymes, and then

sequenced with primers can1S1, can1S2 (59-CCAAAGCGC-

CAAATGCAGCAG-39), can1S3 (59-TCCAATAACGGAATC-

CAACTG-39) and can1S4 (59-GGGCAATCATACCAA-

TATGTC-39). Mutation spectra were tabulated and compared

using iMARS [111].

Per-Base-Pair Mutation Rates
Phenotypic mutation rates were converted to per-base-pair rates

using the approach of Drake [112–114] according to equations 3 –

5:
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C~ BCT=Bð Þ 64=3ð Þ ð3Þ

C’~ IzC:Bð Þ=M ð4Þ

mb~mT|C’=T ð5Þ

C and C9 (equations 3 and 4) are correction factors to adjust for

undetected (phenotypically silent) base-substitution mutations in a

reporter gene. BCT = the number of chain-terminating base

substitutions (3 possible codons), B = the number of all base

substitutions (64 possible codons), and I = the number of

insertions+deletions (indels) in representative mutation spectra

from M mutants sequenced. The mutation rate per base pair (mb) is

calculated using equation 5 from the experimentally determined

phenotypic mutation rate (mT) multiplied by the correction factor

C9 and divided by the number of base pairs in the mutation-

reporter target sequence (T). The effective target size (t) is

estimated by T / C9.

In our collection of 484 Canr mutants from proofreading- and

MMR-deficient yeast (Figure S3 and Table S2), there were 442

base substitutions (101 chain-terminating + 341 missense) and 42

indels (including infrequent complex mutations) in CAN1

(T = 1773). Thus, C = 4.87 and t = 391 base pairs. These values

from mutator yeast strains are similar to those previously

determined by others scoring spontaneous mutation in wild-type

yeast (C = 4.73, [113]; t = 236, [108]). The per-base-pair rates for

haploid yeast plotted in Figure 6 were calculated from our Canr mT

values (Table 1 and Table 2) with C = 4.87, C9 = 4.53 and

T = 1773. For diploid pol3-01/pol3-01 pms1/pms1 yeast, we used

the FOAr mutation rate (mT) of 3.5610-4 reported by Morrison

et. al. [40]; C = 8.18 (determined from the data of Lang and

Murray [108]), C9 = 6.79 and T = 804 base pairs for the URA3

target gene. Thus, t is 118 base pairs, and the per-base-pair

mutation rate of pol3-01/pol3-01 pms1/pms1 diploids at the URA3

locus is [(3.561024) 66.79 / 804] = 3.061026. In Figure 6 we

multiply this rate by 1.8 to adjust for the lower intrinsic mutation

rate of URA3 compared to CAN1 (Table 1 and Table 2 and [108]).

For mouse cells, per-base-pair mutation rates were calculated

from ouabain-resistance (Ouar) rates determined in our laboratory

using spontaneously immortalized mouse embryo fibroblasts ([25]

and unpublished data). The effective target size (t) is estimated as

follows. Base substitution mutations in any one of sixteen codons in

the Na,K-ATPase a1 gene (Atp1a1) are known to confer

genetically dominant resistance to mM concentrations of ouabain

in human cells [115]. Mouse cells, however, are naturally resistant

to mM concentrations of ouabain due to differences at 2 of these 16

codons (Q111R and N122D; [116,117]. Our fluctuation assays

were conducted with 2 mM ouabain [25], conditions expected to

only detect mutations that confer exceptionally high ouabain

resistance. We estimate the target size to be ,5 base pairs per

allele, corresponding to two Atp1a1 codons (D121 and T797)

known to effect .50-fold ouabain-resistance when mutated

[115,118]. Mouse fibroblast cell lines are typically tetraploid

[119]. Therefore t = 5 base pairs per allele64 alleles = 20 base

pairs. Pold1+/e Mlh1D/D cells, which are heterozygous defective for

Pol d proofreading and nullizygous for MMR, exhibited a

mutation rate of 6561027 Ouar mutants per cell division (95%

confidence interval = 56–7561027). This phenotypic rate corre-

sponds to a per-base-pair rate of 6561027 / 20 base pairs

= 3.361027. Mouse cells that are homozygous deficient for both

Pol d proofreading and MMR (Pold1e/e Mlh1D/D) are viable but

divide slowly up to embryonic day E9.5 [25]. Based on the relative

mutation rates of MMRD/D diploid yeast with +/- or 2/2 Pol d
proofreading alleles [40], we estimate the per-base-pair rate of

Pold1e/e Mlh1D/D mouse cells to be 561026.

Supporting Information

Figure S1 Plasmid shuffling strategy. Mutated pol3 alleles were

introduced into MSH6 and msh6D yeast by plasmid shuffling.

Haploid yeast with a chromosomal deletion of POL3 (pol3D)

complemented by a wild-type POL3–URA3 plasmid (left) are

transformed with mutant pol3–LEU2 plasmids. Individual colonies

carrying both the pol3 and POL3 plasmids are isolated (center), and

dispersed cells are then plated on 5-fluoroorotic acid (FOA) media

to select mutant pol3–LEU2 clones that lost the wild-type POL3–

URA3 vector (right).

(PDF)

Figure S2 Mutagenesis screen of the Pol d exonuclease domain.

Each allele was engineered into a wild-type POL3 vector

(YCplac111POL3) by site-directed mutagenesis and then intro-

duced into yeast by plasmid shuffling (see Figure S1). Independent

FOA-resistant colonies were patched onto synthetic complete (SC)

plates and then replica-plated to SC plates lacking arginine and

containing canavanine (60 mg/ml) to assess mutator phenotypes

[47]. A) Representative canavanine plates used to assess mutator

phenotypes. Each plate has twelve or thirteen patches of cells

derived from independent colonies of the indicated genotypes.

Spontaneous canavanine-resistant (Canr) mutants appear as small

colonies in the ,1-cm patches. Mutant frequencies were

qualitatively judged from the lowest (wild type, WT) to highest

(pol3-G400A msh6D) as indicated by –, +, ++ and +++ scores. B)

Summary of POL3 alleles and corresponding mutator and growth

phenotypes in MSH6 and msh6D cells.

(PDF)

Figure S3 Spontaneous CAN1 mutations from pol3-01,eex msh6D
cells. The can1 coding sequences from 30–48 independent

canavanine-resistant (Canr) mutants of each strain were PCR-

amplified and sequenced. Spontaneous mutations identified in

different strains are color coded according to the key at the

bottom. Each base letter above the wild-type CAN1 sequence

indicates the site and nature of an independent base substitution or

frameshift (+ or -) mutation. CAN1 sequences involved in complex

mutations are indicated by horizontal colored lines. Multiple

mutations identified in can1 from the same mutant clone are

designated by the same superscript in the same color code. We

observed mutation hotspots in CAN1 that arose in multiple

independent Canr clones. One hotspot, a C to T mutation at nt

899, occurred in eight independent pol3-01,K891T Canr clones.

Two of the eight mutants had a second mutation elsewhere in the

CAN1 sequence, unambiguously identifying each clone as unique.

This suggests that the abundance of mutations at this site is

unlikely to be an artifact. One Canr POL3 msh6D mutant (not

shown) contained an insertion/deletion mutation that was evident

by a larger PCR product; sequencing with nested CAN1-specific

primers revealed an insertion containing the gene RRP45.

(PDF)

Figure S4 Similar cell morphologies in yeast after error

extinction or repression of essential genes. Black bars: terminal

cell morphologies of pol3-01 pms1D haploid cells that ceased

growing due to error extinction [40]. White bars: cell-cycle arrest

phenotypes of 563 haploid strains, each with a different repressed

essential gene [59]. In the repression study, 82 additional essential
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genes showed a growth defect but with no defined cell-cycle arrest

phenotype.

(PDF)

Figure S5 eex amino-acid substitutions near the template

nucleotide in Pol d. Schematic of the a-carbon backbone of Pol

d with residues of interest depicted as space-filling spheres.

Structural elements are color-coded as in Figure 4 with the

templateNdNTP (T0P0) and polymerase active-site residues shown

as CPK sticks. Amino acids changed by eex mutations are shown as

light blue spheres and labeled to indicate the eex substitutions.

Residues V546, G555, I558, and Q563 from the amino domain

are in three closely associated a-helices that bind the template and

buttress the fingers domain. The exo domain has been removed

for clarity, and the penultimate T1P1 base-pair (brown and gold

spheres) is included to delineate the binding pocket. Panel (A) is a

view looking down on the DNA major groove. Panel (B) is the

same image rotated 90u around the x-axis. The T1P1 base-pair was

removed in Panel (B) to reveal positions of amino-acid substitu-

tions around the templateNdNTP. Structure from [74] (Protein

Data Bank accession code 3IAY).

(PDF)

Figure S6 eex amino-acid substitutions in the exonuclease

domain of Pol d. The exo domain (red) is shown as a schematic

of the a-carbon backbone, and exonuclease active-site residues are

gray CPK sticks. Amino acids changed by eex mutations are shown

as light blue spheres and labeled to indicate the eex substitutions.

The red dotted line corresponds to a missing loop in the structure

(amino acids 491–496). The b-hairpin in T4 and RB69 pols affects

partitioning of the primer between polymerase and exonuclease

active sites [4]. Structure from [74] (Protein Data Bank accession

code 3IAY).

(PDF)

Table S1 Genotypes of candidate eex mutants.

(PDF)

Table S2 Types of spontaneous CAN1 mutations in pol3-01,eex

msh6D strains.

(PDF)

Table S3 Yeast strains.

(PDF)

Table S4 Construction of chromosomal gene disruptions.

(PDF)

Text S1 Supplementary methods.

(PDF)
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