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Adiabatic quantum state transfer in a
semiconductor quantum-dot spin chain
Yadav P. Kandel 1, Haifeng Qiao 1, Saeed Fallahi2,3, Geoffrey C. Gardner3,4, Michael J. Manfra 2,3,4,5 &

John M. Nichol 1✉

Semiconductor quantum-dot spin qubits are a promising platform for quantum computation,

because they are scalable and possess long coherence times. In order to realize this full

potential, however, high-fidelity information transfer mechanisms are required for quantum

error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-

state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically

modifying exchange couplings, we transfer single- and two-spin states between distant

electrons in less than 127 ns. We also show that this method can be cascaded for spin-state

transfer in long spin chains. Based on simulations, we estimate that the probability to cor-

rectly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the

experimental parameters studied here. In the future, state and process tomography will be

required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the

classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors.

This method will be useful for initialization, state distribution, and readout in large spin-qubit

arrays for gate-based quantum computing. It also opens up the possibility of universal

adiabatic quantum computing in semiconductor quantum-dot spin qubits.
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Progress toward fabrication of large spin-qubit arrays1,2,
together with methods for orthogonal control of quantum-
dot chemical potentials2–4, inter-dot tunnel couplings5–9,

and nearest-neighbor exchange couplings10, have opened up the
possibilities of implementing complex multi-qubit quantum
operations11,12 in semiconductor quantum-dot spin qubits. To
tap the full potential of these developments, and to realize a large-
scale fault-tolerant quantum computer, high-fidelity information
transfer mechanisms between qubits are required. Since
quantum-dot spin qubits naturally interact through the nearest-
neighbor Heisenberg exchange-coupling, long-distance inter-
qubit coupling is challenging. Quantum information transfer has
been achieved in spin qubits by electron shuttling using electrical
pulses3,13–15, mechanical waves16, spin SWAP operations11,17,
and quantum mediators18,19. These methods, elegant as they are,
have their limitations, often including stringent pulse-timing
requirements. In this work, we report evidence for the successful
experimental implementation of adiabatic evolution methods to
achieve quantum information transfer in a chain of four quan-
tum-dots. Compared to conventional pulsed information transfer
methods, adiabatic techniques are more robust to pulse errors
and system noise.

Adiabatic quantum information processing in arrays of spin
qubits has been the focus of intense theoretical research20–29, due
to the possibility of high-fidelity operations in the presence of
noise or pulse errors. Adiabatic shuttling of spin states has been
already demonstrated via electron shuttling3,13–15. Here, we
present evidence for adiabatic quantum-state transfer (AQT) of
both single-spin eigenstates and two-spin singlet states in a GaAs
quadruple quantum-dot device. Unlike previous works, this
approach does not involve the physical motion of electrons.
Specifically, we design a time-dependent Hamiltonian for a linear
chain of three electron spins. As the spins evolve under the action
of the Hamiltonian, an initial state of the first spin is transferred
to the third spin. This process is closely related to stimulated
adiabatic Raman passage, a time-honored technique from the
optical physics community30, which has been implemented in
other qubit platforms30–33. Also, the process we use is identical to
adiabatic quantum teleportation21,24. We show that the AQT
process can be cascaded to transfer spin states across a longer
spin chain.

We simulate our experiments, taking into account known
sources of errors and noise (see “Methods”), and we find that the
results of our simulations closely match the experimental data.
Based on those simulations, we estimate that the probability to
correctly transfer a single-spin eigenstate or a two-spin singlet
state can exceed 0.95, in operation times of <127 ns. In lieu
of full quantum-state tomography, which would require a
micromagnet34 or an antenna35 for magnetic resonance, we
implement different quantum gates to assess the spin states after
AQT. In the future, state and process tomography will be
required to verify the AQT performance. The main limiting factor
of the AQT fidelity in our experiment is the nuclear hyperfine
noise in the GaAs/AlGaAs heterostructure, which gives rise to a
fluctuating magnetic-field gradient between dots. In Si devices, we
expect that high-fidelity transfer of arbitrary single-qubit states
could easily be achieved (see “Methods” and Supplementary
Information)24,36.

Results
Device. Our quadruple quantum-dot device with overlapping gates
is fabricated in a GaAs/AlGaAs heterostructure [Fig. 1a]1,37. Two
additional dots above the main array are configured for readout via
rf-reflectometry38. We divide the quadruple quantum dot array into
two pairs for initialization and measurement. Dots 1 and 2 form the

“left” side and dots 3 and 4 form the “right” side. We measure the
left and right pairs in the two-electron singlet/triplet basis using
Pauli spin blockade together with a shelving mechanism39. The
singlet is Sj i ¼ 1ffiffi

2
p "#
�� �� #"

�� �� �
, and the triplets are T0

�� � ¼
1ffiffi
2

p "#
�� �þ #"

�� �� �
, Tþ�� � ¼ ""

�� �
, and T�j i ¼ ##

�� �
. The device is

operated at the symmetric tuning40,41, where each dot contains one
electron, and all chemical potentials are roughly the same. We
independently control the exchange couplings between dots using
the techniques described in ref. 10. The state preparation and readout
are further described in “Methods”.

The linear chain of spins with time-dependent nearest-
neighbor exchange couplings in our device can be modeled using
the Heisenberg model, and the Hamiltonian is

HðtÞ ¼ h
4
∑
3

i¼1
Ji tð Þσ i � σ iþ1 þ

h
2
∑
4

i¼1
Bz
i σ

z
i ; ð1Þ

where Ji(t) is the nearest-neighbor exchange interaction between
spins in quantum dots i and i+ 1 at time t, and Bz

i is the z-
component of the magnetic field at the location of dot i. Both Ji
and Bz

i have units of frequency. σ i ¼ ½σxi ; σyi ; σzi � is the Pauli vector
operating on spin i, and h is the Planck constant. Bz

i accounts for
both the external field of 0.5 T applied to polarize the spin states
and the local hyperfine field (see “Methods”). Because the x- and
y-components of the hyperfine field are negligible compared to
the external magnetic field, they are omitted in the second term of
this Hamiltonian.

Adiabatic quantum-state transfer. To implement adiabatic spin-
state transfer, we initialize the spin chain in the state S12#3"4

�� �
or

S12"3#4

�� �
. Dots 3 and 4 contain spins in the #3"4

�� �
or "3#4

�� �
configuration depending on the sign of the hyperfine gradient
associated with dots 3 and 442,43.

Once the spin chain is initialized, we set [J1(t), J2(t), J3(t)]=
Jmax[1− t/T, t/T, 0] for 0 < t < T, with Jmax= 120MHz. Note that
the initial state discussed above is an eigenstate of H(0) when
J1ð0Þ � Bz

2 � Bz
1

�� ��. Figure 2 shows the time-dependent
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Fig. 1 Experimental setup. a False-color scanning electron micrograph of a
quadruple quantum-dot device similar to the one used in the experiment.
The quantum dots are located in 2DEG below the positions marked by
circles. Voltages applied to three layers of metal gates (brown, red, and
blue) create the quantum-dot confinement potentials. A top gate, which is
not present in this figure, covers the active area of the device. b Schematic
showing the changes in the quantum-dot barrier heights for an AQT
process that transfers the state of spin 3 to spin 1. This process also
transfers the state of spins 1–2, which are in an eigenstate of exchange,
to 2–3.
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eigenvalues of the three-spin analog of this Hamiltonian for a
related configuration of exchange couplings. When H(t) changes
adiabatically, and because H(t) conserves both the total angular
momentum and the z-component of angular momentum, Sz, a
particular eigenstate at t= 0 is mapped to an eigenstate with the
same Sz at time t= T. In particular, an initial state of spins 1–3,
S12#3j i, transitions to #1S23j i, as shown in Fig. 2. Likewise, S12"3j i
transitions to "1S23j i. One can view this process as transferring
the state of dot 3 to dot 1, while simultaneously transferring the
joint spin state of dots 1–2, which is a singlet state, to dots 2–3. In
principle, AQT can transfer an arbitrary spin state of dot 3 to dot
1. As we discuss further below, AQT can transfer two-spin states
in addition to singlets, although it generally performs best if spins
1 and 2 are configured as a singlet. Figure 1b illustrates the
physical implementation of this AQT process.

To measure the spin states after the AQT process, we apply
SWAP operations11 between spins 3–4 and 2–3, in this order, to
bring the singlet state to the right pair and the product state to the
left pair of spins before measurement [Fig. 3a]. We measure the
left pair by adiabatic projection and the right pair by diabatic
projection onto the singlet/triplet basis42,43. Diabatic projection
preserves the singlet state, and adiabatic projection maps either
"#j i or #"j i to the singlet, and all other states to the triplets,
depending on the sign of the hyperfine gradient (see
“Methods”)42,43.

Effects of the nuclear hyperfine gradient. Since the initial pro-
duct state of the left pair is eventually measured in the right pair,
knowledge of the magnetic-field gradients in both pairs is
required for proper interpretation of the experimental data. We
define f ¼ sign ðBz

2 � Bz
1Þ ´ sign ðBz

4 � Bz
3Þ. When f=+1, both

pairs have gradients of the same sign, and when f=−1, the pairs
have gradients with opposite signs. To measure f, we initialize
both sides as product states with Sz= 0. Then, we evolve
spins 2–3 under exchange coupling for variable amount of time.

When f=+1, corresponding to initial states "1#2"3#4

�� �
or

#1"2#3"4

�� �
, prominent exchange oscillations are visible. When

f=−1, corresponding to initial states #1"2"3#4

�� �
or

"1#2#3"4

�� �
, spins 2 and 3 have the same orientation, and no

exchange oscillations occur. We interleaved these measurements
of f with measurements of the AQT process to distinguish the f=
±1 cases.

Figure 3c, d shows the results of the experiment described by
the circuit of Fig. 3a for the f=+1 and f=−1 cases, respectively.
Calculated outcomes for the ideal cases, and simulation results
taking into account all known sources of noise and errors, are
overlaid on top of the data. The simulation results match the
measurements in both cases (see “Methods”). In Fig. 3c, d, the
gradual rise in the return probability with T occurs because for
small values of T, the process is not sufficiently adiabatic. At large
values of T, the return probabilities saturate, suggesting successful
adiabatic transfer. The predicted oscillations in the return
probability at small values of T are related to resonant adiabatic
transfer24, which we discuss further below.

Each data point in Fig. 3 is averaged over 512 single-shot
measurements for each value of T. We repeat this sequence of 512
single-shot measurements 256 different times. Each repetition
takes no more than one second to acquire, and the hyperfine
gradients and the value of f are empirically quasi-static during
each repetition. Different repetitions were thus used for the f=
+1 and f=−1 cases shown in Fig. 3. The full dataset, which
includes all repetitions, is shown in Supplementary Fig. 3. We
display single repetitions here, because the approximately
constant value of the hyperfine field during a single repetition
enables accurate simulation.

As discussed further in “Methods”, the sign of f changes on a
timescale ranging from seconds to tens of seconds, and typical
gradient strengths are on the order tens of MHz. These values are
consistent with previous estimates of nuclear spin diffusion times
and rates in GaAs double quantum dots44,45.

Coherent evolution after AQT. To further assess the AQT, we use
additional quantum gates to test the spin states. First, we transfer
the spin states as described above with Jmax= 120MHz and T=
127 ns. Then, we perform the SWAP gates discussed previously. In
the case of successful state transfer, the initial product state of spins
3–4 occupies spins 1–2, and the initial singlet state of spins 1–2
occupies spins 3–4. Then, we induce exchange coupling J between
spins 1 and 2 for a variable amount of time. The measured singlet-
return probability of spins 1 and 2 will contain an oscillatory
component of the form PSðtÞ ¼ A cosð2πJt þ θÞ, when the joint
state ψ

�� � of those spins has a component of the formffiffiffiffiffiffi
2A

p
cosðθ=2Þ "#

�� �þ i sinðθ=2Þ #"
�� �� �

, when Bz
1>B

z
2, and where

0 ≤A ≤ 1/2. In the language of singlet-triplet qubits, exchange
oscillations will occur if the joint spin-state has a component in the
x–y plane of the Bloch sphere, where the z axis is defined by the
exchange coupling. When A ≈ 1/2 and θ ≈ 0, we infer that ψ

�� � has a
large component along "#

�� �
. When θ ≈ π, we infer that ψ

�� � has a
large component along #"

�� �
.

We also allow spins 3 and 4 to evolve for a variable length of
time in the presence of a hyperfine gradient while separated. In
this case, the measured singlet-return probability of spins 3 and 4
will contain an oscillatory component of the form
PSðtÞ ¼ A cosð2πðBz

4 � Bz
3Þt þ θÞ, when their joint state ψj i has

some overlap with a state of the form
ffiffiffiffiffiffi
2A

p
cosðθ=2Þ Sj iþð

i sinðθ=2Þ T0
�� �Þ, where 0 ≤A ≤ 1/2. In the language of singlet-

triplet qubits, singlet-triplet oscillations will occur if the joint
spin-state has a component in the y–z plane of the Bloch sphere,

t/T
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Fig. 2 Eigenstates of the time-dependent three-spin Heisenberg
Hamiltonian with [J1(t), J2(t)]= Jmax [1− t/T, t/T] for 0 < t < T. Bz is the
uniform magnetic field. The eigenstates at the initial and final times are
labeled. Adiabatic state transfer can occur by initializing the system in
either the Eþ1=2

� or E�1=2
� states. Here, the superscript is z-component of the

spin angular momentum (Sz), and subscripts denote different eigenstates
within a particular Sz subspace.
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where the x axis is defined by the hyperfine gradient. When A ≈ 1/
2 and θ ≈ 0, we infer that ψj i has a large component along Sj i.

The results of these experiments are shown in the insets of
Fig. 3c, d. The presence of large-amplitude oscillations on both
sides with the expected phases provides further evidence of
successful transfer of both spin-up and spin-down eigenstates
from spin 3 to 1 and a singlet state from spins 1–2 to 2–3 during
the AQT process. Note that the exchange oscillations of spins 1–2
have different phases for f= ±1, as expected.

Our data provide strong evidence that both single-spin
eigenstates and two-spin singlet states, which are also eigenstates
of the exchange operator, are correctly transferred by the AQT
process. Figure 3c, d provide evidence that spin eigenstates can be
transferred from dot 3 to dot 1. The transfer of the singlet state
can be viewed as the corresponding process that transfers the
state of dots 1–2 to 2–3. The coherent evolution of the singlet
state after the AQT process provides evidence of its successful
transfer. In the future, as discussed further below, complete state
and process tomography will be required to assess the
performance of AQT for arbitrary quantum states.

Relationship to counterintuitive adiabatic transfer. The AQT
sequence described above, which transfers the state of dot 3 to dot
1, partially resembles the “counterintuitive” adiabatic transfer
sequence used in optical systems24,30. The sequence of Fig. 3a
transfers a spin state from dot 3 to dot 1, yet the sequence begins
with a strong exchange coupling between dots 1 and 2, neither of
which contains the state to be transferred.

However, a true counterintuitive adiabatic process relies on the
existence of a “dark state,” which contains no excitation of the
intermediate state. In the present case, the desired dark state
would feature no evolution of the second spin in a three-spin
chain. Although it is possible to create a dark state in a spin chain
with an XX (Ising) coupling24, the dark state does not occur for
the general case of an exchange-coupled (Heisenberg) spin
chain24. However, specific combinations of the exchange
couplings and magnetic-field differences between dots can yield
a true counterintuitive adiabatic sequence24,36.

In general, it is possible to implement the AQT process
described above with spins 1 and 2 configured as any eigenstate of
the exchange operator, including either of the polarized triplet

states, which do not evolve under exchange coupling. However, as
Fig. 2 shows, many of the configurations involving other
eigenstates of exchange pass through degeneracies at the
beginning and the end of the time evolution, complicating the
transfer process. We return to this point below when we estimate
the fidelity of the AQT process.

AQT cascade. The AQT process described above transfers spin
states among three electrons. We now show that AQT processes
can be cascaded to enable long-distance state transfer. We use two
AQT steps in a chain of four spins [Fig. 4a]. We initialize the spin
chain in the state S12#3"4

�� �
(or S12"3#4

�� �
). In the first AQT, we

set [J1(t), J2(t), J3(t)]= Jmax[1− t/T, t/T, 0] for 0 < t < T, where
Jmax= 120MHz and T ranges from 0 to 127 ns [Fig. 4b]. In the
adiabatic limit, the spin state from spin 3 transfers to spin 1, and
the singlet state in spins 1–2 transfers to spins 2–3 so that the
state of the spin chain becomes #1S23"4

�� �
(or "1S23#4

�� �
). In the

second AQT step, we set [J1(t), J2(t), J3(t)]= Jmax[0, 1− t/T, t/T]
for 0 < t < T. In the adiabatic limit, this process transfers the spin
state of spin 4 to spin 2, and the singlet state in spins 2–3 transfers
to spins 3–4 so that the final state of the spin chain becomes
#1"2S34
�� �

(or "1#2S34
�� �

). We measure the left and right pairs as
before.

Figure 4c, d show the cases for f=+1 and −1, respectively.
Even though the data of Fig. 4c, d involve two AQT steps, the
maximum transfer probability appears higher than the data of
Fig. 3c, d, which involve one AQT step and two SWAP gates. We
attribute this difference to the relative insensitivity of the AQT
process to noise and pulse errors, as compared to the SWAP
gates. This difference highlights the robustness and potential
usefulness of AQT in quantum-dot spin chains. Our simulations
agree with our measurements.

As before, we induce exchange between spins 1–2 and singlet-
triplet evolution between spins 3–4 following the state transfer. The
data from these measurements are shown in the insets of Fig. 4c, d.
The presence of prominent oscillations with the expected phases in
both cases provides further evidence of successful transfer of single-
spin eigenstates and two-spin singlet states.

As in Fig. 3c, d, the data of Fig. 4c, d show oscillatory features
at small values of T, which are related to resonant adiabatic

P
S P

S

Q1

Q2

Q3

Q4

ST

AQT

t/T
0

0

Jmax
J J

1

0

0.4

0.6

0.8

1

P
S

0.2

0

0.4

0.6

0.8

1

P
S

0.2

T (ns)
0 32 64 96

T (ns)
0 32 64 960.5

ideal simulation data ideal simulation data
dca

b

f = -1f = +1PS
L PS

R PS
L PS

R

Gate time (ns)  
0 32

0
0.3
0.6

Gate time (ns)  
0 32

0
0.3
0.6

Fig. 3 Three-spin AQT. a Quantum circuit diagram for the experiment. The spin chain is initialized as S12#3"4

�� �
and the AQT implemented in spins 1–3

transfers the state of spin 3 to spin 1 and the singlet state in spins 1–2 to spins 2–3. Then, spins 3–4 and 2–3 are swapped, in this order. We then measure
the left pair ðPLSÞ and the right pair ðPRSÞ in the singlet/triplet basis via Pauli spin blockade. The colors represent the physical locations of the initial states.
b Change in exchange-coupling strengths between qubits for the AQT step in (a). Here, T is the Hamiltonian interpolation time and 0 < t < T. c Singlet-
return probabilities of the left and right pairs as a function of interpolation time T for f=+1. d Same as (c), but for f=−1. In both (c) and (d), the expected
outcomes under ideal conditions (dotted lines) as well as simulated results including known errors and noise (dashed lines) are overlaid on top of the
measured data (solid lines). The insets in (c) and (d) show exchange oscillations in spins 1–2 and S− T0 oscillations in spins 3–4 after the experiment
described in (a). “Gate time” refers to these oscillation times. The presence of exchange oscillations in spins 1–2 and S− T0 oscillations in spins 3–4
provides evidence of the successful adiabatic transfer. Each data point represents the average of 512 single-shot measurements.
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quantum-state transfer24. These resonances in the non-adiabatic
limit provide a shortcut to adiabatic quantum-state transfer. In
the present experiment, effects associated with the hyperfine
gradient broaden and reduce the overall height of the resonant
peaks. We expect that resonant adiabatic transfer should work
better in Si spin qubits, where nuclear spin effects are suppressed.

To further explore effects associated with the speed of the
state transfer, we plot measurements of the cascaded AQT
probability as we vary T and Jmax (Fig. 5). We find that
increasing Jmax or T both correlate with higher transfer
probability. This is expected, because the condition for adiabatic
transfer is JmaxT/ℏ≫ 124. We also observe prominent features
associated with resonant adiabatic transfer, especially at low
values of T. Although harnessing resonant adiabatic transfer
requires more precise control pulses than adiabatic transfer, it
provides a route to distant state transfer in shorter times than
adiabatic transfer.

Fidelity estimate. Although we have not performed state tomo-
graphy to definitively assess the AQT performance, we may
estimate its fidelity as follows. The simulations presented in
Figs. 3, 4, and 5 take into account state preparation and mea-
surement (SPAM) errors, as well as hyperfine noise, low-
frequency charge noise, high-frequency charge noise, and pulse
imperfections. The levels of average hyperfine fields and their
fluctuations are chosen to replicate the observed coherence of
singlet-triplet oscillations in our device. The magnitude of the
low-frequency exchange-coupling noise is chosen to replicate the
observed exchange-oscillation quality factors in our device. We
have also included white high-frequency charge noise (see
“Methods”). The simulations show good quantitative agreement
with our data.

To estimate the probability of correctly transferring a single-
spin eigenstate via a single AQT process, we simulate a three-spin
system in the initial state ψ0

�� � ¼ S12ϕ3
�� �

, where ϕj i is a single-
spin eigenstate. We numerically evolve this state in time under
the AQT Hamiltonian with Jmax= 120MHz (see “Methods”) to a
final state jψf i. We include noise and pulse errors in this
simulation. We neglect SPAM errors in this calculation to
assess the performance of the AQT operation itself. For each
instance of the simulation, we trace out spins 2 and 3 from the
final state to obtain a reduced density matrix for spin 1: ρf,1.

Setting ρi;1 ¼ ϕj i ϕh j, we compute the state fidelity as f 1 ¼
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρf ;1
p ρi;1

ffiffiffiffiffiffiffiρf ;1
pp� �h i2

. To estimate a transfer probability for

single-spin eigenstates, we average the resulting state fidelity over
different charge-noise and hyperfine-noise configurations and
over initial states in the set ϕj i ¼ f "j i; #j ig. To ecompute a
transfer fidelity for the singlet state, we trace out spin 1 to
establish a reduced density matrix for spins 2 and 3: ρf,23. Setting
ρi;23 ¼ Sj i Sh j, we compute the fidelity f23 as above (see
“Methods”).

Table 1 lists some of the results of these calculations. We find
that both simulated probabilities exceed 0.95 for the experimental
parameters studied here (single-spin T�

2 � 18 ns and exchange
quality factor Q ≈ 20). Note that the experimentally observed
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Fig. 4 AQT Cascade. a Quantum circuit diagram for the experiment. We initialize the spins as S12#3"4

�� �
. Applying two AQT steps transfers the product

state of spins 3–4 to 1–2, and the singlet state of spins 1–2 to spins 3–4. b Exchange-coupling parameters as a function of time for the AQT steps shown in
(a), where T is the Hamiltonian interpolation time and 0 < t < T. c Singlet-return probabilities for the left pair ðPLSÞ and the right pair ðPRSÞ when f=+ 1.
d Data for f=−1. Simulations neglecting and including known sources of error are overlaid in each panel. The insets in (c) and (d) show prominent
exchange oscillations between spins 1–2 and singlet-triplet oscillations associated with spins 3–4, after the AQT cascade described in (a), providing
evidence of successful transfer of spin states. Each data point represents the average of 256 single-shot measurements.
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probabilities are lower than this, as a result of SPAM errors. For
example, the experimentally observed probability to measure a
singlet in the right pair after two AQT steps, each with T= 100
ns, is about 0.9, as shown in Fig. 4. Based on additional
measurements and simulations, we estimate that the state
preparation fidelity associated with separated singlets or product
states exceeds 0.95. We estimate that the charge-transfer sequence
we use to implement a Pauli spin-blockade measurement has a
fidelity of 0.94. The readout itself is characterized by fidelities
associated with detector noise of 0.99 for the left pair and 0.95 for
the right pair. Relaxation during readout contributes additional
errors for excited states of 0.08 and 0.12 for the left and right
pairs, respectively. Further details on SPAM errors are given in
“Methods”.

We may extend this calculation to compute the expected
transfer probability for single-qubit superposition states. We
compute the transfer probability for ϕj i ¼ 1ffiffi

2
p ð "j i þ #j iÞ, as

shown in Table 2. We calculate that the probability to transfer
this state from spin 3 to spin 1 can exceed 0.7, provided that spins
1 and 2 are initialized as Sj i. We calculate a similar probability for
the other equal-superposition states. When spins 1 and 2 are
initialized in states other than Sj i, the transfer probability is lower
(see Supplementary Information).

We can also assess the expected transfer probability for the
different states of spins 1 and 2, including the eigenstates of the
exchange operator. In this case, we define an initial state of the
three-electron system as π12ϕ3

�� �
, where πj i is a two-spin state.

Supplementary Fig. 8 displays calculations of the transfer
probabilities for different states πj i. In general, the singlet state
undergoes the highest-probability transfer. The origin of this
advantage is evident in Fig. 2. States containing the singlet are not
degenerate with other states at any point during the evolution.

Finally, we may also simulate the process fidelity for
transferring single-spin states via AQT. For electron spins in
GaAs, the maximum simulated process fidelity to correctly
transfer a single-spin state from dot 3 to dot 1 is about 0.7 at a
total time of about 15 ns. This simulation agrees with the transfer
probabilities listed above. It is not meaningful to ascribe a process
fidelity for the transfer of the two-spin state, because AQT
requires that the remaining two spins are in an eigenstate of
exchange coupling at the beginning and end of the AQT. Spins 1
and 2 in the experiment of Fig. 3a cannot, for example, have an
arbitrary two-qubit state, similar to the requirement for an
entangled state in conventional teleportation.

The primary limiting factor in these probabilities for GaAs
quantum dots is the nuclear hyperfine gradient. First, the
magnetic gradient limits the fidelity of the singlet state

preparation. Second, a static magnetic gradient will tend to
decrease the energy gaps in the system, requiring a slower pulse,
or lowering the overall transfer fidelity for a pulse of the same
speed (see Supplementary Information). Third, hyperfine fluctua-
tions that quasistatically increase the magnetic gradients will also
tend to decrease the adiabaticity during the pulse and lower the
fidelity.

In Si spin qubits, where nuclear hyperfine fields are suppressed,
we expect that AQT can enable high-fidelity transfer of arbitrary
states (see Supplemental Material for further information on
experimental procedures, calculations, and simulations)24,36. For
example, when T�

2>1 μs for single-spins, as is the case in
isotopically purified Si, we simulate that transfer probabilities
can exceed 0.99 for arbitrary single-qubit states (Tables 1 and 2)
(see Supplementary Information). We simulate that process
fidelities for single-spin transfer in Si quantum dots can
exceed 0.995.

The AQT fidelity in our experiment is also affected by
exchange-coupling calibration errors and charge noise, and this
limitation will become more important in Si quantum dots. Our
current method of exchange-coupling control lets us set the
couplings with an accuracy of about 10MHz10. Although we
intend to ramp the exchange couplings linearly, errors in our
exchange-coupling calibration can cause slight deviations from a
linear ramp. In the future, more accurate modeling and control of
exchange couplings should enable higher-fidelity state transfer.
High-frequency charge noise can also have a similar effect. These
deviations can reduce the overall fidelity, especially if the
couplings are ramped more quickly than intended. We predict
that high-frequency charge noise will be the limiting factor for
AQT fidelities in Si quantum dots. The levels of quasi-static low-
frequency charge noise in quantum dots have minimal effect on
AQT, which is robust against small changes to the beginning and
ending exchange-coupling values.

Discussion
Our experiments show that AQT is a promising tool for
quantum-state transfer in semiconductor quantum-dot spin
chains. Unlike methods for state transfer based on shuttling, AQT
involves transferring quantum states without moving the qubits
themselves, simplifying the process.

Exchange-based SWAP gates can also transfer spin states
without moving electrons11,17. The simulation results shown in
Table 1 indicate that AQT is more effective than a sequence of
SWAP gates at transferring both eigenstates and spin singlets for
the range of experimental parameters studied here. In particular,
the SWAP sequence is vulnerable to errors associated with evo-
lution of the singlet state in a magnetic gradient, although this

Table 1 Simulated probability of incorrectly transferring
either a single-spin eigenstate (1− f1) or a singlet state
(1− f23) in a chain of three spins starting from the initial
state S12"3

�� �
using AQT or SWAP gates.

T�
2 ¼ 18 ns,

Q= 20
T�
2 ¼ 1000 ns,

Q= 20
T�
2 ¼ 1000 ns,

Q= 100

1− f1 1− f23 1− f1 1− f23 1− f1 1− f23
AQT 1 × 10−2 3 × 10−2 1 × 10−3 2 × 10−3 6 × 10−5 1 × 10−4

S12S23 3 × 10−2 1 × 10−1 7 × 10−3 1 × 10−2 5 × 10−3 7 × 10−3

The sequence of SWAP gates that replicates the AQT is S12S23, where Sij indicates a SWAP
between spins i and j. The single-spin T�

2 and exchange quality factors Q are listed for three
different cases. The case of T�

2 ¼ 18 ns and Q= 20 approximately corresponds to the
experimental parameters studied here. T�

2 ¼ 1000 ns and Q= 20 correspond to what could
likely be obtained in isotopically purified Si spin qubits. T�

2 ¼ 1000 ns and Q= 100 correspond
to a significant reduction in both magnetic-field and charge noise over the experimental
parameters studied here. In all cases, the errors associated with the AQT process are lower than
the errors associated with the SWAP process. All values are rounded to one significant figure.

Table 2 Simulated probability of incorrectly transferring a
single-spin superposition state (1− f1) and a singlet state
(1− f23) in a chain of three spins starting from the initial
state 1ffiffi

2
p S12ð" þ #Þ3
�� �

using AQT or SWAP gates.

T�
2 ¼ 18 ns,

Q= 20
T�
2 ¼ 1000 ns,

Q= 20
T�
2 ¼ 1000 ns,

Q= 100

1− f1 1− f23 1− f1 1− f23 1− f1 1− f23
AQT 2 × 10−1 3 × 10−2 2 × 10−3 2 × 10−3 8 × 10−4 1 × 10−4

S12S23 5 × 10−2 1 × 10−1 7 × 10−3 1 × 10−2 5 × 10−3 7 × 10−3

The single-spin T�
2 exchange quality factors Q are listed for the same three cases as above. In

general, the AQT errors are lower than errors associated with SWAP gates, except when
T�
2 ¼ 18 ns. In this case, the duration of the AQT significantly exceeds T�

2. All values are rounded
to one significant figure.
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evolution can in principle be corrected for via additional gates11.
Table 1 also suggests that the fluctuating hyperfine field is the
dominant source of error, for both AQT and SWAP sequences,
compared with exchange-coupling noise resulting from
charge noise.

In the case of superposition states, both AQT and the SWAP
sequence are not very effective when T�

2 � 18 ns, as is the case in
the experiments discussed here. In this case, AQT performs more
poorly than the SWAP sequence, because the total duration of the
AQT exceeds the T�

2 time, in contrast to the SWAP sequence,
which takes about 10 ns. A related challenge for the transmission
of superposition states via AQT is the phase accrued during the
relatively long gate times, if the quantum dots have different
Zeeman splittings. This scenario can occur, for example, when
micromagnets are used. However, this challenge can be solved
with careful pulse calibration17. (The simulations presented in
Tables 1 and 2 were conducted with zero mean magnetic field in
each dot to remove this constant phase.) We expect that in iso-
topically purified Si, superposition states can be transferred with
high probability via AQT36. In fact, our simulations indicate that
AQT is more effective than SWAP gates at transferring super-
position states in this case. We hypothesize that both high-
frequency charge noise and residual errors due to hyperfine
gradients are limiting factors for the short SWAP gates.
Encouragingly, the essential elements of the AQT process,
including barrier-controlled exchange coupling40,46 and Pauli
spin-blockade readout47,48 are now common in Si spin qubits.

In the future, state and process tomography, both requiring
single-spin control and readout, will be required to definitively
assess the performance of AQT for arbitrary qubit states. In
particular, demonstrating an average single-qubit state transfer
probability above the classical bound of 2/349, or a process fidelity
above 1/250, would verify the quantum-mechanical nature of this
process. Measurements in addition to those presented here, which
involve single-spin eigenstates, are needed to verify the quantum
nature of the AQT process.

The AQT method implemented here is a highly robust method
for the transfer of spin eigenstates and singlets in GaAs semi-
conductor quantum-dot arrays. The transfer of spin eigenstates is
essential for readout in spin chains, and given the critical
importance of spin singlets for various quantum information
processing tasks, such as teleportation12 and superexchange51,52,
it is likely that state transfer via both AQT and SWAP gates will
find use in spin-based quantum computing algorithms. We also
expect that AQT will enable the high-fidelity transfer of arbitrary
single-qubit states in Si spin qubits. However, the AQT process
takes about ten times longer than a sequence of SWAP gates.
Furthermore, while AQT transfers single-spin states between
next-nearest-neighbor dots, SWAP gates transfer spin states
between nearest-neighbor dots. From this point of view, the
strengths of AQT complement the strengths of state transfer via
SWAP gates.

To conclude, our measurements provide evidence for adiabatic
quantum-state transfer of both single-spin eigenstates and two-
spin singlet states. We have also shown that the AQT protocol
can be cascaded for efficient and robust quantum information
transfer in a chain of semiconductor quantum-dot spin qubits.
We believe that AQT will enable quantum-state transfer in long
chains of spin qubits for initialization, operation, and measure-
ment in gate-based quantum computing architectures. An excit-
ing prospect for future work is to harness many-body quantum
states for direct, long-distance AQT28,29. This work also opens up
the possibility of adiabatic single-qubit state- and gate-tele-
portation, as well as universal adiabatic quantum computing, in
semiconductor quantum-dot spin qubits.

Methods
Device. Our quadruple quantum-dot device is fabricated on a GaAs/AlGaAs
semiconductor heterostructure. The two-dimensional electron gas (2DEG) resides
at the interface between the GaAs and AlGaAs layers, 91 nm below the surface of
the wafer. The density and mobility of carriers in the 2DEG at a temperature of 4 K
are 1.5 × 1011 cm−2 and 2.5 × 106 cm2/Vs, respectively. Aluminum gates are
arranged in a three-layer overlapping gate architecture and are fabricated using
electron-beam lithography. An additional top gate, not shown in Fig. 1a in the
main text, covers all of the gates and the space around the center of device. Each of
these metal gates is separated by a thin layer of native oxide formed on the gate
surface. Voltages applied to the gates confine the electrons in the 2DEG. Each dot
contains only one electron, and their chemical potentials are roughly the same,
which we refer to as the symmetric configuration. The plunger and barrier gates are
connected to arbitrary waveform generator channels via homemade bias-tees. This
configuration enables fast initialization, manipulation, and readout of the spins.
Further details about the device are given in ref. 11.

Orthogonal control of the chemical potentials and exchange couplings. Our
device has four plunger gates [p1, p2, p3, p4] for chemical potential control, three
barrier gates [b1, b2, b3] for controlling the tunnel coupling between adjacent dots,
and leads [L1, L2] for controlling the system-environment interaction. In order to
achieve individual control over the chemical potentials and exchange couplings, we
define a set of virtual gates G ¼ ½P1; P2; P3; P4;B1;B2;B3�T as G= A ⋅ g, where
g ¼ ½p1; p2; p3; p4; b1; b2; b3�T is a set of physical gates, and A is a 7 × 7 capacitance
matrix6,7,10. We achieve orthogonal control of the exchange couplings J= [J1, J2, J3]
by defining them as a non-linear function of the “virtual” barrier gates using the
Heitler-London model10,53. Schematics of the virtual-gate pulses used to imple-
ment the AQT circuits shown in Figs. 3a and 4a in the main text are shown in
Supplementary Figs. 1a and b, respectively.

State preparation and readout. For initialization and readout, we configure the
quadruple quantum-dot chain into two pairs. Dots 1 and 2 form the “left” pair and
dots 3 and 4 form the “right” pair. We initialize the system in the (2, 0, 0, 2) charge
state by lowering the chemical potentials of dots 1 and 4 below the Fermi level of
the corresponding reservoir, while holding the chemical potentials of dots 2 and 3
above the Fermi level of that reservoir. The ground state of a pair of electrons in a
single dot is the singlet state. We transfer one electron each from dots 1 and 4 into
dots 2 and 3, respectively. Diabatic charge transfer maintains the joint spin states of
the electrons, while adiabatic charge transfer prepares the electrons in spin
eigenstates. We can also initialize either pair in the ""

�� �
state via exchange with the

reservoirs54,55. Measurement via Pauli spin blockade and safeguards to eliminate
cross-talk are detailed in refs. 10,11.

The state preparation estimates in the main text were obtained by initializing
the dots in a particular state and measuring it. To estimate the singlet-state
preparation fidelity on the left side, we load two electrons in dot 1 in the singlet
state, transfer one of the electrons diabatically to dot 2, and project the spin-state of
the electrons in dots 1 and 2 by diabatic transfer of the electron from dot 2 back to
dot 1. Similarly, to estimate the fidelity of initializing the right pair in the ground
state of the hyperfine field gradient, we load two electrons into dot 4 in the singlet
state, transfer one of them adiabatically to dot 3, and then project the spin state of
the electrons by adiabatic charge transfer of electron from dot 3 back to dot 4.

The experimental data of Figs. 3 and 4 in the main text involve measuring a
singlet in the right pair. Generally, diabatic charge transfer together with a Pauli
spin-blockade measurement suffices to measure a pair of electrons in the singlet-
triplet basis42,43. However, the small inter-dot tunnel coupling limits the fidelity of
diabatic projection in our device. To measure a pair of electrons in the singlet-
triplet basis in our device, we implemented a modified pulse sequence in which the
electron pair is first evolved under the two-electron Hamiltonian

Hread
i;iþ1 ¼ Jmax

i ð1� t=τÞ h
4
σ i � σ iþ1 þ

h
2
ðBz

i σ
z
i þ Bz

iþ1σ
z
iþ1Þ; ð2Þ

where τ is the evolution time, and Jmax
i is the exchange coupling. To implement this

Hamiltonian, we suddenly turn on a large exchange coupling between the two
electrons, and slowly ramp it to zero. This procedure maps the singlet state to "#j i
(or #"j i, depending on the sign of the hyperfine gradient). Then we readout the
electron pair by adiabatic projection, which remaps the state to the singlet-triplet
basis. For τ= 2 μs and Jmax

i ¼ 300MHz, we estimate the fidelity of projection of
spin state by this method to be 0.9 for the left side and 0.94 for the right side. A
related method can be used to prepare entangled states in quantum-dot arrays29.

Ground state of the magnetic-field gradient. To prepare the spin chain in a
product state with Sz= 0, we load two electrons in dots 1 and 4 each and transfer
one electron from each of them to dots 2 and 3 adiabatically. The particular
orientation of the spins in the chain after this step depends on the ground state of
the hyperfine field gradient on both sides42,43. Since the hyperfine field fluctuates in
time, the gradient also changes, and so does the ground-state spin configuration.
Because our experiments involve preparing spin states on one side of the array and
transferring them to the other side before the measurement, knowledge of the
hyperfine configuration is critical. As we now discuss, we can monitor not only the
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sign of the gradients but also the ground-state spin configurations of the left and
right sides in real time by measuring the evolution of the spin states in dots 2–3
under exchange coupling.

We define f ¼ sign ðBz
2 � Bz

1Þ ´ sign Bz
4 � Bz

3

� �
. In order to measure f, we

initialize both sides as a product state with Sz= 0, which we denote as the GG
configuration. We then evolve electrons 2 and 3 under exchange coupling for
variable amount of time. When f=+1, the initial state of the chain is "1#2"3#4j i or
#1"2#3"4j i. In these cases, the orientations of spins 2 and 3 are opposite, and they
oscillate under exchange coupling. Adiabatic projection of the left and right sides,
followed by measurement in the singlet/triplet basis, yields prominent exchange
oscillations. But for f=−1, the initial state of the chain is "1#2#3"4j i or #1"2"3#4j i.
In these cases, the orientations of spins 2 and 3 are the same, and no exchange
oscillations occur.

To determine the ground-state spin orientation, we load the left side in the ""j i
state and the right side in a product state with Sz= 0. We denote this as the T+G
configuration, and we turn on exchange coupling between spins 2 and 3. For
ΔBz

34 > 0, the spin state after initialization is "1"2#3"4j i, and exchange oscillations
between spins 2 and 3 can occur. However, for ΔBz

34 < 0, the spin configuration of
the chain after loading is "1"2"3#4j i and the spin states of electrons 2–3 do not
evolve under exchange. The ground-state spin configuration in dots 1–2 can be
inferred from the combined knowledge of f and the spin configuration in dots 3–4.
Supplementary Figure 2 illustrates these measurements.

Post-selection of data. The ground-state spin orientation of the spin chain was
monitored during experiments by interleaving the pulses discussed above. Speci-
fically, we interleaved measurements of exchange between spins 2 and 3 with the
GG and T+G configurations (Supplementary Fig. 2). Here, G denotes the two-spin
ground state of the hyperfine field gradient in the Sz= 0 subspace, and T+ denotes
spin pairs in the ""

�� �
state. When spins 2–3 oscillate under exchange coupling

with the GG load, the ideal time-averaged singlet return probability on the right/left

side is
	
PR=L
S



t ¼ 0:5 for f=+1. When f=−1 and the spins do not oscillate,	

PR=L
S



t ¼ 1. The measured values of

	
PR=L
S



t may deviate from the ideal expecta-

tion due to a large ΔBz
23, load errors, or measurement errors. Thus, we define a

threshold on the time-averaged singlet-return probability as Pth= 0.75, which is

the mean of the two ideal values. We assume f=+1 when
	
PR=L
S



t < Pth and f=−1

when
	
PR=L
S



t > Pth .

The data associated with Figs. 3 and 4 in the main text consist of many
repetitions. Each repetition, which consists of 512 or 256 single-shot measurements
for Figs. 3 and 4, respectively, corresponding to each value of T, was assigned a
value of f based on the interleaved measurement discussed above. Individual
repetitions with different values of f are displayed in the main text. The data from
all repetitions of the AQT experiments, as well as the average of the f= ±1 cases
corresponding to Figs. 3, 4, and 5 of the main text are shown in Supplementary
Figs. 3, 4, and 5, respectively. The averages across all f= ±1 cases do not differ
substantially from the individual repetitions displayed in the main text.

Indirect AQT transfer probability assessment. As an indirect qualitative indicator
of the AQT transfer probability, we transferred states of the spin chain initialized in the
state S12"3#4

�� �
or S12#3"4

�� �
via a cascade of AQT steps, with T= 127 ns and varying

Jmax. Then, we evolved spins 1–2 and spins 3–4 under exchange coupling for a variable
amount of time [Supplementary Fig. 5f]. The measured singlet-return probabilities on
both sides were fitted to a function of the form

PR=L
S ðtÞ ¼ VR=L cosð2πJit þ ϕÞ expð�t2=T�2

2 Þ þ P0, where V
R/L is the visibility of

exchange oscillations on the right/left side, Ji is the frequency of exchange oscillations
where i= 1 for the left side and i= 3 for the right side, t is the evolution time, ϕ is a
phase factor, T�

2 is the dephasing time, and P0 is the average of the time series. Here,
VR/L, Ji, ϕ, T

�
2 , and P0 are fit parameters. In the adiabatic limit, spins 1 and 2 should be

in a product state, and spins 3 and 4 should be in a singlet state at the end of the
cascaded AQT sequence. As seen in Supplementary Fig. 5g, VL(R) increases (decreases)
in Jmax and finally saturates, as expected for adiabatic state transfer. For small values of
Jmax, VL is relatively small and VR is relatively large, due to the low AQT fidelity. Apart
from the infidelity of the AQT, the visibilities are limited by load and measurement
errors, hyperfine noise, and charge noise.

Simulation. We accounted for known sources of errors and noise to reproduce
experimental observations in the simulations. Load errors associated with the
singlet, and the hyperfine ground state with Sz= 0 were approximated by

~S
�� � ¼ s1 Sj i þ s2 T0

�� �þ s3 Tþ�� �þ s4 T
�j i

~G
�� � ¼ s1 "#

�� �þ s2 #"
�� �þ s3 Tþ�� �þ s4 T

�j i
ð3Þ

where Sj i ¼ ð "#
�� �� #"

�� �Þ= ffiffiffi
2

p
, T0
�� � ¼ ð "#

�� �þ #"
�� �Þ= ffiffiffi

2
p

, Tþ�� � ¼ ""
�� �

, and
T�j i ¼ ##

�� �
. si is the probability amplitude of loading corresponding two-electron

state. fS= ∣s1∣2, and js2j2 ¼ js3j2 ¼ js4j2 ¼ 1�f s
3 , where fS is singlet load fidelity.

Based on measurements of the load process, we estimate that fs= 0.95.

We define time-dependent Hamiltonians acting on the spin chain

H1ðtÞ ¼ Jmax h
4

1� t
T

� �
σ1 � σ2 þ

t
T
σ2 � σ3

h i
þ h

2
∑
4

i¼1
Bz
i σ

z
i ;

H2ðtÞ ¼ Jmax h
4

1� t
T

� �
σ2 � σ3 þ

t
T
σ3 � σ4

h i
þ h

2
∑
4

i¼1
Bz
i σ

z
i :

ð4Þ

To simulate the AQT and SWAP experiment described in Fig. 3 in the main
text, the spin chain was initialized in the state ψ0

�� � ¼ ~S
�� �� ~G

�� �. The state of the
qubit chain after the AQT, ψT

�� �
, was obtained by numerical integration of the

time-dependent Schrodinger equation:

ψT

�� � ¼ UB

YN
j¼0

expð�iH1ðjΔtÞΔt=_ÞUB ψ0

�� �
;

where N × Δt= T and we used Δt= 1 ns for all simulations. Here, UB ¼
expð�iπ∑4

j¼1 B
z
j σ

z
j twaitÞ is the evolution operator corresponding to the rise and fall

time of the barrier pulses12. We used twait= 1 ns in all simulations. The SWAP
operation between spin pair j and j+ 1 was generated by a unitary operator
Ujðjþ1Þ ¼ expð�iHS

jðjþ1ÞTS=_Þ, where HS
jðjþ1Þ is

HS
jðjþ1Þ ¼ J j

h
4
σ j � σ jþ1 þ

h
2
∑
4

j¼1
Bz
j σ

z
j : ð5Þ

The final state of the spin chain after the AQT and SWAP operations U34 and

U23 is ψf

��� E
¼ UBU23UBU34 ψT

�� �
. We used Ji= 200MHz in experiments and

simulation to generate the SWAP gates in the experiment of Fig. 3. The SWAP
pulse time in the simulation is TS ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2i þ ΔBz

iðiþ1Þ

� �2
r .

Similarly, for the simulation of the cascaded AQT experiment described in
Fig. 4 of the main text, the initial state was set as ψ0

�� � ¼ ~S
�� �� ~G

�� �. The state of the
spins after the AQT cascade was obtained by evaluating

ψf

��� E
¼ UB

QN
k¼0

expð�iH2ðkΔtÞΔt=_Þ�

QN
j¼0

expð�iH1ðjΔtÞΔt=_ÞUB ψ0

�� � !
;

ð6Þ

where N ×Δt=T. The values of T and Jmax were set to be the same as in the
corresponding experiments. The target states for both experiments are φRj i ¼ Sj i, and

φL
�� � ¼ "#j i; forΔBz

34 < 0

#"j i; forΔBz
34 > 0:

�
ð7Þ

Finally, the singlet-return probabilities were calculated as PL=R
S ¼ ���φL=Rjψf

���2.
The magnetic field in all simulations incorporates both the externally applied

magnetic field of 0.5 Tesla and the local hyperfine field. The values of the hyperfine
field and its fluctuations were adjusted for better agreement between the simulation
and the experimental data, and the specific values are presented in Supplementary
Table 1.

Charge noise directly affects the strength of exchange couplings. Low-frequency
noise in the exchange couplings for each realization of the simulation was
incorporated by sampling the exchange couplings from a Gaussian distribution
with a target mean value (J0) and standard deviation equal to J0=ð

ffiffiffi
2

p
πQÞ. The

exchange-oscillation quality factors Q for spin pairs 1–2, 2–3, and 3–4 are ~15, ~15,
and ~20, respectively. To incorporate high-frequency charge noise, we added an
additional random error to the exchange couplings each ns, effectively adding
white exchange-coupling noise with a bandwidth of about 1 GHz. The magnitude
of this noise was chosen such that the exchange-oscillation quality factor is 10
times larger for a simulated Hahn-echo pulse sequence, as compared with a
simulated free-induction decay pulse sequence. Although high-frequency charge
noise has not been measured in GaAs quantum dots with overlapping gates, this
assumption is consistent with the improvement in coherence times observed in Si
devices with overlapping gates56. The simulated data were averaged over 256
different realizations.

To include errors due to relaxation during the measurement, we define g ¼
1� expð�tm=T1Þ where tm is measurement time and T1 is relaxation time. g is the
probability that the excited state will relax to the ground state during readout. We define
1− fr as the probability to misidentify the join spin state due to noise. The simulated
return probability including relaxation and readout errors for either side is

~P
R=L
S ¼ ð2f r � g � 1ÞPR=L

S þ g � f r þ 1: ð8Þ
Specific values of tm, T1, and fr used in the simulations are 4 μs, 60 μs, and 0.99

for the left side, and 6 μs, 50 μs, and 0.95 for the right side, respectively. These
values were obtained from the experiment.

State-transfer fidelity estimation. To estimate the probability of correctly trans-
ferring single-spin and two-spin states via a single AQT process, we simulate a three-
spin system in the initial state π12ϕ3

�� �
, where πj i is a two-qubit state, and ϕ

�� � is a
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single-qubit state. We numerically evolve this state in time under the HamiltonianH1(t)
defined in Eq. (4) with Jmax= 120MHz to a final state

��ψf

�
. We include noise and

pulse errors in this simulation. To remove errors associated with phases between dots
with different magnetic fields, we set the mean value of the magnetic field in each dot to
zero, although we include hyperfine fluctuations as discussed above. We neglect SPAM
errors in this calculation to assess the performance of the AQT operation itself. For each
instance of the simulation, we trace out qubits 2 and 3 from the final state to obtain a
reduced density matrix for qubit 1: ρf,1. Setting ρi;1 ¼ ϕ

�� � ϕ
� ��, we compute the state

fidelity as f 1 ¼
	
Tr
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρf ;1

p ρi;1
ffiffiffiffiffiffiffiρf ;1

pp �
2
. To estimate a transfer probability the initial

two-spin state, we trace out qubit 1 to establish a reduced density matrix for qubits 2
and 3: ρf,23. Setting ρi;23 ¼ πj i πh j, we compute the fidelity f23 as above. We simulated
interpolation times 0 <T < 256 ns and chose the optimal value of T for each different
configuration. We averaged the simulation over 256 different low-frequency noise
realizations.

Supplementary Figs. 7, 8, and 9 show the simulated transfer probability for
different initial states of spins 1–2 and spin 3 vs. single-spin T�

2 values. Figure
7 suggests that arbitrary single-qubit states can be transferred with high fidelity in
isotopically purified Si. Supplementary Fig. 8 also shows that while the singlet is the
optimal configuration for spins 1–2, other eigenstates of exchange are expected to
perform well in Si. When spins 1–2 are configured in superpositions of eigenstates
of exchange (Supplementary Fig. 9), the AQT does not perform as well. Finally, the
saturation of the error as T�

2 increases in Supplementary Figs. 7, 8, and 9 is related
to the level of high-frequency charge noise we have included in the simulation.
Thus, we expect that the ultimate limit on the AQT fidelity will be set by the levels
of high-frequency charge noise in the system.

Process fidelity simulation. To estimate the process fidelity associated with
transferring single-spin states via a single AQT process, we simulate a three-spin
system in the initial state S12ϕ3

�� �
, where ϕ

�� � is any one of
f "
�� �; #

�� �; 1ffiffi
2

p " þ #
�� �

; 1ffiffi
2

p " þi #
�� �g We numerically evolve this state in time under

the Hamiltonian H1(t) defined in Eq. (4) with Jmax= 120MHz to a final state. We
include noise and pulse errors in this simulation. To remove errors associated with
phases between dots with different magnetic fields, we set the mean value of the
magnetic field in each dot to zero, although we include hyperfine fluctuations as
discussed above. We neglect SPAM errors in this calculation to assess the per-
formance of the AQT operation itself. For each instance of the simulation, we trace
out qubits 2 and 3 from the final state to obtain a reduced density matrix for qubit
1: ρf,1, and we define an effective input state ρi;1 ¼ ϕ

�� � ϕ
� ��, for each of the input

states above. Using the four input states and simulated output states, we compute
the process matrix χ57. The ideal process matrix corresponds to the identity
operation and has a single non-zero element, corresponding to evolution of the
density matrix by the identity operator. For each instance of the simulation, we
compute the process fidelity Tr(χidealχ), and then we average all fidelities for a given
value of T and noise parameters across all instances of the simulation. The
simulations are averaged over 512 different realizations of low-frequency noise. We
plot the resulting infidelities in Supplementary Fig. 10.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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