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� Reviewed epidemic spread models and their applications in transportation networks.

� Analyzed the advantages and limitations of epidemic spread model applications in transportation systems.

� Summarized the emerging modeling requirements brought by the COVID-19 pandemic.

� Proposed research trends and prospects for epidemic spread modeling in transportation networks.
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The emergence of novel infectious diseases has become a serious global problem.

Convenient transportation networks lead to rapid mobilization in the context of global-

ization, which is an important factor underlying the rapid spread of infectious diseases.

Transportation systems can cause the transmission of viruses during the epidemic period,

but they also support the reopening of economies after the epidemic. Understanding the

mechanism of the impact of mobility on the spread of infectious diseases is thus impor-

tant, as is establishing the risk model of the spread of infectious diseases in transportation

networks. In this study, the basic structure and application of various epidemic spread

models are reviewed, including mathematical models, statistical models, network-based

models, and simulation models. The advantages and limitations of model applications

within transportation systems are analyzed, including dynamic characteristics of epidemic

transmission and decision supports for management and control. Lastly, research trends

and prospects are discussed. It is suggested that there is a need for more in-depth research

to examine the mutual feedback mechanism of epidemics and individual behavior, as well

as the proposal and evaluation of intervention measures. The findings in this study can

help evaluate disease intervention strategies, provide decision supports for transport

policy during the epidemic period, and ameliorate the deficiencies of the existing system.
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1. Introduction Traditional mathematical models assume population
Over the past decade, the emergence of novel infectious dis-

eases worldwide has become a serious problem requiring

attention. The prediction and control of epidemics are major

challenges for the global public health system. Following

SARS, H1N1 influenza, Ebola virus, and Zika virus, the new

coronavirus disease (COVID-19) pandemic has spread world-

wide. Until October 14, 2020, the pandemic has spread to 216

countries and regions in theworld, with a total of 38.36million

diagnosed cases and 1,090,811 deaths (Worldometer, 2020).

Consequently, the major threat posed by infectious diseases

has once again captured public attention. Monitoring,

analyzing, and predicting the impact of epidemics on society

is important for developing effective methods for the

prevention, control, and management of the spread of

epidemics. The use of models has become increasingly

important in analyzing the spread of epidemics, designing

interventions to control and prevent further outbreaks, and

limiting their impacts on the population to control the

spread of infectious diseases (Day et al., 2006; McKenzie, 2004).

An epidemic is a disease caused by various pathogens,

which can be characterized by human-to-human, human-to-

animal, or animal-to-animal transmission. Most of the path-

ogens are microorganisms, and a few are parasites. Usually,

the disease can be transmitted via air, water, food, contact,

and soil; humoral, fecal, and oral transmission are also

possible by direct contact with infected individuals, body

fluids, and the excreta of infected persons.

Modern epidemiological analysis and modeling theory

began in the late 19th century and the early 20th century.

Snow (1855) plotted the specific locations of cholera cases on a

map, and assumed that contaminated water sources were the

main reason for the spread of cholera in London in 1849.

Arthur Ransome, who first described the cyclic behavior of

measles, developed a discrete-time epidemic model for

cholera transmission in 1906 (Roberts and Heesterbeek,

2003). Early studies combining spatial data and

epidemiology, along with advances in biological research,

have contributed important discoveries on the spread of

epidemics. In addition to developing vaccines and drugs to

combat epidemics, research on epidemics can provide

decision support for the measures needed to manage and

control the spread of epidemics; for example, elucidating the

dynamic spatiotemporal characteristics of a disease can help

mitigate the harm that it causes to society.

Initially, most disease models were mathematically

modeled at the population level and assumed that pop-

ulations are homogeneous. Classical mathematical models

divided the host population into different units, and each in-

dividual interacted with his/her neighbors. The simplest of

thesemodels is the susceptible-infected-removed (SIR)model,

originally proposed by Kermack and Mckendrick (1927) to

describe a closed population. However, the spatiotemporal

characteristics of spread and the effect of a disease outbreak

in different communities often play more important roles in

public health interventions (Auchincloss et al., 2012).
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homogeneity and simulate the spread of epidemics on the

premise of non-space. Although these models are useful in

estimating the population size affected by the epidemic,

they do not consider the factors affecting the spread of the

epidemic.

Different modeling methods have been proposed to cap-

ture the behaviors of a large number of individuals with the

development of computer technology and the increase in

disease-related spatiotemporal data (Moore and Carpenter,

1999). The emergence of statistical models, network-based

models, and individual-based statistical and simulation

models has led to the increased consideration of various

causal factors in models, such as individual behavior,

interactions between individuals, and modes of interaction.

Individual-based models are flexible for modeling the

heterogeneity observed in disease transmission. At the same

time, these models can take into account the impact of more

spatial factors on the spread of epidemics, such as the effect

of transportation systems.

Different types of epidemic spread models have been

developed and used for modeling epidemic transmission

characteristics (Duan et al., 2015; Grassly and Fraser, 2008).

The shortcomings of the original model system are

illustrated by the COVID-19 outbreak as well as the role of

transportation in response and recovery periods. Peeri et al.

(2020) showed that COVID-19 has spread more rapidly

because of increased globalization. Wu et al. (2020) argued

that the timing of the outbreak, which was near Chinese

New Year, and the increased rail accessibility enabled the

virus to spread rapidly. The emergence of modern

transportation systems has intensified human contact, as

the close proximity between travelers provides an

opportunity for the virus to spread. To control the spread of

COVID-19, governments worldwide decided to suspend

transportation networks. However, the mechanism

underlying the spread of the virus during the COVID-19

response and recovery period remains unclear.

This study conducted a comprehensive review of epidemic

spread models and their applications in transportation net-

works. The emerging modeling requirements by the preven-

tion and control of the COVID-19 pandemic are considered.

The goal is to analyze and solve three problems: 1) how does

the epidemic affect urban mobility? 2) how does urban

mobility behavior affect the spread of the epidemic? and 3)

how should the interventions of travel restriction strategies be

evaluated? In this study, the basic structure and application of

various epidemic spread models are reviewed; the emerging

modeling requirements of the COVID-19 pandemic are sum-

marized, and the advantages and limitations of model appli-

cations within transportation systems are analyzed, including

the dynamic characteristics of epidemic transmission and

decision supports for management and control. Finally,

research trends are discussed and suggestion for future di-

rections is given.

The rest of this paper is organized as follows: section 2

reviews epidemic spread models, including mathematical
in transportation networks: A review, Journal of Traffic and
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models, statistical models, network-based models, and

simulation models; section 3 summarizes the integration of

epidemic models within transportation systems; section 4

summarizes the new modeling challenges posed by COVID-

19; and section 5 discusses research trends, prospects, and

conclusions.
2. Epidemic spread models

2.1. Mathematical models

Mathematical models have been used to understand the dy-

namics of epidemic transmission and quantitatively repre-

sent and predict spread risk for over 100 years. Because of the

increased sufficiency of epidemic-related spatiotemporal data

and the increase in the demand for analysis, mathematical

models have evolved from extremely simple models, such as

the SIR model, to complex partition models.

2.1.1. Classic mathematical models
The classic population segmentation models use a popula-

tion-based classification method to represent the spread of

infectious diseases. The simplest form of the population-

based mathematical models is the SIR model, originally pro-

posed by Kermack and Mckendrick (1927) to explain the rapid

change of the number of patients infected in epidemics, such

as plague and cholera.

This model is based on an intuitive understanding of how

infectious diseases affect the host in the real world. The SIR

model includes three types of individuals: individuals who are

susceptible (because of a lack of immunity) to infection after

contacting infected persons (S), individuals who are infectious

and can transmit the virus to susceptible individuals (I), and

individuals who no longer participate in the infection process

because of healing (with immunity) or death (R). Differential

equations are used to describe the dynamic changes in the

number of each subpopulation in the spread of epidemics.

Within an analysis period, some people from susceptible in-

dividuals are infected, and some infected individuals recover,

assuming that these changes are continuous. These processes

can be described by Eqs. (1)e(3).

dS =dt ¼ aSI=N (1)

dI =dt ¼ aSI=N� gI (2)

dR =dt ¼ gI (3)

where S, I, and R represent the numbers of the susceptible

individuals, infectious individuals, and recovered individuals,

respectively, N is the total population (S þ I þ R), a is the

infection coefficient, g is the recovery rate of the infected

person to health, and dS/dt represents the rate of change of S

at time t.

The SIR model is the most basic model for indicating the

spread of infectious diseases. When considering an exposed

(or latent) compartment (explicitly containing those infected

but not yet infectious), the model is called a susceptible-

exposed-infected-removed (SEIR) model. Kucharski et al.

(2020) used an SEIR model to analyze the early dynamics of
Please cite this article as: Li, J et al., Modeling epidemic spread
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the transmission and control of COVID-19. Prem et al. (2020)

used an SEIR model to analyze the effect of control

strategies to reduce social mixing on outcomes of the

COVID-19 epidemic in Wuhan. In the cases where

susceptibility returns after recovery, the model is called a

susceptible-infected-susceptible (SIS) model (Lajmanovich

and Yorke, 1976). Other related models include susceptible-

infected (SI), susceptible-exposed-infected (SEI), susceptible-

exposed-infected-susceptible (SEIS), susceptible-infected-

removed-susceptible (SIRS), susceptible-exposed-infected-

removed (SEIR), and susceptible-exposed-infected-removed-

susceptible (SEIRS) (structure is shown in Fig. 1). By

considering additional variables, such as birth, death, and

migration, or monitoring the spread of multiple epidemics

simultaneously, these initial models have led to the

development of more complex mathematical models

(Brauer, 2008).

The mathematical models can establish and solve the

differential equations of the current epidemic based on data

relating to the past spread of the epidemic, which helps

intuitively establish the basic laws of epidemic spread. These

models are especially important when the details of the cur-

rent epidemic transmission are not fully understood.

Although the mathematical modeling approach has many

advantages, some limitations are receiving increased atten-

tion. An important assumption of themathematical models is

that the group consists of a continuous entity that is not

affected by the behavior of individuals; furthermore, the

contact pattern is further simplified and assumed to be a

transient event (Koopman and Lynch, 1999). In addition, the

assumption of population homogeneity limits the models to

assessing and characterizing how the disease spreads and

whether the reduction of the disease is the result of

intervention control measures or infection heterogeneity

(Dye and Gay, 2003).

Similar models have revealed some important shortcom-

ings because they do not consider spatial factors, such as

population density. In addition, thesemodels neglect the local

characteristics of the spreading process, such as excluding the

variable of individual susceptibility and cannot describe

complex infection patterns well (which are mainly caused by

the human interaction associated with modern trans-

portation systems). In recent years, many studies have tried to

improve the ability of mathematical models to solve these

problems (Jana et al., 2016; Jiao et al., 2016; Muroya et al., 2013),

as modern transportation systems have profound impacts on

the spread of disease, and traditional modeling approaches

cannot analyze the impacts of mobility on infection

transmission. The lack of consideration of these effects in

traditional models primarily stems from the complexity of

the transmission of infections and individual travel

characteristics.

2.1.2. Spatiotemporal mathematical disease models
The spatial mathematical models assume that the spread of

epidemics is a spatial process (Ferguson et al., 2001; Rhodes

and Anderson, 1997; Riley, 2007) and permit the distribution

of hosts or media and their motion characteristics to be

represented in space. The models consider the boundary of

the unit where the population is located. The simplest
in transportation networks: A review, Journal of Traffic and
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model based on Eq. (4) can define the speed at which the

susceptible people in area j are infected by the patients in

area j.

dSj

�
dt ¼ aSjIj

�
Nj (4)

where Sj, Ij andNj represent susceptible individuals, infectious

individuals and the total population in area j, respectively.

Under the influence of all infected patients, the infection

rate of the susceptible population in area j can be calculated as

follow.

Sj
a

PK
i¼1MjiNi

XK

i¼1

MjiIi (5)

whereMji is the mixing rate of area j and its neighboring area i

(note Mjj ¼ 1), which can be constructed through the common

boundary between areas, Ii is the number of infected persons

in area i, K is the total number of areas, Ni is the total popu-

lation in area i, and a is the transmission coefficient.

Another spatial approach is to treat the spread of disease

as an infection wave spreading across the map. In this model,

the spread of epidemics in space is related to traveling waves.

Epidemics invade from infected areas to uninfected areas

through the travel of infected persons and their contact with

susceptible people (Wang et al., 2012; Zhang, 2009). These

models are mainly used to predict the spread of epidemics

between human settlements such as from cities to cities and

from cities to rural areas and the expansion of epidemic

areas. Population-based modeling methods treat people in a

community as homogeneous entities, while traveling wave

models treat a relatively smaller number of people as

homogeneous units, such as neighbors. Although this model

allows a certain degree of spatial heterogeneity in

performance, it is still similar to the traditional

mathematical models as it is not applicable to individual-

based models and cannot explain the impact of

transportation systems.

2.2. Statistical models

A statistical model is usually specified as a mathematical

relationship between one ormore random variables and other

non-random variables. Different from theoretical-based

models, the mathematical relationships in statistical models

are used to directly express the relationship between variables

of interest and reproduce the dynamic real-world relationship

through the trend and dependence of empirical data without

directly expressing causality in epidemiological analysis.

Statistical models often use exploratory data analysis (EDA)

to obtain the main characteristics of disease data, or
Please cite this article as: Li, J et al., Modeling epidemic spread
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confirmatory data analysis (CDA) to test statistical hypotheses.

Ecological analysis in statistical models is used to analyze the

relationship between the spatial distribution of disease inci-

dence and the influential factors that may affect the epidemic

spread at a spatial level. Spatial regression analysis often uses

the spatial weighting matrix to calculate the autocorrelation

between variables and residuals. Eq. (6) shows the classical

spatial regression model.

Y¼Xbþ e (6)

where Y is the epidemic incidence vector observed inmultiple

regions,X is amatrix of explanatory factors, b is the parameter

that needs to be estimated, and e is a random error vector with

a Gaussian distribution. In classical least squares regression, e

should be independent. However, when there is spatial auto-

correlation in epidemiological data, e is not independent. To

calculate the spatial autocorrelation, the spatial error model

uses a spatial adjacency matrix to incorporate the structural

relationship of the spatial region into the regressionmodel, as

shown in Eqs. (7) and (8).

Y¼Xbþ m (7)

m¼pW þ e (8)

where W is the adjacency matrix, m is the error process, and

the parameter matrix p represents the degree to which the

change in Y can be explained by its adjacent values.

Another spatial regression model, called the spatial

autoregressive model (SAR), uses a spatial weight matrix as

shown in Eq. (9).

Y¼pWY þ Xbþ e (9)

More complex models can build a hybrid SAR model (Beale

et al., 2010; Lesage, 1997) by synthesizing Eqs. (7)e(9). For

example, the generalized linear mixed model and the spatial

hierarchy model can combine the spatial effects at the

individual and regional levels (Breslow and Clayton, 1993).

Individual-level statistical models have also been developed

to simulate the spread of epidemics and the transition

between disease states at the individual level (Deardon

et al., 2010).

Over the past few decades, tremendous progress has been

made in the use of machine learning models and Bayesian

statistical methods to analyze the features of epidemics

(Bernardinelli et al., 1995; Dunson, 2001; Xia et al., 2004). These

models analyze the observed input and output data and use

statistical algorithms to learn structured relationships in the

data. Since machine learning models can use adaptive

mathematical structures to represent any complex
in transportation networks: A review, Journal of Traffic and
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relationships, effective support can be obtained for decisions

that control the spread of epidemics.

The statistical models are highly flexible in the structures

and parameters of the input data, which makes the statistical

models suitable for exploring the spatiotemporal impact on

epidemics having few data. The structure of the models in-

dicates that the statistical models are suitable for analyzing

the structural relationship between variables, but the statis-

tical models are still not adequate for analyzing the impact of

transportation systems and individual mobility on the spread

of epidemics.
2.3. Network-based models

Network-based epidemiological models originate from the

concept of meta populations. These models rely on several

basic assumptions. For example, the spread of epidemics fol-

lows some specific contacts or transmission paths, such as

social contact networks (Kretzschmar and Morris, 1996).

Another assumption is that the local populations of

subpopulations are isolated from each other in space but are

connected through travel. Network models are used to

generalize complex contact networks to estimate the

probability and the path of epidemic transmission. The

network model structure shown in Fig. 2 is a set of nodes and

links that is typically denoted as the network G ¼ ðV; EÞ. V is

a set of nodes that represents individuals, and E is a link that

represents the relationships between individuals. The

attributes of nodes, links and the topology of the graph can

be assigned multiple parameters to describe the

spatiotemporal characteristics of the epidemic.

The network-based models can be population-based or

individual-based, depending on the data analyzed. In a study

simulating the H1N1 influenza outbreak in 2009, an airline

network from Mexico to other cities was used, and a global

connectivity network was established. The population-based

mathematical models were used to simulate the potential
Fig. 2 e Structure of network-based model.

Please cite this article as: Li, J et al., Modeling epidemic spread
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epidemic risk of different cities based on flight travel volumes

on the connected network (Khan et al., 2009). Meloni et al.

(2009) and Yang et al. (2015) analyzed the impact of the

structural characteristics of the network model on the

spread of the epidemic in this situation. Individual-based

social connection networks are used to simulate epidemic

transmission within the city (Bian and Liebner, 2007; Carley

et al., 2006; Eubank et al., 2004). In the model of Bian and

Liebner (2007), individual health status and the length of the

latent and infectious periods are used to describe the

properties of individuals (node), and the attribute of the link

is the probability of infection through this link. Three

parameters are used to describe network links (topological

relationships): 1) the number of links between individuals, 2)

the degree of interconnection between family members and

colleagues, and 3) the proportion of work connections and

family connections. This constitutes a network model

framework to simulate the epidemic spread. Finally, the

parameters are determined and the vulnerability of the

communities responding to the diseases is assessed based

on multiple data sources.

A major challenge for network-based models is data

collection. Eubank et al. (2004) and Eubank (2005) used census

data, land-use data, travel data, and transportation network

data for modeling. Bian and Liebner (2007) introduced a

more complex dataset containing personal survey

information to describe multiple parameters, such as

individual attributes and link attributes.

With a certain understanding of the behavioral character-

istics, interaction methods, and epidemic transmission char-

acteristics of each type of population, network-based models

can more realistically simulate epidemic transmission. How-

ever, the inability to describe micro-individuals in the

network-based models is a major limitation in the analysis of

infectious diseases with alienated individual structures.

2.4. Simulation models

2.4.1. Cellular automaton simulation
Cellular automaton (CA) was proposed by von Neumann and

Ulam in the 1950s, and their purposewas to better understand

the biological systems composed of many relatively simple

objects. CA is a discrete spatial model for simulating the

spatiotemporal dynamics of events (Sirakoulis et al., 2000). CA

models are composed of regular discrete grids, grid boundary

conditions, finite state sets, interacting neighbor cell sets, and

transition rules for cell states. Each cell is assigned a state

from the finite state set at each time t. According to some

fixed rules (usually a mathematical function), the state of

the cell is updated at each time step based on the current

state of the cell and the state of the neighboring cell. The

common topologies of CA are chains and regular lattices,

but CA in two-dimensional space has some shortcomings.

For example, the connection topology among the cells is

restricted to the predetermined homogeneous lattice.

The premise of the CA models is that the spread of disease

is a spatial process, which is contrary to the mathematical

models, as basic mathematical models do not consider spatial

factors. In the CA models, grid-shaped cells represent agents,

and the disease is transmitted from infected individuals to
in transportation networks: A review, Journal of Traffic and
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susceptible individuals based on the rules of infection (usually

the extended SIR models) (Beauchemin et al., 2005).

Individuals can be in different stages of infection, such as

incubation period, infection period, and immunization

period. The CA models integrate the disease state transition

rules, which determine the individual state at the next time

point based on the disease state of the individual and its

neighbors, and the disease transmission characteristics. The

state of each individual in the network is calculated by

discrete time steps, and the same rules are applied to all

individuals.

The advantage of the CA models is that it can integrate

environmental factors, such as land use and terrain, and pop-

ulation distribution, such as population density and age struc-

ture, into themodel (Fuentes and Kuperman, 1999). In addition,

simulating and visualizing the dynamic characteristics of the

epidemic spread in the population is straightforward.

Computer-aided analysis that simulates the epidemic spread

has been used to understand the spreading characteristics of

diseases as well as making emergency management and

control measures for diseases (Beauchemin et al., 2005; Doran

and Laffan, 2005; Pfeifer, 2008; Xiao et al., 2006).

In recent years, this method has been used extensively to

study the mechanism of infectious disease transmission and

evolution. With the in-depth study of epidemiology, the CA

models have a major advantage over non-spatial models. The

models are intuitive, interactive, dynamic, and the simulation

results of the models can be obtained by determining rela-

tively simple local evolution rules, multi-step iteration, and

parallel evolution, which demonstrate the complex spatio-

temporal evolution process.

However, the CAmodels still focus on the population level.

Cells can only communicate locally and cannot engage in

rapid global communication. Daily activities of individuals

cannot be modeled using the CA models (Pfeifer, 2008), which

limits their applicability. Based on the CA model, Chen and

Tong (2018) divided the regions into static and dynamic and

established a cross-regional transmission model of

infectious diseases with population migration functions that

considered the infectious disease transmission and

interregional population transfer. In addition, the effect of

the dynamic regional position and the area on the spread of

infectious diseases across regions was analyzed. Although

the movement of the cells can be simulated and the

epidemiological transmission law can be analyzed in the

case of population migration, the CA model is still not

adequate for simulating transportation systems and

providing decision support for travel restrictions and other

management and control measures.

2.4.2. Agent-based models
Agent-based models are based on the heterogeneity of in-

dividuals. This assumption is fundamental to epidemiolog-

ical research (Koopman and Lynch, 1999). These models

based on the contact between discrete individuals were

developed mainly to study the spread of epidemics (Ghani

et al., 1997). The agent-based models account for personal

social networks and contact activities better than other

models, such as mathematical models. Because these

factors significantly affect the spread of epidemics (Bian,
Please cite this article as: Li, J et al., Modeling epidemic spread
Transportation Engineering (English Edition), https://doi.org/10.1
2004; Koopman and Lynch, 1999; Roche et al., 2008), and

agent-based models represent a fundamental shift in

epidemiological thinking.

Assumptions are made within the agent-based simulation

framework to account for heterogeneity and the interaction

between individuals as well as the spatiotemporal heteroge-

neity of the epidemic transmission process. To simulate the

spread of epidemics within the scale of a city, agent-based

models often assume that 1) individuals are different from

each other in terms of age, race, occupation, and infection

status; 2) individuals contact a certain number of other in-

dividuals within a certain period; 3) the number of individual

activities varies from person to person; and 4) individuals are

spatially separated and movable. These assumptions are

suitable for modeling epidemic transmission in urban envi-

ronments (Bian and Liebner, 2007).

Based on the above assumptions, the conceptual frame-

work of agent-based models consists of the disease section,

the agent society, transportation systems, and the environ-

ment (Hunter et al., 2017). The disease section describes how

the disease spreads between individuals and how

individuals transfer at different stages of the disease, such

as transferring from susceptible to infected. Agent society

characterizes the individual's characteristics and behavior as

well as the individual's social network and interactions.

Transportation systems, which are important places of

interaction, characterize the movement of individuals in the

simulation system. The environment, which is a place

where individuals interact and obtain information, contains

information such as land use.

Agent-basedmodels can be used to study how diseases are

transmitted (Duan et al., 2013; Epstein et al., 2008) and

understand the dynamic transmission characteristics of

epidemics, which can help research on the efficacy of

control measures. Agent-based models can also determine

which measures can effectively suppress the spread of

epidemics and how they can be combined to obtain the

most social benefits, such as isolation (Barrett et al., 2008),

school suspension (Lee et al., 2010), vaccine development

(Olsen and Jepsen, 2010), and travel restrictions (Duan et al.,

2013). Agent-based models can also be established based on

historical experience. For example, Frı́as-Martı́nez et al.

(2011) tried to model epidemic outbreaks in the past and

analyzed whether enough time and appropriate control

measures had been taken to stop an epidemic or other

outbreak. Chinazzi et al. (2020) used agent-based models to

analyze the effect of travel restrictions on the spread of the

COVID-19 outbreak.

Individual modeling methods are significantly different

from population-based approaches. Most agent-based models

are not used for prediction, instead they are tools for evalua-

tion, decision support, and visualization. Multi-agent models

are the most suitable models for observing and analyzing the

relationship between individual behavior and epidemic

transmission characteristics, as well as the developmental

trend of epidemics. They also support quantitative simulation

experiments for analyzing measures for controlling epi-

demics. Each agent can be assigned different attributes and

make different decisions in amulti-agent-basedmodel, which

allows the model to capture every detail of behavior and
in transportation networks: A review, Journal of Traffic and
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interaction. Therefore, the models have greater flexibility and

greater freedom in simulation design.

The multi-agent-based model simulation framework has

the ability to integrate large-scale data heterogeneity, but due

to the complexity of individual behavior and the consequent

lack of data, parameter adjustment for individual heteroge-

neity is a great challenge (Chao et al., 2010).
3. Modeling epidemic spread in
transportation networks

Transportation systems play extremely important roles in the

context of epidemic transmission. Taking measures to stop

the spread of epidemics in the transportation system is

necessary because the transportation system is a place that is

highly conducive to the spread of infections. At the same time,

transportation systems permit public travel and allow in-

dividuals to return to their activities after the epidemic.

Realizing both of these roles of transportation is a major

challenge.

To provide a theoretical basis for the prevention and con-

trol of epidemics in transportation systems, the models,

methods, and goals of epidemiological studies considering

transportation networks in recent years are analyzed to

identify where future research efforts are needed. The search

terms “epidemic”, “transport”, and “transportation” were

input in Google Scholar to identify relevant studies over the

past decade. After screening the retrieved documents, 62 ar-

ticles from 39 different journals and conferences were ob-

tained. Because the study of transportation management and

control for epidemics is an interdisciplinary issue, the rele-

vant journals included those relating to the fields of mathe-

matics, biology, and transportation. The models, methods,

and research objectives used in these studies are summarized

in Table 1. The research purposes include model method

research to expand the analytical capabilities of the model,

the dynamics of disease transmission in specific scenarios,

and the effects of interventions in specific scenarios.

Over the past decade, statistical models have rarely been

used to study epidemics in transportation systems. The

reason is that statistical models often use EDA to obtain the

main characteristics of disease data or CDA to test statistical

hypotheses. Statistical models require a large amount of data

related to human mobility, and the model performance is

limited. Few studies have used CA models, as it is difficult for

CA to simulate transportation systems, let alone make deci-

sion supports for management measures, such as travel re-

strictions. Below, the applications of mathematical models,
Table 1 e Summary of current studies.

Model Count

Meth

Agent-based 20 13

Network 20 10

Mathematical model 16 12

Cellular automaton 1 1

Custom model 5 0
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network-based models, and agent-based models for trans-

portation systems are summarized.
3.1. Mathematical models

The most significant advantage of mathematical models is

that little data are needed and parameters can easily simulate

the epidemic spread characteristics over a large area. There-

fore, many studies have tried to expandmathematical models

to adapt them to scenarios of humanmobility. To understand

the spatial distribution of epidemics, the direction of expan-

sion of the mathematical models is primarily based on the

transmission dynamics in the event that the total population

changes. In this case, the epidemic transmission in multiple

regions is analyzed. In this framework, the spatial structure is

represented by a finite number of distinct patches. In each

analysis period, the population dynamics in each patch are

partly transferred to other patches to account for the mobility

between regions. The parameters of epidemic dynamic

transmission in different regions are different because of the

proportion of infected people and the stage of epidemic

spread. Wang and Zhao (2004) proposed an n-patch SIS model

and applied it to the scenario of 2-patches, where the infected

and susceptible people in each region migrate to another

region in a certain proportion. Based on this model, a

threshold that determines the persistence and extinction of

the epidemic was obtained. Wan and Cui (2007) proposed an

SEIS model to analyze the impact of transport-related

infection on disease transmission and control measures,

which showed that only restricting the travel of infected

people cannot inhibit the spread of the epidemic, as latent

patients can also lead to the spread of the epidemic. Many

studies (Cui et al., 2006; Takeuchi et al., 2007) have reached

the same conclusion and have extended the scenario to SIR

(Hyman and Tara, 2003; Li and Zou, 2010), SIRS (Liu and

Zhou, 2009), and other models. However, these expansions

assume that individuals leaving a certain region and

reaching their destination region immediately. However,

travel can be time-consuming, and passengers are in a

relatively closed environment during travel, often with a

high-density configuration of seats. The transportation used

for travel is also one of the places where diseases spread,

especially for diseases that spread rapidly, such as SARS and

influenza. The models can explain how human behaviors

affect the spread of the epidemic through these methods. In

addition, models can represent some simple behaviors by

adjusting the parameters.

Mathematical models can represent simple reactions of

people to the epidemic, such as reducing the number of trips.
Purpose

od Dynamics Intervention

14 7

13 7

5 5

0 0

2 5
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Based on the directed graph to describe the traffic network

structure in the context of population migration, the regions

are the nodes of the graph, and nodes are connected by the

directed link if there is transportation of individuals from re-

gion to region. Generally, the traffic network is strongly con-

nected (one can go from any region to any other region), but

when an epidemic occurs, the structure of the traffic network

may change from strongly connected to weakly connected

because of control measures or personal instinct. All of these

factors need to be considered in epidemicmodels. Nakata and

Gergely (2015) established an epidemicmodel for the spread of

an infectious disease along with population dispersal by a

system of delay differential equations. By increasing the

possibility of infection in the process of travel and assigning

different parameters related to travel to susceptible and

infected people, the sub-epidemic transmission model

through the transportation systems was improved. The

concept of a directed graph was used to describe the spatial

structure, the connectivity of different regions, and the

population migration characteristics when the network was

not strongly connected because of the epidemic.

Mathematical models are based on the population.

Therefore, mathematical models can be effective at macro-

scales for considering the impact of inter-regional travels

through transportation systems on the spread of epidemics.

They are also suitable for providing the basis for formulating

control measures during the early stage of epidemic spread.

However, mathematical models cannot describe and analyze

individual travel within the region, and they cannot provide

decision supports for refined management and control

measures.

3.2. Network-based models

The spatial structure of populations is a key element for un-

derstanding the large-scale spread of epidemics. The network

approach focuses on the network structure formed by the

connections among regions (populations), and the link be-

tween nodes can represent the travel path. Therefore,

network-based models can provide additional important in-

sights for understanding the role of mobility patterns in the

transmission of infectious diseases.

Airlines are one of the major infection channels for the

global spread of epidemics. Poletto et al. (2012) analyzed the

impact of the stay time of different travelers at the

destination after long-distance travel. In analyzing the

spread of epidemics within the city, Balcan and Vespignani

(2011) and Xu et al. (2013) analyzed the commuting network

and the public transportation network, respectively. Colizza

and Alessandro (2008) presented a thorough analysis of the

characteristic of infectious disease in metapopulation

models characterized by heterogeneous connectivity and

mobility patterns and derived the basic reaction-diffusion

equation describing the metapopulation system at the

mechanistic level.

The network-based model can also be used to analyze the

interplay between human and epidemic dynamics and eval-

uate different interventions. Meloni et al. (2011) analyzed the

impact of individual travel decisions, such as avoiding

epidemic areas, on the spread of epidemics. B�ota et al. (2017)
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attempted to model passenger behaviors during the

outbreak process. Yang and Wang (2016) analyzed the effect

of different interventions on the spread of epidemics. The

use of network models combined with transportation

systems has inherent advantages as the connection between

nodes can be used as a travel path. However, the complexity

of network structure often makes it effectively become a

population-based model; thus, characterizing the impact of

microscopic traffic behavior on the spread of epidemics is

difficult.

3.3. Agent-based models

In agent-based models, each agent can be assigned different

attributes and make different decisions, which allows the

model to capture every detail of interaction and behavior.

Because of themodernization of urban transportation, human

travel is becoming increasingly dependent on public trans-

portation systems relative to travel on foot and via cars. This

shift in the use of transportation has causedmajor changes in

the spatiotemporal characteristics of human activities and

has complicated the individual contact network. Therefore,

transportation system modeling is extremely important in

agent-based epidemic spread models.

Because of the flexibility of simulation design, agent-based

models can simulate transportation systems of any

complexity. Some researchers have used simple forms of

simulation, such as an agent moving between a starting point

and an end point along a line at a constant speed (Duan et al.,

2013). A more practical transportation system model may

include the choice of the shortest path or the next shortest

path. Some specific models also include using mobile phone

data to simulate the activity trajectory of the agent (Frı́as-

Martı́nez et al., 2011). The most complex transportation

system models include public transportation systems

(Rakowski et al., 2010) because public transportation is a

high-risk place for the spread of epidemics. These models

can explain how human behaviors affect the spread of

epidemics, but these models often analyze routine

behaviors. Because the simulation design is flexible, there is

a need for more research to focus on specific behaviors in

the context of epidemic spread, such as the distribution of

medical materials and living materials.

As agent-based models consider the heterogeneity of in-

dividuals, individual travel decisions can also be modeled and

analyzed. Most simulations are based on the social structure

and agent behavior rules to make travel and activities de-

cisions. Usually, travel activities assigned to the agent are

simply from the residential place to the workplace. Some

more complex models include shopping, entertainment, reli-

gion, and other travel purposes (Crooks and Hailegiorgis, 2014;

Mao, 2014). Research conducted by Crooks and Hailegiorgis

(2014) permitted agents to make their own travel decisions

based on their own attributes, health status, and other

factors. These decisions included home isolation because of

illness (Duan et al., 2013) and traveling with strangers

(Simoes, 2006).

Because agent-based models can simulate complex trans-

portation systems, the models can consider the simplified

versions of problems in other models, such as the
in transportation networks: A review, Journal of Traffic and
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transmission mechanism of epidemics in different trans-

portation facilities, making individual travel plans based on

individual attributes and epidemic information. These prob-

lems have yet to be resolved.

The individual-based network models and agent-based

models can use actual census data, family structure infor-

mation, populationmobility data, and relational network data

to make the heterogeneous performance of epidemic trans-

mission more realistic. Therefore, using these two types of

models to study the dynamics of epidemic transmission in the

context of regional human mobility and travel restriction

measures is more appropriate. A population-based network

model is more appropriate for addressing research questions

at larger scales, such as in global epidemiological research.

The global connectivity network is built through the airline

network to connect various geographic regions, and the indi-

vidual flows through transportation and travel represent the

connection between groups in each region.
4. Modeling challenges brought by COVID-19

On December 31, 2019, the Wuhan Municipal Health and the

Health Committee of Hubei Province, China issued the “Notice

of Pneumonia in Wuhan” after 27 cases of pneumonia had

been reported. On January 7, 2020, the virus was preliminarily

identified as a novel coronavirus. On February 11, 2020, the

World Health Organization announced that the novel coro-

navirus disease was to be named “Coronavirus disease-2019”

(COVID-19). As of October 14, 2020, COVID-19 has become a

pandemic with more than 38 million confirmed cases

worldwide.

Some studies argued that high rail accessibility and

increased globalization have enabled the virus to spread

rapidly (Peeri et al., 2020; Tan and Ma, 2020; Wu et al., 2020).

Many countries have responded with non-pharmaceutical

interventions to diminish viral transmission, including

intercity travel restrictions, the early identification and

isolation of cases and contact restrictions in many countries

(Flaxman et al., 2020; Lai et al., 2020). These measures have

undoubtedly hindered the spread of the epidemic, but which

aspects of the emergency response were most effective

remain unclear (Tian et al., 2020). The fact that COVID-19 is

still spreading rapidly indicates that there are many

deficiencies in the existing model systems.

COVID-19 imposed newmodeling requirements to existing

model systems. To better support the prevention of the

epidemic, three questions need to be addressed: 1) how does

the epidemic affect urban mobility behavior? 2) how does

urban mobility behavior affect the spread of the epidemic?

and 3) how should the interventions of travel restriction

strategies be evaluated?

4.1. How does epidemic affect urban mobility behavior?

Human beings engage in self-protection behavior based on

epidemic information to reduce the risk of epidemic infection.

For instance, many people choose to maintain social distance

to avoid being infected. However, most previous epidemic

models only consider the impact of human mobility on
Please cite this article as: Li, J et al., Modeling epidemic spread
Transportation Engineering (English Edition), https://doi.org/10.1
epidemic spread, but the impacts of the pandemic on the

urban mobility behavior have received little attention, espe-

cially changes in travel behavior (e.g., reduced travel in public

transport). Previous studies on urbanmobility behavior during

epidemic spread have generally adopted one of the three

following perspectives.

4.1.1. Economic epidemiology
Economic epidemiology is a field at the intersection of epide-

miology and economics. Its premise is to incorporate in-

centives for behavior and their attendant behavioral

responses into an epidemiological context to better under-

stand how diseases are transmitted. The utility function, such

as the Behrman equation (Zhang et al., 2011), provides the

basis of individual behavior decision-making in the outbreak

of an epidemic (Fenichel et al., 2011). The Bellman equation

considers changes in individual health states because of

their behaviors and defines the utility of escaping from

infection and the utility of being infected. Researchers have

also used game theory to study changes in individual

behavior (Reluga, 2010; Shim et al., 2010).

4.1.2. Psychological epidemiology
Researchers have also studied changes in human behavior in

epidemic outbreaks from the perspective of psychology. Spe-

cifically, they have proposed the health belief model (HBM)

(Rosenstock, 1974), the theory of rational action, and other

models to study changes in individual behavior during the

outbreaks associated with an epidemic. The HBM has been

widely used to describe individual psychological dynamics

and behavioral decision-making during the outbreaks of an

epidemic. It uses logical regression to quantify individual

beliefs and perceptions (Tang and Wong, 2004).

4.1.3. Epidemiological information
Epidemiological information is the information through

which individuals know about the dynamics of epidemic

spread; this information can be either centralized or local

(Tommasi and Weinschelbaum, 2007). Centralized epidemic

information consists of news released by the media (Dredze,

2012) and the government, which is the center of disease

control and prevention. Local epidemic information refers to

information transmitted through individual social networks.

Researchers have also studied a dual diffusion process of

epidemic information and epidemics as well as urban

mobility change and epidemics (Mao and Bian, 2011).
4.2. How does urban mobility behavior affect the spread
of the epidemic?

Urban mobility behavior can drive the spread of epidemics.

The feedback loop between human dynamics and epidemic

dynamics is responsible for their interaction (Ferguson, 2007).

Most previous epidemicmodels have considered the impact of

human dynamics on epidemic spread (Funk et al., 2010;

Segbroek et al., 2010). However, the concept of human

behaviors should be extended because of COVID-19. Typical

behaviors, such as wearing a facemask, avoiding crowds,

improving personal hygiene, and taking antiviral drugs, have
in transportation networks: A review, Journal of Traffic and
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been analyzed (Bagnoli et al., 2007), yet COVID-19 spread in

unexpected ways.

In addition, more attention needs to be given to examine

epidemic spread via cold chain logistics. On June 11th, Beijing

reported a 52-year-old confirmed case in Xicheng after no new

confirmed cases had been reported in Beijing for 56 days.

Within 10 days, over 200 cases were diagnosed in Beijing.

Almost all of these cases were found to be associated with

activities in the wholesale market of agricultural products in

Xinfadi. When novel coronavirus was detected on a salmon-

chopping board in Xinfadi Market, salmon, as well as the cold

chain logistics behind it, received increased attention. For

example, freezing technology and refrigeration technology are

frequently used in the logistics process of fresh products to

ensure that perishable and vulnerable products are main-

tained in low-temperature environments during every stage,

including production, storage, transportation, sales, and

consumption, to ensure quality and reduce losses (i.e., cold

chain logistics). However, cold environments allow the virus

to survive; consequently, the survival of the virus in cold chain

logistics can infect people in the freight chain. This possibility

is a reminder that human behaviors associated with the

freight transportation system can be reservoirs mediating

virus spread. The distribution of medical and living materials

in the context of epidemic spread should also receive

increased attention to clarify how transportation affects the

epidemic.

4.3. How should the interventions of travel restriction
strategies be evaluated?

Early intervention measures can effectively curb epidemic

spread, including reducing the peak medical demand and the

number of deaths (Hoertel et al., 2020). However, which part of

the emergency response is most effective remains unclear

(Tian et al., 2020). The positive consequences of mandatory

travel restrictions are recognized, yet the epidemic can

rebound when such measures are relaxed.

To mitigate these negative effects, robust disease control

and prevention planning is becoming increasingly important

as globalization and climate change are expected to make the

occurrence of new diseasesmore common in the future (Baker

et al., 2019). Previous models have primarily focused on

moderate measures, but evaluations of more rigorous

interventions, such as extensive travel restrictions and

travel demand scheduling under strict control, are required

because of COVID-19. New models should provide decision

support for the policymakers.
5. Research trends and prospects

5.1. Research trends

Over the past few decades, the focus of epidemiological model

research has shifted from group-based modeling to individ-

ual-based modeling. Individual-based models are more

appropriate for relatively small spatial scales and numbers of

populations, such as cities, communities, or other regions

with mobility and heterogeneity. Population-based models
Please cite this article as: Li, J et al., Modeling epidemic spread
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are best suited for simulating the spread of epidemics with a

certain degree of homogeneity within a large area. Most

mathematical models of epidemic spread use differential

equations based on the assumption of uniformity among in-

dividuals. Individual-based models use actual census data,

family structure data, human mobility data, and relational

network data to make the heterogeneous performance of

epidemic transmission more realistic.

Several challenges associated with individual-based sta-

tisticalmodels or networkmodels require consideration. First,

the data used by individual-based epidemiological models

often come from different data sources; thus, the quality of

data often results in insufficient analysis. Papoz et al. (1996)

pointed out that the quality of data obtained from different

data sources is usually far below the standard of specific

epidemiological prevalence surveys. Second, individual-level

data is used to better estimate individual parameters, while

many variables are estimated from overall data. Therefore,

potential ecological fallacies need to be considered when the

representativeness of parameters is evaluated. Different

spatiotemporal scales can also lead to different results.

Third, data loss and zero counts caused by frequently used

count data lead to problems, such as excessive data

dispersion.

Disease analysis andmodeling techniques are essential for

understanding and controlling the dynamics of infectious

disease transmission. Recognizing the conditions of an

epidemic occurrence, as well as the mode of transmission of

specific diseases, is critical to designing and implementing

effective public healthmeasures. Themodelingmethods used

depend on the research data available and the purpose. The

advantages, disadvantages, and spatial scale appropriate for

different models in studying epidemics in transportation

systems are shown in Table 2.

5.2. Research prospects

The use of individual-based epidemiological models for deci-

sion support research has become mainstream, and the

various measures include travel restrictions, bus shutdowns,

and others. With the development of technology and the

diversification of data, the demand for differentiated man-

agement and control has gradually increased; consequently,

higher requirements have been placed on related models.

COVID-19 exposed the shortcomings of the existing model

system. To better plan control measures, evaluate disease

intervention strategies, and determine the best use of public

health resources, further research is needed in the following

three aspects.

First is the impact of epidemics on urban mobility

behavior. Human beings engage in self-protection behavior

based on epidemic information to reduce the risk of epidemic

infection; however, most previous epidemic models only

consider the impact of human dynamics on epidemic spread.

Some models consider simple behaviors triggered by epi-

demics. With the awareness of the severity of the epidemic

increasing, individual responses become increasingly diverse

and complex. The models need to better represent the impact

of epidemics on individual behavior. By doing so, these

models could provide new insights into the interplay between
in transportation networks: A review, Journal of Traffic and
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humans and epidemics, thus helping to prevent epidemics

from occurring.

Second is the impact of urban mobility behavior on the

spread of epidemics. Human behaviors can drive the spread of

epidemics. Most previous epidemic models have considered

the impact of human dynamics on epidemic spread, but

COVID-19 shows that the concepts of human behavior need to

be extended, including freight transportation system and

travel demand scheduling under strict control. Characterizing

the impact of microscopic traffic behavior on the spread of

epidemics would clarify the mechanism by which the

epidemic spreads and help develop transport-based

interventions.

Third is the proposal and evaluation of intervention mea-

sures. The outbreak of COVID-19 was so rapid that the gov-

ernment only had time to implement non-pharmaceutical

interventions. However, which aspects of the emergency

response have been most effective remains unclear, and the

epidemic is prone to rebounding when such measures are

relaxed. Therefore, models need to propose and evaluate

appropriate interventions for preventing outbreaks and for

stopping the spread of epidemics in transportation systems,

whichmediate public travel and facilitate the reopening of the

economy after the epidemic.
6. Conclusions

This study conducted a comprehensive review of epidemic

models within transportation systems to provide insights into

the interplay between transportation networks and epi-

demics. Three major types of models were introduced,

including mathematical models, network-based models, and

agent-based models, and the principles, applications, advan-

tages, and limitations for applications of these models in

transportation networks were discussed. Specifically,

modeling challenges brought by the COVID-19 pandemic were

summarized, including the interaction mechanism between

urban mobility via transportation networks and epidemic

spread, as well as the evaluation method for intervention

strategies. Then, three future research directions in epidemic

modeling within transportation networks were proposed,

including the impact of epidemics on individual behavior, the

impact of individual behavior on the spread of epidemics, and

the proposal and evaluation of intervention measures.

Further work is needed in the proposed future research

prospects, especially understanding the mechanism between

travel behavior and virus spread during epidemic outbreaks.

In addition, a generalized agent-based testbed model is

needed to compare and verify the abovemechanism. At last, a

retrospective analysis of the effects of travel restriction policy

in different countries during COVID-19 pandemic is needed to

obtain evidence-based conclusions.
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