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Review

Old and New Roles and Evolving Complexities 
of Cardiovascular Clocks
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The cardiovascular (CV†) system has been established to be significantly influenced by the molecular 
components of circadian rhythm. Oscillations of circadian rhythm occur within the circulation to affect 
thrombosis and blood pressure and within CV tissues including arteries, heart, and kidney to control 
function. Physiologic and molecular oscillations of circadian rhythm have been well connected via global, 
tissue-specific, and transgenic reporter mouse models of key core clock signals such as Bmal1, Period, and 
Clock, which can produce both pathology and protection with their mutation. With different nuances of CV 
clock action continuing to emerge in studies of the cardiovascular system, new questions are raised in both 
new and old mouse model system observations that underscore the importance, complexity, and continued 
study of the circadian clock mechanism in cardiovascular disease.
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THE CIRCADIAN CLOCK

Anticipation and the ability to respond to unexpected 
stresses is an important aspect of survival at the organis-
mal and cellular level. In biology, the circadian clock acts 
like a temporal receptor, receiving information regarding 
physiologic timing and adapting accordingly. This 24-
hour sensor has adapted and evolved as a characteristic 
of the 24-hour earth rotation, which on average provides 
us with an oscillating light pattern, of 12 hours of light 

and 12 hours of darkness. The mechanism by which this 
light information is relayed to the brain is through the 
melanopsin photopigment [1] contained in retinal gan-
glion cells [2] and as melanopsin is a non-visual phot-
opigment, it can also relay this information in blindness 
[3,4] though enucleation (eye removal) abolishes this 
ability [5], as this opsin is also localized within the eyes. 
Within the cells of land organisms, a unique set of genes/
proteins receive this temporal information via a cascade 
of signals that are modified by the environmental (zeitge-
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bers), which include light, temperature, and food intake 
(eating). Circadian timing gives organisms the ability to 
anticipate and adapt to a change in the environment to 
maximize life at minimal metabolic cost. When we rest, 
the clock informs metabolic cues to change accordingly, 
and when we rise, metabolism adapts in anticipation of 
the demands that arise in activity. Conceptually, the clock 
regulates on the level of whole animal to organ to cell 
and the molecular components of the circadian clock are 
found in nearly all cells with 43 percent of all protein 
encoding genes exhibiting circadian rhythms [6]. The 
components of the circadian clock that localize within the 
brain to regulate locomotor rhythms, dubbed the central 
clock, are found in a particular pair of bilateral brain nu-
clei above the optic chiasm. This suprachiasmatic nucleus 
(SCN) is comprised of approximately 20,000 neurons in 
this region of the hypothalamus, to form a network that 
can synchronize the internal clock timing to the external 
stimuli, such as sunlight, via input from the retina and 
those melanopsin photopigments. The intensity, frequen-
cy, and timing of the external environment thus play an 
important role in controlling the clock [7]. For example, 
the time at which we eat or the time at which we receive 
light, or the frequency of meal or light bursts, and the 
caloric or illuminance (lux) strength of these stimuli im-
pact the responsiveness of the circadian clocks. Within 
the cardiovascular system, changes in external rhythms 
can be sensed by the circadian clock and translated into 
changes in blood pressure, vascular or heart function. In 
addition, it may be that clock mechanisms in the cardio-
vascular system can also interact to influence locomo-
tor activity [8] For example, disruption of Clock in the 
heart [8] decreased locomotor activity while disruption 
of Bmal1 in the endothelium [9] increased activity, but 
in both of these studies, despite peripheral clock muta-
tion influencing locomotor activity, overall locomotor 
rhythm was not changed. Further evidence suggestive of 
a CV clock to brain axis is recent data that showed that 
clock mutant mice undergoing left anterior descending 
coronary artery ligation exhibited changes in neuronal 
dendrite trees in the prefrontal cortex and hippocampus 
relative to wild type mice [10]. It is evident that circadian 
clocks can act in the periphery, can influence CV function 
by direct actions, but it seems they may also feed back 
and control aspect of central functions, which may again 
feed forward.

To date, it is understood that the circadian clock itself 
is a sedentary mechanism, one that resides within cells, 
but it may control other endocrine/humoral/electrical 
signals that could circulate its message [11,12], either 
from the SCN to the vasculature, vice versa, or cell to 
cell. This local transcriptional/translational/post-trans-
lational/epigenetic self-regulated mechanism was first 
discovered in flies [13,14]. There, the Drosophila circa-

dian clock is comprised of four factors: clock (clk), cycle 
(cyc), period (per), and timeless; in mammals Bmal1 
and Cry are homologs of clock and cyc. Clk, Cyc (flies), 
BMAL1, and CLOCK (mammals) are the positive limb 
that drives transcription. Per, Tim (flies), PER, and CRY 
(mice) inhibit clk/cycle (flies) or Bmal1/Clock (mice). 
Also, in mammals there are three Per and two Cry gene 
isoforms. A protein-protein interaction between BMAL1 
and CLOCK proteins facilitates binding to E-box cis-reg-
ulatory enhancer sequences in Per or Cry genes or other 
clock-controlled genes (that are not part of the circadian 
clock regulatory loop) to promote transcription. The pro-
tein-protein interaction or heterodimerization of BMAL1 
and CLOCK is conferred by a contained protein domain 
(in both BMAL1 and CLOCK) called Period-ARNT-sin-
gle-minded (PAS) domain. In addition, PAS domains are 
sensors to changes in redox and oxidant stress state. The 
formation of BMAL1/CLOCK heterodimers (also there 
are BMAL1/NPAS2 heterodimers in mammals), enables 
binding to the E-boxes (CACGTG) in the regulatory re-
gions of the targeted genes, including the negative feed-
back components of the circadian clock loop Per and Cry 
genes, resulting in increased expression of PER (PER1, 
PER2, PER3) and CRY (CRY1 and CRY2) in cytoplasm. 
Thus, the Per and Cry RNA levels are increased while the 
Bmal1 RNA levels fall because of the positive feedback 
[15,16].

CIRCADIAN CLOCKS IN BLOOD VESSELS

Similar to the way SCN can receive input, the periph-
eral clocks themselves can also be entrained or modified 
by different molecular, mechanical, or metabolic signals. 
Peripheral clocks are present and regulate transcription 
of thousands of genes in different tissues, affecting multi-
ple physiological functions, including the function of the 
vascular system [17].

It is well known that the fluctuations of blood pres-
sure and heart rate show circadian rhythm. In addition, 
other cardiovascular outcomes such as acute myocardial 
infarction, cerebral infarction, stroke, and sudden cardiac 
death also tend to present a peak onset frequency in the 
early morning [18]. The evidence is compelling that cir-
cadian rhythm dysfunction contributes to many aspects 
of cardiovascular disease [19,20] and is becoming more 
appreciated as an important factor in improving both 
therapeutics [21] and general well-being. Mechanistic 
studies have proved informative in identifying a clear role 
of the circadian clock loop and its targets [22-24] in CV 
function, though gaps in knowledge remain. Indeed, new 
data has emerged that is uncovering unexpected aspects 
and complexities of the circadian clock in cardiovascular 
function and signaling.

The circadian clock is found in all layers of the vas-
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culature: the endothelium, the media, and the adventitia. 
The endothelium of the vasculature is unique as it is a sin-
gle circumferential layer of cells, and as such oscillating 
endothelial-specific circadian signals might be under-rep-
resented or even missed in profiling studies of whole 
aorta, given that the more massive smooth muscle and 
adventitial multilayers are more prominent. But indeed, 
the clock is located in endothelial cells [25]. Endothelial 
cells, which line the blood vessels, function as a sensor to 
flow hemodynamics to regulate blood exchange between 
vessels and different tissues, thus maintaining tissue 
oxygen supply and normal end-organ function. Damage 
from different blood borne insults such as activated mac-
rophages, turbulent blood flow forces, hyperglycemia, 
and hyperlipidemia, most likely are first experienced by 
endothelial cells of the arteries wall which may cause 
the endothelial cell to become inflamed, de-differenti-
ated, and dysfunctional. Target effects include altered 
regulation of adhesion molecules (such as ICAM-1 and 
VCAM-1) expression, imbalanced eNOS production, in-
creased superoxide and coagulation cascade components 
(such as plasminogen activator inhibitor PAI-1, fibrino-
gen and von Willebrand factor VWF) production [26], 
and enhanced inflammatory responses. Circadian clocks 
are involved in all these processes. It has been shown that 
circadian clock dysfunction translates into endothelial 
dysfunction, shown in Bmal1 knockouts, Clockmut mice 
and Per2 mutant mice [27-29]. The endothelial dysfunc-
tion is corroborated by deficits in key aspects of endothe-
lial signaling, as the loss of core circadian clock causes a 
reduced phosphorylation form of eNOS and AKT in aorta, 
and also in the long-term impairs vascular remodeling, to 
cause vessel stiffness [30-32]. More specific evidence im-
plicating the endothelial clock was shown demonstrating 
that endothelial disruption of Bmal1 worsens microvas-
cular injury in retinal capillaries and large arteries [33].

Aside from these former studies, more recent work 
also suggested that the clock plays an important role in 
the permeability barrier of the vasculature, a role that 
involves the endothelium and pericytes. In the brain 
circulatory system, Bmal1 has been shown to regulate 
pericytes in the mouse blood-brain barrier. Disruption of 
the Bmal1 clock component in mice via nestin-targeting 
to brain pericytes (which are in close apposition to the 
endothelium) caused an increase in blood-brain barrier 
permeability, that was mediated through pericyte dys-
function as evidenced by decreased PDGF-bb production 
[34]. A circadian input into permeability and the blood-
brain barrier has also been shown in Drosophila. In flies, 
the blood-brain barrier is more restrictive at night, a 
barrier oscillation that is mediated by a fly-specific junc-
tion molecule called innexin [35] (invertebrate analog of 
connexins) [36], similar to the restrictive barrier timing 
of mice in the periphery [37]. In human endothelial cells, 

the sleep hormone melatonin has been shown to mod-
ulate other growth factors to regulate permeability. In 
HUVEC cells, it was shown that melatonin could reduce 
the increased vascular permeability caused by VEGF and 
EGF, by altering VE-cadherin phosphorylation and Akt 
[38]. Indeed, melatonin is a key output of the clock, and 
may be an important signal that also entrains the clock, 
to control cardiovascular function and blood pressure in 
addition to endothelial permeability [39,40].

BLOOD PRESSURE CLOCKS

The circadian clock is known to influence blood 
pressure. This has been shown from global Bmal1 disrup-
tion [41], tamoxifen induced disruption of Bmal1 [42], 
smooth muscle cell disruption of Bmal1 [43], Cry [44], 
and Per disruption in mice [45]. Given the importance 
of the heart and cardiac output in blood pressure regu-
lation, it should also be stated numerous studies have 
demonstrated the key importance of the heart and more 
specifically the cardiomyocyte clock in heart metabolism 
and function [46-55]. Recent work now implicates Dec 
(deleted in esophageal cancer) transcription factors in 
blood pressure regulation. Like the positive limb of the 
core clock, Dec1 and Dec2 are bHLH transcription fac-
tors and also play a role in controlling circadian rhythms 
[56], albeit less well studied. Recent data has revealed 
that Dec1 KO mice exhibited decreased blood pressure, 
and mechanistically it was found that Dec1 suppressed 
expression of ATP1B1 which encodes the beta subunit 
Na+/K+-ATPase. This effect was through a heterodimeric 
partnership between Dec and Clock that bound the AT-
P1B1 promoter to inhibit ATP1B1 transcription. While 
Dec1/Clock was a repressor, the Bmal1/Clock heterodi-
mer was an activator of ATP1B1 promoter activity. Such 
ascribed alterations in the dynamics of circadian clock 
heterodimerization with Dec1 that occur in the kidney 
likely also contribute to the altered ATP1B1 expression 
observed in the heart and vasculature in Dec1 KO mice 
[57]. Other work demonstrated the importance of other 
transporters/channels such as eNAC in blood pressure 
regulation [58] and alterations in clock oscillations in 
the hypertensive, high salt-challenged kidney [59]. There 
is also evidence that the renin-angiotensin pathway also 
contributes to circadian clock mediated blood pressure 
regulation [60], although the site of action (central or 
peripheral receptors) of AngII signaling in circadian 
blood pressure regulation has not been fully elucidated. 
One recent study approached this by administering angio-
tensin receptor blockers infused either in the brain or in 
the periphery in a hypertensive strain of mice at different 
times of day. In these studies, the ARBs exhibited greater 
effects to lower blood pressure when given at night in the 
BPH/2J mice, and this hypotensive effect was compara-
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data showing Akt is upregulated by Clock mutation [50], 
downregulated by Bmal1 mutation [27,74,75], and upreg-
ulated by Per mutation, while Akt also can act to feedback 
and regulate Bmal1 [76] and Clock phosphorylation [77], 
which could condition their ability to transactivate target 
genes. Indeed, more evidence is emerging regarding the 
good and bad of broken clocks.

Can a Broken Clock be a Good Thing?
More evidence has emerged that the absence of a 

functional clock may not always induce a bad outcome 
for CV health (in mice). Disruption of Bmal1 in vas-
cular smooth muscle cells was protective in one study 
assessing experimentally induced aortic aneurysm. In 
those studies aneurysm induced by either an aldosterone 
infusion combined with a high salt diet or AngII infusion 
combined with hypercholesterolemia model robustly 
caused aneurysm in wild type mice, but Bmal1-KO mice 
did not develop robust aneurysms, potentially through an 
increase in TIMP-4 to suppress MMP activation and elas-
tin breaks [78]. In a different set of studies using another 
model of cardiovascular insult, induced hypertension via 
high salt and mineralocorticoids, induced hypertension 
in wild type mice, but blood pressure in mice with Per1 
disruption was actually lower [65]. These studies were 
done in mice where clock genes were disrupted prenatal-
ly, but what about clock disruption postnatally?. Recent-
ly, studies in which Bmal1 was disrupted in adult mice 
(tamoxifen-induced Bmal1 disruption) also demonstrated 
that mice with broken clocks are protected from jet-lag. 
In these studies, induced Bmal1 disruption in 3-month-
old mice, facilitated adaptation to a range of light cycle 
perturbation models, resulting in improved adaptation 
with regard to central locomotor activity and peripheral 
metabolic homeostasis [79]. These observations in clock 
knockout mice suggest that lacking an oscillator may 
be protective by rendering the mice impervious to envi-
ronmental disturbances of circadian rhythm. There may 
be additional complexities that involve differences be-
tween clock disruption or dysfunction pre-natally versus 
post-natally. In utero, clock genes are thought to not os-
cillate in the fetus [80,81]. That said, there are still “non-
clock” fetal rhythms persisting in the fetus coordinated 
through the mother [82,83] (perhaps reminiscent of the 
way single cells pass clock time to daughter cells [84]). 
Work by Yang et al. identified phenotypic disparities be-
tween pre-natal and post-natal clock gene disruption in 
mice challenging “rhythm” roles in the progression of 
some pathologies [42]. In these studies, some phenotypes 
previously reported in global embryonic Bmal1 knockout 
mice were not recapitulated by inducible disruption of 
Bmal1 at 3 months (tamoxifen treatment in 3 month-old 
floxed Bmal1 mice) leading to Fitzgerald and colleagues 
to propose a circadian modification of the Barker hy-

ble when ARBs were administered either via intracere-
broventricular or subcutaneous routes of delivery, with 
the authors concluding that central angiotensin II receptor 
type I inhibition was not contributing to the hypertension 
in this strain of mice [61]. The db/db obese mouse has 
also been a valuable model to examine circadian rhythm 
in blood pressure in conditions of a genetically intact 
clock. In the obese and diabetic db/db mouse, blood pres-
sure dipping is impaired [62], and recent studies identify 
numerous disruptions in peripheral clock oscillations. In 
these studies, the db/db mouse was crossed to the reporter 
PerLuc mice to generate an obese non-dipping BP mice 
with this circadian luciferase readout; the results showed 
that there were impaired rhythms in liver, kidney, and 
submandibular glands, but without interrupting SCN Per 
rhythms [63].

Some interesting complexities remain with regard to 
blood pressure and the circadian clock. Like Bmal1-KO 
mice [64], the Dec-KO [57] and Per1-KO mice [65] were 
also shown to have a lower blood pressure than WT mice, 
though Clock mutant mice in the Dec1 studies were shown 
to have a higher blood pressure than their WT counterparts 
[57]. That blood pressure is lower with circadian clock 
gene mutation is counter-intuitive. However, this has now 
been shown in multiple models. Most recently, disruption 
of Bmal1 in perivascular adipose tissue (PVAT) caused a 
super-dipper phenotype, via a lower blood pressure dip 
during the rest period, and mechanistically by a Bmal1 in-
duced regulation of angiotensinogen specific to the PVAT 
[66]. Thus, circadian clock gene mutation can cause 
endothelial dysfunction [25,28], accelerated thrombosis 
[67,68], and vascular pathology [33,69-73] despite mod-
est lowering of blood pressure. Studies in SMC Bmal1-
KO mice may have shed some insight on this quandary. 
SMC Bmal1-KO mice were shown to exhibit lower 
blood pressure like the global knockout of Bmal1. The 
investigators parsed systolic and diastolic blood pressure 
data and found that the increment of diastolic pressure 
reduction was greater than that of systolic blood pressure 
resulting in an increase in the derived pulse pressure [43]. 
Thus, it may be that increased pulse pressure (which can 
be a predictor of vessel stiffening, and has been shown to 
occur in Bmal1-KO and Per-KO mice [31]) could explain 
the susceptibility to vascular disease in face of lowered 
blood pressure in the circadian clock knockout models. 
There are other mechanisms also likely at play in this par-
adox. Formation of Dec/Clock heterodimers to influence 
the core clock mechanism may effect kidney-controlled 
blood pressure and vascular function controlled remodel-
ing differently. Moreover, there could be additional tissue 
specific bHLH’s that can modify signaling and CV re-
sponses. Additionally, there are bi-directional signals like 
Akt that have exhibited complex up or down regulation 
depending on tissue and circadian clock mutation, with 
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connected in the mouse models or even disconnected 
altogether. Many of the disparities are observed in mod-
els of mice where the clock is genetically mutated. And, 
while there are human mutations in clocks that may relate 
to the mouse models [90], non-genomic dysfunctions of 
circadian clocks and rhythms that arise in the timing of 
drug dosing, social jet lag, shift work, and sleep disorders 
are important to be studied in both the genetic mouse 
models of mutation and in conditions of sleep deprivation 
and light cycle alteration that may yield more insight into 
the complexities of the circadian clock in cardiovascular 
disease. Given these complexities there are certain things 
that are well established:

• Circadian clocks oscillate after birth.
• Circadian clocks regulate downstream signals, 

(whether those target signals oscillate or not).
• Circadian clocks can sense changes in timing.

Given the significance of temporal routines (or lack 
thereof in human life), the science of clock signaling 
remains a very important and complicated biology to un-
derstand, but one that is certain to provide new clues into 
cardiovascular health.
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