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Estimation of vital signs from facial videos
via video magnification and deep learning

Bin Lin,1,* Jing Tao,1 Jingjing Xu,1 Liang He,1 Nenrong Liu,2 and Xianzeng Zhang1,3,*

SUMMARY

The continuous monitoring of vital signs is one of the hottest topics in healthcare. Recent technolog-
ical advances in sensors, signal processing, and image processing spawned the development of no-
contact techniques such as remote photoplethysmography (rPPG). To solve the common problems
of rPPG including weak extracted signals, body movements, and generalization with limited data re-
sources, we proposed a dual-path estimation method based on video magnification and deep learning.
First, image processes are applied to detect, track, and magnificate facial ROIs automatically. Then,
the steady part of the wave of each processed ROI is used for the extraction of features including
heart rate, PTT, and features of pulse wave waveform. The blood pressures are estimated from the
features via a small CNN. Results comply with the current standard and promise potential clinical ap-
plications in the future.

INTRODUCTION

The continuous monitoring of vital signs gradually become the most attractive topic in healthcare, especially after the impact of the SARS-

CoV-2 (COVID-19) epidemic.

More andmore people are requiring a non-invasive even no-contact, more effective, comfortable, easy operation and less expensive tech-

nique to obtain long-term health monitoring and early warning of disease just at home. In this way, not only does the accessibility of treat-

ments for persons who live in distant areas or are unable to travel increase but also the risk ofmutual infection and the pressure of visits reduce.

In recent years, photoplethysmography (PPG), which is utilized in this field due to its low cost and non-invasive nature, can trap subtle changes

in the reflected light due to physiological activity. It can be further categorized into contact-based contact photoplethysmography (cPPG) and

contactless-based remote photoplethysmography (rPPG). The former consisting of a light source and a photodetector is abundant in infor-

mation including the heart rate (HR), cardiac hemodynamics, age, and condition of blood vessels.1 However, it still leads to the problems such

as sight discomfort, skin lesions, temporary occlusion of the subcutaneous capillaries, and so on due to the contact probes. Thus, there has

been an increased interest in exploring methods for the latter measurement, which collects information from the skin by only a video camera

and estimates the vital signs of a person.

The rPPG-based methods can be low-cost and ubiquitous because they only need cameras that can be further embedded in daily-use

devices such as smartphones or laptops. Thus, since the inception of the first rPPG-based method,2 researchers have made tremendous

progress in the assessment of cardiac activity and respiratory monitoring,3 blood pressure (BP) measurement,4 oxygen saturation,5 skin

detection6 and mental stress assessment.7 Among the methods, the face is usually one of the least occluded skin regions where PPG sig-

nals are the most salient so extracting a PPG signal from the facial region has become mainstream. However, there are remaining various

challenges for the estimation of vital signs by rPPG. During the collection of the video data, the strength of the signals sometimes is weak

and very vulnerable to interference. The motion of the subject, including head tilt, posture changes, facial expressions, and so on, always

exists. Besides, the variations of the illumination caused by the flash of indoor lights and the internal noise of the digital camera are other

main interference. In addition, the appropriate datasets are lacking, which brings great difficulties to some end-to-end deep-learning-

based methods.

Conventional methods for measuring HR based on remote photoplethysmography (rPPG) have seen continuous development. Among

them, the first rPPG-based method proposed by Verkruysse2 was introduced for measuring HR and respiratory rate (RR) from facial videos.

On this basis,manymethods have been proposed to furthermitigate the impact of lighting changes on signal analysis during video recording.

Poh8,9 utilized the Blind Source Suppression (BSS) method for non-contact multiple physiological parameters measurement. The PPG signal

was obtained by separating source signals via Independent Component Analysis (ICA) and Principal Component Analysis (PCA), and the
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noise was removed from the PPG signal through time filters. Cheng10 proposed a video-based approach for robust heart rate measurement.

This method employed joint blind source separation (JBSS) and ensemble empirical mode decomposition (EEMD) to suppress the influence

of lighting changes. Another problemwhen using rPPG is the non-uniform spatial illumination on the facial skin. Song11 combined EEMD and

multiset canonical correlation analysis (MCCA) to address this issue. The green signal was decomposed into multi-channel signals of which

reliable intrinsic mode functions (IMFs) were input into MCCA to obtain the canonical variables (CVs).

Inspired by the abovemethods, a plethora of academic studies have extended the application of rPPG technology fromHR to other phys-

iological signals, such as blood pressure (BP) in recent years. The primary rationale is that the speed of blood flow is positively correlated with

blood pressure.12 Because of the rate of blood flow, which is termed PulseWave Velocity (PWV), blood pulses require a timedelay to reach the

periphery of the body from the heart, which is denoted as Pulse Transit Time (PTT).13 A lot of mathematical models of these various param-

eters have been studied to infer blood pressure values. Sugita14 proved that the Pulse Transit Time (PTT) difference and instantaneous phase

difference obtained from two different pulse wave measurements are positively correlated with blood pressure. Thus, the PTT can be consid-

ered one of the most important indexes correlated the changes in blood pressure and has yielded many productive results. Secerbegovic15

applied ICA to extract clean PTT signals from the ROI of facial video and investigated their correlation with blood pressure. In a new blood

pressure measurement model proposed by Zhou,16 the PPG signals from facial videos were obtained and the corresponding systolic and

diastolic pressure peaks and waves were extracted. The least squares fitting algorithm is used to fit optimal parameters and incorporated

Body Mass Index (BMI) as a correction factor. Considering that the conventional PTT-based estimation of BP is limited to the motion of

the subject, Fan17 introduced an adaptive selection strategy to obtain reliable rPPG signals and developed an adaptive Gaussian model

to fit the rPPG waveform for a more accurate PTT estimation. However, they still lack robustness and generalization ability when the signal

is not ideal.

There are obstacles to conventional methods in some unstable situations such as head motion, alterations in facial expressions, and fluc-

tuations in environmental illumination, so more and more researchers tried to adopt deep learning to solve the above problems. The deep

learning-based methods for measuring heart rate using rPPG can be classified into two categories.

Table 1. Heart rate measurement results under different video magnification methods

Number Reference

Facial pulse wave Neck pulse wave

EVM EVAM learning-based VMM EVM EVAM learning-based VMM

1 50 50 50 50 50 50 50

2 57 58 57 57 64 62 59

3 58 55 56 56 50 52 55

4 60 61 61 61 58 59 59

5 61 63 62 62 73 70 67

6 62 61 61 62 63 63 62

7 62 63 63 63 65 64 63

8 63 62 63 63 68 65 64

9 64 64 64 64 60 63 63

10 67 69 69 68 70 68 69

11 70 72 71 72 60 65 67

12 73 74 74 74 71 71 72

13 75 75 76 76 80 78 77

14 77 77 78 77 80 77 77

15 79 79 79 79 78 78 78

16 84 87 87 87 71 73 75

17 94 94 94 94 88 91 92

18 111 110 110 111 100 105 105

Table 2. Heart rate measurement errors under different video magnification methods

Error Reference

Facial pulse wave Neck pulse wave

EVM EVAM learning-based VMM EVM EVAM learning-based VMM

RMSE 1.056 0.889 0.722 5.333 3.278 2.278 1.056

MAPE 1.576% 1.270% 1.055% 7.490% 4.636% 3.098% 1.576%
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The first category uses deep learning techniques to enhance traditional methods. For instance, Qiu18 showed a framework called EVM-

CNN, which is based on the EVM algorithm. This method utilized a Gaussian pyramid for spatial decomposition, band-pass filters to obtain

the spatial frequency signals of interest, and then extracted heart rate-related features fed into a regression convolutional neural network for

heart rate prediction. Luguev19 employed a deep spatiotemporal network called 3DCNN to directly extract pulse signals from raw facial

videos for measuring HRV. Liu20 presented a central difference convolutional network with a 3D-CBAM attention mechanism (CDCA-

rPPGNet) for robust heart rate measurement. This network can extract more effective features from regions of interest (ROIs) as inputs to

the model and output more accurate rPPG signals by combining spatial and temporal features.

The above methods extract feature vectors from facial videos and convert them into HR. The second type of method is end-to-end deep

learning, which utilizes neural networks to directly estimate heart rate from facial videos without hand-crafted features. Chen21 proposed a

Convolutional AttentionNetwork (CAN) calledDeepPhys, which introduced the attentionmechanism to video-based vital signmeasurement.

The network can automatically select and weigh the ROIs in the video, enabling accuratemeasurement of HR and RR even in situations where

the head rotates significantly. Yu22 adopted a method of enhancing videos to address the issue of damaged rPPG signal extraction from the

compressed video. Themethoddirectly recovers accurate rPPG signals from raw facial videos using spatiotemporal information. The network,

called PhysNet, recovered rPPG signals with precise pulse peaks, which can be used for subsequent spectral analysis and accurate calculation

of heart rate and heart rate variability. Lee23 developed a remote heart rate estimation algorithm that incorporated transductive inference

technology. This algorithm can learn an adaptive model from a small amount of annotated data. The weight changes were implemented

in the CNN-based convolutional encoder module, while the estimation of the rPPG signal was implemented in the LSTM-based RPPG esti-

mator. Liu24 used a general rPPG estimator based on spatiotemporal convolutional networks to handle different types of skin inputs and

adopted a spatiotemporal rPPG fusion strategy to enhance its robustness. To address the limitation of high redundancy of spatial information

caused by slow changes in facial video information, Hu25 proposed a model of extracting the spatiotemporal facial features based on short

segments. In addition, they integrated a spatial-temporal attentionmodule (SAM) tomitigate the impact of headmovement and enhance the

robustness of HR estimation. To reduce the noise in different regions of the face due to facial expressions, Lokendra26 mentioned a novel

denoising-rPPG method (AND-rPPG) for heart rate estimation. This method utilized a temporal convolution network (TCN) and introduced

action units (AUs) to remove noise from the time signal, thereby improving the accuracy of heart rate estimation. Yin27 proposed a heart rate

estimation model employing an attention mechanism module to focus on the skin area and suppressed the noise introduced by the back-

ground, and a spatiotemporal convolution module to improve the estimation accuracy in various environments. Li28 presented a multi-level

convolutional neural network-based heart rate estimation method including low-level face feature generation (LFFG), 3D spatiotemporal

stack convolution (STSC), multi-hierarchical feature fusion (MHFF), and signal predictor (SP).

In the field of video-based non-contact blood pressure measurement, innovative achievements have also been made by using deep

learning methods. Patil29 utilized a camera to detect PPG signals and extracted features as inputs to a feedforward neural network for esti-

mating blood pressure, with ICA used for preprocessing the rPPG signals. Luo30 mentioned a blood pressure estimation method using the

smartphone camera to capture facial videos and detect subtle changes in facial blood flow. During filming, the camera was focused on the

subject’s forehead, and the transdermal optical imaging (TOI) methodwas used to select the facial region for feature extraction. Then, 30 fea-

tures obtained after PCAdimensionality reductionwere input into amultilayer perceptron to generate abloodpressurepredictionmodel. The

JADE algorithm was used to separate the blind source signals from the green channel in the ROI. The PPG signal was then denoised and the

peaks and waves of the systolic and diastolic pressures were extracted. Finally, the model for systolic and diastolic pressure was established

with the introduction of BMI. Wu31 proposed an end-to-end blood pressure estimation model based on multichannel rPPG input by using a

generative adversarial network (GAN) called infoGAN to enhance data. Iuchi32 studied a method for remotely estimating continuous blood

Table 3. Consumption time of different video magnification methods (in second)

Method Facial pulse wave Neck pulse wave

EVM 0.33 0.35

EVAM 60.13 66.65

Learning-based VMM 15.33 15.61

Table 4. Consumption time of different video magnification methods (in second)

Method RMSE MAPE

Poh8 13.42 11.32%

Chrominance33 18.51 15.46%

DeepPhys21 6.77 8.72%

EVM-CNN18 4.86 5.49%

Jaiswal34 9.17 7.82%

Proposed method 2.13 2.85%
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pressurebasedonpulsewaves and spatial information. The spatial pulsewave signals were transformed into spatial signals for each contour of

the ROI. A convolutional neural network based on ResNet and CBAM was trained on these contours to estimate continuous blood pressure.

However, even though these methods have better generalization than the conventional methods, they still face a few limitations. Firstly,

some methods need ECG signals during the estimation, which may be difficult to include in wearable cuff-less systems. Additionally, some

handcrafted features should be used in the ideal configuration. Thus, most of the methods can hardly satisfy the Association for the error

range of the Advancement of Medical Instrumentation (AAMI) standard.

This present article aims to realize automatical and high-precise estimation of vital signs including heart rate and blood pressure only from

facial videos in actual health monitoring. To solve the above problems, we proposed a method based on magnification and deep learning.

First, two ROIs in the face and neck respectively are extracted, tracked, and magnified dynamically and automatically by image processing

techniques to reduce the influence ofmotion and enhance the strength of PPG signals. Then, each ROI in a frame is divided into several blocks

and the averagegray value of each block forms a time series from the video. The Principal ComponentAnalysis (PCA) is applied to realize blind

source separation. The series of the principal component will be cut iteratively basedon statistics to obtain the stable part which is regarded as

the valid pulsewave. The heart rate is estimated synthetically by thedual waves from the face and neck,which further guarantee the accuracy of

the results. Other features extracted from the wave are the input of the designedCNN, and the output is the predicted blood pressure values.

As a whole, the main contributions of this article can be summarized, as follows.

� A pattern is proposed to realize a highly precise estimation of vital signs.
� Dual-path time series of signals are extracted from a single facial video automatically and work collaboratively to guarantee accuracy

during the estimation of vital signs.
� Multiple technologies of image and signal processing are combined to extract stable phases from the original time series to reduce the

influence of interferences from human skin characteristics, breathing, the external environment, and so on.

� A small two-stage CNN is designed to predict the blood pressures with extracted features from the stable time series rather than the

whole image to keep the effectiveness of training with limited samples.

RESULTS

The influence of video magnification methods

The process of the method is shown in Video S1.

In order to analyze the adaptability of three popular magnification methods including color EVM, EVAM, and learning-based VMM to

extract the facial pulse wave and neck pulse wave, this section sorted 288 samples from small to large according to the heart rate and divided

Table 5. Error of blood pressures

Error Diastolic blood Systolic blood

RMSE 3.75 4.11

MAPE 4.95% 3.73%

Figure 1. Scatterplot of heart rate
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them into 6 layers with a heart rate range of 50–60, 60–80, 80–100 and 100–120 respectively. Following the stratified sampling method, 18

samples were selected for 6 control experiments. Tables 1 and 2 show the experimental results and errors.

It can be seen that the three methods have similar effects on facial pulse waves, but Learning based VMM is more suitable for neck

pulse waves. This is mainly because compared to the face, the neck is more susceptible to breathing. The extracted neck fluctuation signal

not only contains pulse wave signals but also strong respiratory signals. Inadvertent swallowing movements can also cause significant noise

to the extracted pulse wave signals in the neck. Color-EVM magnifies color changes while easily magnifying noise. EVAM can suppress

large linear motion interference and only magnify small changes in larger movements, Learning-based VMM can choose the frequency

band of interest to achieve better results than EVAM. Furthermore, the consumption time of different methods is listed in Table 3. Consid-

ering the effectiveness and the consumption cost of the three methods, we used color-EVM to enlarge facial videos to neck videos in

further experiments.

Validity analysis of measurement results

Error analysis

This section calculates the RMSE andMAPE of the predicted values of heart rate and blood pressure detection methods relative to the refer-

ence values measured by Omron HEM-7124. The specific results of different methods for HR estimation are shown in Table 4. The proposed

method has better performance than the baselines.

According to the standard for electronic or liquid free sphygmomanometers issued by the Association for the Advancement of Medical

Instrumentation (AAMI), the heart rate measurement error of electrocardiogram devices should not exceed G10% of the standard value or

5 bpm. The relative error rate of the two methods meets the requirements of regulations. Therefore, the heart rate value measured by the

proposed method can be used instead of Omron HEM-7124 for the following blood pressure model training and testing.

The errors of the estimated blood pressures are shown in Table 5. The standard also stipulates that the average error and standard

deviation should be less than G5% and 8 mmHg respectively. The standard deviation values of the prediction results of the diastolic

Figure 2. Scatterplot of blood pressure

(A) Scatterplot of diastolic blood pressure for the training data.

(B) Scatterplot of systolic blood pressure for the training data.

(C) Scatterplot of diastolic blood pressure for the test data.

(D) Scatterplot of systolic blood pressure for the test data.
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and systolic blood pressure test sets are 4.106 and 4.839 respectively, which means that the proposed method in this article can meet the

standard.

Correlation analysis

The Pearson correlation coefficient between the heart rate detection results obtained from the above experiment and the heart rate values

measured byOmron HEM-7124 is 0.988, indicating a strong correlation. The Pearson correlation coefficients between the predicted values of

the above blood pressure model and those measured by Omron HEM-7124 were calculated. Among them, the Pearson coefficients of dia-

stolic blood pressure and systolic blood pressure are 0.921 and 0.950 respectively, both showing strong correlations.

Consistency analysis

Since the Pearson correlation coefficient can only reflect the degree of correlation between data, the consistency between two sets of data

should be further evaluated. Common analysis methods including scatterplots and Bland Altman analysis in the medical field were also

applied to quantitatively evaluate the consistency of HR, diastolic blood pressure, and systolic blood pressure with the results measured

by Omron HEM-7124.

A scatterplot shown in Figure 1 is used to evaluate the consistency of estimation results of HR. Each input video contains a set of heart rate

reference values and experimental value data, corresponding to a point on the scatterplot coordinate system. The blue line shown in Figure 2

is the line y = x. It can be seen that all data points are distributed near the line y = x and can be fitted using the line. The properties of the line

indicate that the proposed method in this article has good consistency with Omron HEM-7124.

The scatterplots shown in Figure 2 reflect the consistency between the training and testing results of the blood pressure network models

and the reference blood pressure values measured by Omron HEM-7124. From Figures 2A and 2B, it can be seen that all data points are

distributed near the straight line y = x, indicating that the models have very good training effects on diastolic and systolic blood pressure.

And Figures 2C and 2D prove the good effectiveness in the test data.

Figure 3. Results of Bland Altman consistency analysis

(A) Analysis of heart rate.

(B) Analysis of diastolic blood pressure.

(C) Analysis of diastolic blood pressure.
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The offsets in the measurement results between the two methods are inevitable. Within the offset range, there is a confidence interval of

95%. If the difference between the two measurement results is within the 95% confidence interval, it is considered that the measurement re-

sults of the two methods have good consistency in clinical medicine. The Bland Altman plot represents the 95% confidence interval with a

1.96-fold SD confidence interval. Figure 3 shows the Bland Altman analysis of the experimental results in this article.

Figure 3C shows the Bland Altman consistency analysis of the heart rate values calculated from 288 sample videos collected using the

method proposed in this article and the heart rate reference values measured by Omron HEM-7124. The scatter points in the figure are

all distributed within 1.96 times the SD confidence interval (�4.0,3.6), and the average difference line is located below the longitudinal

zero line position, with a value of �0.2, which reflects strong consistency between the two heart rate measurement methods. Similar conclu-

sions that there is strong consistency between the two methods in systolic diastolic and blood pressure can be obtained from Figures 3B

and 3C.

DISCUSSION

The continuous monitoring of vital signs is a highly researched topic at the current time. The increasing demand for rPPG-based devices can

provide an interestingdirection in this field. Keeping that inmind, our research proposed an estimationmethodof HR andBP via videomagni-

fication and deep learning. In this work, the proposed method gives non-contact measurements of HR and BP.

We compared the influences of methods of video magnification for the final estimation. The learning-based VMM can get the best accu-

racy in both waves at the cost of the highest consumption time. By contrast, EVAM can better balance the two aspects. The proposedmethod

has better performance than the baselines in error analysis. The main reason is the design of a dual-path check, which guarantees the reli-

ability of the results. For the baselines, the side faces of the subjects mean less information and decrease the accuracy of the results. The

relative error rate of the proposed method and the device meets the requirements of regulations. Besides, the high correlation and consis-

tency between the proposedmethod and the device further demonstrated the effectiveness of themethod and the potential of being used in

clinics and daily care instead of the device.

We believe, our work can provide a possible solution that is no-contact, more effective, comfortable, easy operation, less expensive, and

assist in health care.

Limitations of the study

The number of datasets can be further extended for better training Effect. The lighting conditions in the experiment are ideal. The proposed

method doesn’t consider the situation of low or uneven light intensity and adopts pointed measures, which is the focus of our next work.
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Materials availability
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METHOD DETAILS

All methods can be found in the accompanying transparent methods supplemental information.
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