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Towards guided and automated programming
of subthalamic area stimulation in
Parkinson’s disease

San San Xu,"?? Nicholas C. Sinclair,"? Kristian J. Bulluss,"*>® Thushara Perera,'?
Wee-Lih Lee,' Hugh J. McDermott'?> and Wesley Thevathasan'-*7"-

Selecting the ideal contact to apply subthalamic nucleus deep brain stimulation in Parkinson’s disease can be an arduous process, with
outcomes highly dependent on clinician expertise. This study aims to assess whether neuronal signals recorded intraoperatively in
awake patients, and the anatomical location of contacts, can assist programming. In a cohort of 14 patients with Parkinson’s disease,
implanted with subthalamic nucleus deep brain stimulation, the four contacts on each lead in the 28 hemispheres were ranked ac-
cording to proximity to a nominated ideal anatomical location and power of the following neuronal signals: evoked resonant neural
activity, beta oscillations and high-frequency oscillations. We assessed how these rankings predicted, on each lead: (i) the motor bene-
fit from deep brain stimulation applied through each contact and (ii) the ‘ideal’ contact to apply deep brain stimulation. The ranking
of contacts according to each factor predicted motor benefit from subthalamic nucleus deep brain stimulation, as follows: evoked
resonant neural activity; 7> =0.50, Akaike information criterion 1039.9, beta; #*=0.50, Akaike information criterion 1041.6,
high-frequency oscillations; +* = 0.44, Akaike information criterion 1057.2 and anatomy; 7> = 0.49, Akaike information criterion
1048.0. Combining evoked resonant neural activity, beta and high-frequency oscillations ranking data yielded the strongest predic-
tive model (#* = 0.61, Akaike information criterion 1021.5). The ‘ideal’ contact (yielding maximal benefit) was ranked first according
to each factor in the following proportion of hemispheres; evoked resonant neural activity 18/28, beta 17/28, anatomy 16/28, high-
frequency oscillations 7/28. Across hemispheres, the maximal available deep brain stimulation benefit did not differ from that yielded
by contacts chosen by clinicians for chronic therapy or contacts ranked first according to evoked resonant neural activity. Evoked
resonant neural activity, beta oscillations and anatomy similarly predicted how motor benefit from subthalamic nucleus deep brain
stimulation varied across contacts on each lead. This could assist programming by providing a probability ranking of contacts akin to
a ‘monopolar survey’. However, these factors identified the ‘ideal’ contact in only a proportion of hemispheres. More advanced signal
processing and anatomical techniques may be needed for the full automation of contact selection.
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MF = motor fluctuations; SNr = substantia nigra pars reticulata; SEM = standard error of the mean; STN = subthalamic nucleus;

UPDRS = Unified Parkinson’s Disease Rating Scale
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In patients with Parkinson’s disease implanted with subtha-
lamic nucleus (STN) deep brain stimulation (DBS), the most
critical step in programming is to select the ideal contact to
apply stimulation.! Currently, this is largely achieved by
trial and error, often through a ‘monopolar survey’, where
DBS is delivered through each contact to provide a ranking
according to efficacy and therapeutic window." Such ap-
proaches are time-consuming and rely heavily upon clinician
expertise.” Moreover, clinical assessments during program-
ming can be confounded by patient fatigue, ‘stun’ effect
and the variable latencies of different therapeutic effects of

benefit due to inappropriate contact choice.’*® One potential
solution is to use objective data, such as anatomical mapping
of contacts”>® and neuronal signals recorded from DBS leads
during surgery, to guide (and ultimately automate) contact
selection. Candidate neuronal signals include beta oscilla-
tions,”™'? high-frequency oscillations (HFO)'® and the re-
cently described evoked resonant neural activity
(ERNA)."*'> However, the utility of these data, alone or
in combination, to aid contact choice for STN-DBS has
not been extensively explored.

Thus here, in 28 hemispheres in 14 patients with
Parkinson’s disease implanted with STN-DBS, we assessed
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how well anatomy and neuronal signals recorded in awake
patients, can predict, on each lead: (i) the motor benefit
from STN-DBS applied through each contact and (ii) the
‘ideal’ contact (yielding maximal motor benefit) to apply
DBS. We hypothesized that contact ranking according to
all the assessed factors would predict DBS benefit and that
a combination of factors would improve this prediction.
We hypothesized that the assessed factors would correctly
predict the ideal contact in a proportion of hemispheres.

Materials and methods

We assessed 14 patients (28 hemispheres) with Parkinson’s
disease implanted with STN-DBS between February 2016
and February 2018. Fifteen patients were initially recruited
but one withdrew before clinical assessment. Informed
consent was obtained from all participants. Intraoperative
assessments and clinical data have previously been reported
in 10 patients.'* The study was approved by the St Vincent’s
Public (HREC-D 071/14), St Vincent’s Private (R0236-15)
and Austin (SSA/15/Austin/266) Human Research Ethics
Committees. The patients’ clinical characteristics are sum-
marized in Table 1.'¢

Quadripolar electrodes (Medtronic, model 3387) were
implanted bilaterally targeting the STN during awake neu-
rosurgery as previously described.'® The substantia nigra
pars reticulata (SNr) was the target for the deepest contact
with the middle two contacts targeting the STN and the
superior contact targeting the zona incerta.

Postoperatively, DBS programming was performed by
two experienced DBS neurologists (W.T., S.5.X.) from a
high-volume DBS service (>50 de novo implantations
annually). Electrodes were localized by manually fusing the
preoperative MRI and postoperative CT on a planning station
(StealthStation™ S7, Medtronic, Dublin, Ireland). Images were
available for visual inspection to assist programming.
Clinicians were blinded to the neuronal signal recordings.

At the time of the experimental programming sessions,
the mean improvement in Unified Parkinson’s Disease
Rating Scale (UPDRS) Part III on DBS (as employed for
chronic therapy) compared with the preoperative, off-
medication score, was 53.3%, standard deviation 16.5.

Electrode extension leads were externalized intraoperatively
and connected to a highly configurable, custom neurostimula-
tor with the ability to deliver tailored stimulation.'” Neuronal
signals were measured with the patient awake and at rest im-
mediately after lead implantation. Neuronal activity was re-
corded at each contact in a monopolar configuration and
re-referenced to an average of the four unstimulated contacts
in the contralateral hemisphere for common mode noise
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suppression. Local field potentials (LFPs) were recorded during
an off-stimulation period of 15 s using a biosignal amplifier
(g.USBamp, g.tec medical engineering GmbH, Schiedlberg,
Austria) with a 38.4 kHz sampling rate, prior to ERNA assess-
ment. To detect ERNA, burst stimulation was applied to each
electrode for 10's, comprising 10 symmetric 60 ps biphasic
pulses in each second, delivered at 3.375 mA and 130 Hz.
Recordings were not obtained from one ventral contact (in
the SNr) due to a technical fault. After the recording period,
the electrode extension leads were connected to the subcuta-
neous pulse generator under general anaesthesia.

Signals were processed and analysed using MATLAB
R2017a (Mathworks, MA, USA). ERNA recordings were
zero-phase forward-reverse filtered using a second-order
Butterworth high-pass filter (f.=2 Hz) and a second-order
Butterworth band-stop filter (f.=49-51 Hz) and further
processed using a 21-point centred moving-average filter.
Evoked potentials following the last pulse of each burst of
stimulation were then extracted and detrended to remove
baseline offsets. ERNA was evoked and measurable on at
least one contact on every implanted lead. Every implanted
lead had at least one contact located within the visible ana-
tomical boundaries of the STN. ERNA power was calcu-
lated by squaring the average of the root mean square
amplitude from 4 to 20 ms measured at the contact of inter-
est immediately after burst stimulation was applied to each
of the other three contacts on the lead.

LFP power was measured over arbitrarily defined frequency
bands and detectable in all hemispheres. Peaks in beta and
HFO bands were visually identifiable in only a proportion of
hemispheres (beta 19/28, HFO 3/28). Beta power was calcu-
lated over the 13-30 Hz frequency band."® For beta recordings,
Blackman-Harris windowed epochs of 1s were processed
using short-time Fourier transformation. HFO power was cal-
culated over the 200400 Hz frequency band.'® For HFO re-
cordings, sharp spikes, likely from power line interference,
were removed using the second-order Butterworth notch filters
with cut-off frequencies set to +0.5 Hz of the spike frequency
based on visual inspection. Given the large frequency band oc-
cupied by HFOs, epochs of 1s were processed using
Thomson’s multi-taper spectral estimates (20 tapers) to better
deliver a smoothed spectrum estimate.”

Each patient’s preoperative brain MRI was co-registered
with the postoperative CT (BRAINSFit, 3D Slicer) and con-
tacts were visually identified from the related artefact.
Contacts were ranked in order of proximity to a nominated
ideal anatomical location (Supplementary Fig. 1). This ideal
location was determined using a local landmark targeting
method and, if needed, adjusted after direct visual inspection
according to the following method. First, on the native scan
of each patient, the adjacent red nucleus was identified and
referenced as follows: along the anterior border (‘Bejjani
line’), 2 mm inferior to the superior border and 3 mm
from the lateral border.?° This method is reported to closely
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Guiding programming of deep brain stimulation

approximate the clinically effective stimulation site and to
accommodate for interpatient STN variability.”" Euclidean
distance from each contact to this location was calculated
using a dedicated script on MATLAB R2017a, yielding an
initial ranking of contacts. Second, each contact was visua-
lized by an expert clinician (S.5.X.) and rankings adjusted
if necessary (30/111 contacts), taking into account factors
such as the centrality of each contact within the STN and
width of the STN at that location (ideally >2 mm).***?

Motor benefit was assessed 3-18 months after STN-DBS
surgery (range: 92-586 days; mean: 306 days) to minimize
clinical benefit from ‘stun’ effect and to capture a span of
timepoints. The primary motor outcome was the sum of
the hemibody motor subscores (Part III, items 20-26) of
the UPDRS, recorded by the same movement disorders spe-
cialist (S.S5.X.). The motor score in all patients was initially
recorded ‘off medication/off stimulation’ following the over-
night withdrawal of dopaminergic medication and a 45 min
DBS wash-out period. Monopolar stimulation was then ap-
plied to each contact in both hemispheres simultaneously in
a counterbalanced order and motor outcomes were assessed
after a wash-in period of 15 min.” The pulse width and fre-
quency were kept constant as per chronic therapy and stimu-
lation amplitude was adjusted if necessary, as follows:
reduced by 10% if chronic electrode configuration was bipo-
lar and reduced by 25, 50 or 75% if side effects emerged.
Amplitude adjustments due to side effects were accounted
for in the statistical model. If the clinician-selected electrode
configuration was bipolar or discordant across hemispheres
(e.g. top contact in the left and bottom contact in the right
hemisphere), the chronic stimulation settings were included
as a separate condition in the counterbalanced design. The
cathode chosen by the clinician for chronic therapy, in
monopolar or bipolar configuration, was classified as the
clinician-selected contact. The movement disorders specia-
list (S.S.X.) and the patient were blinded to the electrode
configuration during the ‘on stimulation’ conditions.

To evaluate how well the ‘monopolar survey’ could be pre-
dicted, a mixed-effects model (MEM)?** evaluated the correl-
ation between the ranking of contacts in each hemisphere
according to the predictive factors and the motor benefit in
the contralateral hemibody with DBS applied to each con-
tact. Motor benefit was calculated according to the follow-
ing equation:

UDPRS DBS benefit (%)

_ Off DBS UPDRS — On DBS UPDRS

Off DBS UPDRS x 100

In the MEM, patients, and hemispheres (nested into pa-
tients), were explored as random effects. Hemisphere was
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not a significant random effect in the model and removed
from the final analysis. The order of conditions and tolerated
stimulation level at each contact (25, 50, 75 or 100% of
chronic amplitude) were assessed as fixed effects. Only sti-
mulation level correlated with UPDRS DBS benefit [r* =
0.39, Akaike information criterion (AIC) 1063.6, P<
0.001] and thus retained in the model as a fixed effect.
The rankings of contacts according to ERNA power, beta
power, HFO power and anatomical location were assigned
as fixed effects to build the final MEM.

In assessing how combinations of factors could predict
UPDRS DBS benefit, we employed a procedure akin to the
‘best subset regression’ model, where all possible combinations
of features were explored in models.”* Using the AIC score, we
identified the best-fitted model, which required the minimum
number of features to achieve the optimal predictive perfor-
mance (i.e. the lowest AIC score).?® This analysis method ad-
dresses multicollinearity as the AIC score will penalize a
model if the predictive performance does not improve signifi-
cantly after adding a highly correlated feature.

Spearman’s rank-order correlation was used to evaluate
associations between neuronal signals. A repeated-measures
ANOVA model compared the DBS benefit in each hemi-
sphere at the first ranked contact according to the factors
of interest, the clinician-selected contact and the maximal
available DBS benefit. ANOVA was also used to determine:
(i) the variation in UPDRS DBS benefit across the four con-
tacts in each hemisphere; (ii) the variation in neuronal signal
power across the four contacts in each hemisphere and (iii)
the variation in neuronal signal power across the four con-
tacts ranked according to proximity to the nominated ideal
anatomical location to apply DBS.

The ANOVA model was built using Minitab 18 (Minitab
Inc., PA, USA) and multiple comparisons were corrected
using the Tukey method. The MEM was built using the
Ime4 package?” on R Project 4.0.3 (R Core Team, Vienna,
Austria). The MEMs were compared using ANOVA with
the Bonferroni-Holm method employed for post hoc ana-
lysis. Corrected P-values are shown in all figures. Results
were deemed significant if P <0.05.

Anonymized data can be made available for the purpose of
replicating procedures and results, subject to an embargo
of 24 months from the date of publication.

Results

ERNA, beta and HFO power varied across the four contacts
in each hemisphere ranked according to signal power
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Figure | Neuronal signal characteristics. (A) The ERNA amplitude and power spectral density of (B) beta and (C) HFO recorded at each
of the four contacts in the right hemisphere of participant |. EO, most ventral contact in the substantia nigra pars reticulata; El, ventral STN
contact; E2, dorsal STN contact; E3, most dorsal contact in the zona incerta. (D) ERNA power [repeated-measures ANOVA, F(3,94) =234, P <
0.001], (E) beta power [repeated-measure ANOVA, F(3,94) =22.0, P < 0.001] and (F) HFO power [repeated-measures ANOVA, F(3,94) =53.1,
P < 0.001] at contacts ranked according to the neuronal signal power. Red horizontal line in D above the x-axis represents the power range for
beta oscillations and HFO. *At Rankings 1-3, n =28 hemispheres. At Ranking 4, n =27 hemispheres, as recordings were not obtained in one
ventral contact due to a technical fault. Bars represent SEMs. ERNA, evoked resonant neural activity; HFO, high-frequency oscillations.

[repeated-measures ANOVA, ERNA F(3,94)=23.4,
P <0.001; beta F(3,94)=22.0, P < 0.001; HFO F(3,94) =
53.1, P <0.001, Fig. 1]. Across all contacts, there was a cor-
relation between ERNA power and beta power (r,=0.57,
P <0.001), ERNA power and HFO power (r,=0.74,
P <0.001) and beta power and HFO power (r,=0.58,
P <0.001).

ERNA, beta and HFO power varied across the four con-
tacts ranked according to proximity to the nominated ideal
anatomical location [repeated-measures ANOVA, ERNA
F(3,94)=11.4, P<0.001; beta F(3,94)=4.9, P=0.003;
HFO F(3,94)=19.3, P<0.001]. ERNA, beta and HFO
power were greatest at contacts ranked as closer to the no-
minated ideal anatomical location (Fig. 2A-C).

Stimulation amplitude was reduced (from chronic therapy)
due to side effects (for example, visual change, nausea, cap-
sular side effects) in 29 out of 111 contacts to 75% in 17
contacts, 50% in 11 contacts and 25% in one contact. No
amplitude reductions were required at contacts selected by
the clinician for chronic therapy. Reductions occurred
more often in contacts located further from the nominated
ideal anatomical target (10 times in the two best-ranked con-
tacts and 19 times in the two worst-ranked contacts).

However, stimulation amplitudes were sometimes reduced
at contacts ranked first according to anatomy (five hemi-
spheres), ERNA (two hemispheres), beta (three hemi-
spheres) and HFO (five hemispheres).

UPDRS DBS benefit varied across the four contacts in each

hemisphere ranked according to efficacy [repeated-measures
ANOVA, F(3,94) = 137.6, P < 0.001, Fig. 2D].

UPDRS DBS benefit correlated with the ranking of contacts
according to ERNA power (r*=0.50, AIC 1039.9, P<
0.001), beta power (=0.50, AIC 1041.6, P<0.001),
HFO power (¥ =0.44, 1057.2, P<0.001) and anatomy
(*=0.49, AIC 1048.0, P < 0.001) (Fig. 3A-D).

The best two-factor predictive model for UPDRS DBS bene-
fit incorporated ERNA power and HFO power rankings
(r*=0.57, AIC 1028.0, Table 2). This model was more pre-
dictive than the models of either factor alone (ERNA power;
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Figure 2 Anatomical location of neuronal signals and degree of motor benefit with DBS. (A) ERNA power [repeated-measures
ANOVA, F(3,94) =1 1.4, P<0.001], (B) beta power [repeated-measures ANOVA, F(3,94) =4.9, P=10.003] and (C) HFO power
[repeated-measures ANOVA, F(3,94) = 19.3, P < 0.001] at contacts ranked according to proximity to the nominated ideal anatomical location
for DBS in the STN region. (D) Hemibody UPDRS DBS benefit at contacts ranked according to the degree of motor benefit with DBS
[repeated-measures ANOVA, F(3,94) = 137.6, P<0.001]. *At Rankings 1-3, n =28 hemispheres. At Ranking 4, n =27 hemispheres, as
recordings were not obtained in one ventral contact due to a technical fault. Bars represent SEMs. ERNA, evoked resonant neural activity; HFO,
high-frequency oscillations; DBS, deep brain stimulation; UPDRS, Unified Parkinson’s Disease Rating Scale.

r*=0.50, AIC 1039.9, P<0.001 and HFO power; r*=
0.44, 1057.2, P < 0.001).

The best three-factor predictive model for UPDRS DBS
benefit incorporated ERNA power, HFO power and beta
power rankings (r*=0.61, AIC 1021.5). This model was
more predictive than the two-factor predictive model of
ERNA power and HFO power rankings (P = 0.006). The in-
clusion of anatomy ranking into the three-factor model
(ERNA power, HFO power and beta power) did not yield
a more predictive model (#*=0.63, AIC 1022.1, P=0.15).

Across hemispheres, UPDRS DBS benefit varied between
contacts grouped into the following categories: contacts
yielding the maximal available benefit, contacts clinically

selected for chronic DBS and contacts ranked first according
to each predictive factor [repeated-measures ANOVA,
F(5,149)=11.9, P <0.001, Fig. 3E].

Within hemispheres, there was a significant difference be-
tween the UPDRS DBS benefit at the first ranked contact and
the remaining three contacts on each lead according to
ERNA power, but not beta power, HFO power or anatomy
(Fig. 3A-D, Bonferroni-Holm multiple comparisons).

The maximal UPDRS DBS benefit in each hemisphere [mean
benefit 62.2%, standard error of the mean (SEM) 3.9] did
not differ from the UPDRS DBS benefit arising from contacts
clinically selected for chronic therapy (mean benefit 60.7%
SEM 4.0, Tukey method P = 1.0) or contacts ranked first ac-
cording to ERNA (mean benefit 49.4% SEM 5.5, Tukey
method P=0.1). The maximal UPDRS DBS benefit in
each hemisphere was greater than the UPDRS DBS benefit
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ideal anatomical location [repeated-measures ANOVA, F(5,149)=11.9, P<0.001]. In A-D, raw means (dots) and standard errors (bars) are
presented in the figures, whilst statistical analyses employed fitted means adjusted for fixed and random effects. *At Rankings 1-3, n =28
hemispheres. At Ranking 4, n =27 hemispheres, as recordings were not obtained in one ventral contact due to a technical fault. AIC, Akaike
information criterion; DBS, deep brain stimulation; ERNA, evoked resonant neural activity; HFO, high-frequency oscillations; MEM, mixed-effects
model; UPDRS, Unified Parkinson’s Disease Rating Scale.
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Table 2 Results of mixed-effects models assessing the
degree to which contacts ranked according to ERNA
power, beta power, HFO power and anatomical
location correlated with UPDRS DBS benefit

Predictive models for UPDRS

DBS benefit
Ranked variables in model  Conditional > AIC  P-value
ERNA 0.50 1039.9 <0.001
Beta 0.50 1041.6  <0.001
HFO 0.44 1057.2  <0.001
Anatomy 0.49 1048.0 <0.001
ERNA and beta 0.53 1037.1  <0.001
ERNA and HFO 0.57 1028.0 <0.001
ERNA and anatomy 0.51 10432  <0.001
Beta and HFO 0.52 1040.9 <0.001
Beta and anatomy 0.54 1037.8 <0.001
HFO and anatomy 0.54 1043.1 <0.001
ERNA, HFO and beta 0.61 1021.5 <0.001
ERNA, beta and anatomy 0.54 1039.7 <0.001
ERNA, HFO and anatomy 0.58 1030.6 <0.001
Beta, HFO and anatomy 0.60 1026.5 <0.001
ERNA, HFO, beta and anatomy 0.63 1022.1 <0.001

DBS, deep brain stimulation; UPDRS, Unified Parkinson’s Disease Rating Scale; ERNA,
evoked resonant neural activity; HFO, high-frequency oscillations.

arising from contacts ranked first according to anatomy
(mean benefit 45.0% SEM 5.3, Tukey method P=0.02),
beta (mean benefit 43.4% SEM 5.9, Tukey method P=
0.006) and HFOs (mean benefit 27.7% SEM 5.8, Tukey
method P < 0.001).

However, the UPDRS DBS benefit from contacts ranked
first according to ERNA power was not significantly differ-
ent from contacts ranked first according to beta power or
anatomical location. The UPDRS DBS benefit from contacts
ranked first according to ERNA, beta and anatomy was
greater than contacts ranked first according to HFOs
(Tukey method ERNA and HFO P =0.001, beta and HFO
P =0.03, anatomy and HFO P=0.01).

A Contacts with greatest UPDRS DBS benefit
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Contacts ranked first according to each predictive factor
were the same as those yielding the maximal UPDRS DBS
benefit in the following proportion of hemispheres: ERNA
18/28, beta 17/28, anatomy 16/28, HFO 7/28 (Fig. 4A).

The clinically selected contacts for chronic therapy yielded
the maximal UPDRS DBS benefit in 25/28 hemispheres.
This contact (cathode for monopolar or bipolar DBS) usual-
ly corresponded to the contacts ranked first according to
ERNA power (20/28 hemispheres) and anatomy (19/28
hemispheres) and less often to contacts ranked first accord-
ing to beta power (14/28 hemispheres) and HFO power (10/
28 hemispheres) (Fig. 4B).

Discussion

Here, in patients with Parkinson’s disease implanted with
STN-DBS, we assessed how well anatomy and neuronal sig-
nals (beta oscillations, HFO and ERNA) recorded intrao-
peratively in awake patients predicted, on each lead: (i) the
‘monopolar survey’ degree of motor benefit from
STN-DBS applied through each contact and (ii) the ideal
contact to apply DBS. ERNA, beta oscillations and anatomy
were all similarly predictive of UPDRS DBS benefit. The
strongest predictive model resulted from combining
ERNA, beta and HFO rankings data. The ‘ideal contact’
on each lead was ranked first according to ERNA, beta oscil-
lations and anatomy in a similar proportion of hemispheres
and less often according to HFOs. Contacts ranked first ac-
cording to ERNA (but not the other factors) yielded signifi-
cantly greater UPDRS DBS benefit than the remaining three
contacts on each lead.

Several limitations of this study need to be acknowledged.
We evaluated how the assessed factors could predict the

efficacy of STN-DBS across contacts on each lead.
B Contacts selected by the clinician for chronic DBS
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Figure 4 Relationship between maximal available DBS benefit, chronic DBS location and neuronal signals and anatomical
location of contacts. (A) The relationship between contacts yielding greatest motor benefit (UPDRS) with DBS and the ranking of those
contacts according to the various factors. In four hemispheres, the UPDRS DBS benefit was the same in two different contacts and both contact
rankings are represented. (B) The relationship between contacts selected by the clinician for chronic DBS and the ranking of those contacts
according to the various factors. DBS, deep brain stimulation; ERNA, evoked resonant neural activity; HFO, high-frequency oscillations; UPDRS,

Unified Parkinson’s Disease Rating Scale.
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Randomized controlled trials usually determine such effi-
cacy according to quality of life and disability.*=3°
Conversely, our single-session experimental study could
only assess acute motor effects of DBS and was thus prone
to confounds such as stimulation carry-over effects and pa-
tient fatigue.®>! However, order effects were non-significant
in our statistical analyses. Moreover, the long-term clinical
relevance of our results is supported by the high concord-
ance between the clinician-selected DBS contact and the con-
tact identified as ideal during the study. Our sample size may
have been insufficient to detect significant differences across
all comparisons—but was powered to discriminate clinically
relevant outcomes at an individual level, consistent with pre-
vious studies of a similar nature.”'®'? We employed DBS
parameters that were used for chronic therapy, only adjust-
ing amplitudes in response to side effects. This may have
favoured outcomes from the contacts clinically chosen for
chronic DBS with stimulation levels being excessive or
insufficient at other locations. Excessive DBS can degrade
motor performance, but the clinical impact of this is consid-
ered modest.*” In contacts further from the neural target,
increasing DBS can produce greater motor benefit,>® though
a saturation of benefit can be observed.’* It should be
noted that the usual treating clinicians did assess the ana-
tomical location of electrodes to help guide programming.
This may have increased the concordance between anatomy
and the contacts clinically selected for chronic DBS. The
duration of experiments was limited by patient tolerance.
Thus, we applied DBS bilaterally and performed a compre-
hensive motor evaluation on each hemibody. Our results
could be confounded by ipsilateral effects of DBS but these
confer only around a 20% motor benefit in Parkinson’s
disease.**>¢

Here, we provide evidence that contact selection could be
guided using objective data. All the assessed factors could
(variably) predict the degree of motor benefit with DBS ap-
plied through the contacts on each lead—akin to the results
of a ‘monopolar survey’. Such information could help nar-
row programming choices to minimize time costs and error
rates associated with DBS programming. Inadequate pro-
gramming is a common cause of DBS failure® and expert re-
programming improves clinical outcomes.® Thus, using
objective data to guide programming could improve reliabil-
ity and expedite identification of the ideal DBS location, re-
ducing the treatment burden.

Supporting long-term relevance, neuronal signals re-
corded during electrode implantation predicted clinical out-
comes many months after surgery. This is significant, as
whilst frequent DBS adjustments are often employed early
after implantation due to varying ‘stun’ effect, of greatest
importance is optimally applied long-term DBS.?” The
most vital aspect of contact selection is to identify the single
best contact or best combination of contacts to apply chron-
ic DBS. The ideal contact was almost always ranked as first
or second according to ERNA, beta oscillations and anat-
omy. However, these factors ranked the ideal contact as first
in only around two-thirds of hemispheres or less.

S. S. Xu et al.

Combining information from the assessed factors did im-
prove prediction of the degree of motor benefit with
STN-DBS at a group level. Thus, each factor may only ac-
count for a proportion of the information required to deter-
mine the ideal stimulation location. However, the model
combining all neuronal signal data did not improve by add-
ing anatomy data, suggesting some redundancy in informa-
tion. Each factor is, by virtue of their intrinsic properties or
the analysis method employed, associated with the dorsal
STN region. There may well be better methods of capturing
and analysing each of the assessed factors to improve their
individual performance in localizing the ideal STN-DBS lo-
cation. For example, a potential confound here could be
the 3 mm spacing between the midpoint of adjacent con-
tacts. The ideal DBS location may be situated between these
contacts. Greater spatial resolution, afforded by leads with
smaller between-contact spacing and/or directional arrays,
could improve the predictive performance of all the factors
assessed.

ERNA has many attributes suggesting it could be an ideal
neuronal biomarker to tailor STN-DBS. For example, unlike
spontaneously occurring LFPs, ERNA occurs with a predict-
able latency after DBS pulses and is of much larger ampli-
tude. ERNA has a complex waveform with many
measurable features such as amplitude, frequency and decay
function. In this study, for the purpose of localizing DBS in
the STN region, we elected to assess the root mean square
amplitude of ERNA over a specific time window and evok-
ing stimulus. However, it is possible that other ERNA vari-
ables may better suit this purpose, which will be the focus of
future work.

Unlike such evoked activity, there is already a large body
of work exploring the relationship between spontaneous
LFPs recorded from the STN, especially beta oscillations
and motor deficits of Parkinson’s disease.>®*~*' For example,
the utility of beta power to guide STN-DBS programming on
directional leads has been specifically assessed, with similar
findings to this study (the ideal contact was correctly identi-
fied in 63% of leads).'” It is possible that metrics of beta os-
cillations other than power may be more predictive of the
ideal STN-DBS location, such as spectral divisions,**™*
beta burst duration*® and the spatial distribution of
oscillations, #4748

Compared with beta-band activity, the relationship be-
tween HFOs and Parkinson’s disease motor function re-
mains poorly understood.*****° Intriguingly, we found
that the contacts ranked second according to HFO power
produced the greatest UPDRS DBS benefit. One explanation
is that HFOs recorded in the STN could play a prokinetic
role, being enhanced with voluntary movement and dopa-
minergic medication.’*’! Indeed, a negative correlation be-
tween HFO power and akinesia and rigidity is reported in
some studies.*”’° However, simply assessing HFO power
may not accurately represent the complexity of activity
over the broad 200-400 Hz band. For example, shifts in
spectral divisions of HFO occur after levodopa administra-
tion and correlate with motor scores.'®> Phase—amplitude
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coupling of HFOs with beta oscillations has been measured
at clinically effective contacts’* and is attenuated by dopa-
mine administration and DBS.!3#%0
A significant issue that may confound the recording of neu-
ronal signals from recently implanted DBS electrodes is the
microlesion or ‘stun’ effect. For example, stun effect may re-
duce or abolish beta activity soon after electrode insertion.’?
In this study, beta and HFO peaks were identified in only
68% and 11% of hemispheres, respectively. We, therefore,
measured LFPs by simply calculating power over arbitrarily
defined frequency bands (e.g. 13-30 Hz for beta). ERNA,
being an evoked signal and much larger than LFPs,'*'”
may not be as prone to microlesioning effects (although this
remains to be formally assessed). Indeed, we observed the de-
caying oscillatory waveform of ERNA in every lead, in all pa-
tients in this cohort. Regardless, ERNA power did not
perform better than beta power when directly comparing
their performance in the single factor models to predict the
degree of motor benefit with DBS. However, ERNA more of-
ten predicted the contacts clinically selected for chronic DBS.
The relative performance of these different signals to guide
programming when they are recorded without any microle-
sion effect (e.g. from implanted sensing devices) is unknown.
Another potential confound of neuronal signal recordings
from DBS electrodes during surgery is the level of anaesthe-
sia. In this study, recordings occurred in awake patients.
Crucially, LFP measurements are typically greatly dimin-
ished or abolished by general anaesthesia.>*° This is a sig-
nificant limitation in the clinical application of
intraoperatively acquired LFPs to guide clinical manage-
ment, given the global trend towards implanting DBS under
general anaesthesia.’® In contrast, the distribution and mag-
nitude of ERNA are relatively preserved under deep general
anaesthesia with volatile agents or propofol.” The ability of
ERNA recorded under general anaesthetic to predict the
ideal location for STN-DBS will be assessed in future work.
Clinician aids have already been developed using the ana-
tomical mapping of contacts to assist DBS program-
ming.”®°” Importantly, our study highlights that, like the
other assessed factors, structural anatomy imperfectly identi-
fied the ideal STN-DBS contact. Interestingly, the addition of
anatomical information to neuronal signal rankings did not
improve the predictive model. As ERNA," beta oscilla-
tions*®! and HFO'®*” all tended to localize to the dorsal
STN, perhaps this rendered structural anatomy redundant
in identifying this location. However, when considered alone,
anatomy was similarly predictive of the ideal contact to apply
STN-DBS as ERNA and beta. Advanced imaging techniques
such as tractography and modelling volumes of tissue acti-
vated could improve the performance of anatomy for this
function. Moreover, such methods could complement the
functional information provided by neuronal signals, for ex-
ample by identifying pathways relevant to side effects.®*™*
The insights revealed by this study are important to under-
stand, given the established use of anatomy to localize
STN-DBS and the emerging availability of commercial intrao-
perative recording systems®>®® and implantable pulse
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generators capable of monitoring bioelectric signals.®” Our re-
sults also highlight the potential utility of ERNA, a novel neu-
ronal signal with attributes that have barely been explored. In
this study, we analysed ERNA that was recorded intraopera-
tively. It remains to be seen whether ERNA can be recorded
from implantable pulse generators (as described for beta oscil-
lations). Such chronic ERNA recordings would require a high
sampling rate (>1000 Hz) and a sufficient window to observe
ERNA’s decaying oscillation morphology, for example, by
skipping occasional pulses in otherwise continuous trains of
therapeutic DBS. We found that ERNA performed as well or
better than anatomy and beta oscillations in predicting the
ideal contact to apply STN-DBS. However, adding LFP infor-
mation to ERNA data improved this prediction. Such combin-
ing of data increases the signal recording and processing
demands and the added complexity may impact reliability.
Future studies could assess whether there are better methods
to analyse each factor to improve their individual performance
in predicting the ideal location to apply STN-DBS.
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