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Abstract Background Endothelial and complement activation were both associated with
immunothrombosis, a key determinant of COVID-19 severity, but their interrelation
has not yet been investigated.
Objectives We aimed to determine von Willebrand factor (VWF) antigen (VWF:Ag)
concentration, VWF collagen binding activity (VWF:CBA), a disintegrin and metal-
loproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) activity
(ADAMTS13:Ac), and their ratios in hospitalized COVID-19 patients, and to investigate
how these parameters and their constellation with complement activation relate to
disease severity and in-hospital mortality in COVID-19.
Methods Samples of 102 hospitalized patients with polymerase chain reaction-
confirmed severe acute respiratory syndrome coronavirus 2 positivity were included
in our observational cohort study. Patients were stratified according to the peak
severity of COVID-19 disease in agreement with the World Health Organization ordinal
scale. Twenty-six convalescent plasma donors with previous COVID-19 disease formed
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Introduction

The coronavirus disease 2019 (COVID-19), caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), presents in highly variable clinical forms ranging
from a mild upper respiratory tract infection to severe

respiratory failure necessitating mechanical ventilation.1,2

The disease primarily affects the respiratory system,
however, especially in severe cases, multiple organ systems
may be involved.1,2 In severe COVID-19, pathological over-
production of proinflammatory cytokines (termed cytokine
storm) has been described; the consequent systemic

the control group. VWF:Ag concentration and VWF:CBA were determined by enzyme-
linked immunosorbent assay (ELISA); ADAMTS13:Ac was determined by fluorescence
resonance energy transfer. Complement C3 and C3a were measured by turbidimetry
and ELISA, respectively. Clinical covariates andmarkers of inflammation were extracted
from hospital records.
Results VWF:Ag and VWF:CBA were elevated in all groups of hospitalized COVID-19
patients and increased in parallel with disease severity. ADAMTS13:Ac was decreased in
patients with severe COVID-19, with the lowest values in nonsurvivors. High (> 300%)
VWF:Ag concentrations or decreased (< 67%) ADAMTS13:Ac were associated with
higher risk of severe COVID-19 disease or in-hospital mortality. The concomitant
presence of decreased ADAMTS13:Ac and increased C3a/C3 ratio—indicating comple-
ment overactivation and consumption—was a strong independent predictor of in-
hospital mortality.
Conclusion Our results suggest that an interaction between the VWF-ADAMTS13 axis
and complement overactivation and consumption plays an important role in the
pathogenesis of COVID-19.

Visual summary. Scheme of potential interactions between the von Willebrand factor-a disintegrin and metalloproteinase with a
thrombospondin type 1 motif, member 13 (VWF-ADAMTS13) axis and complement activation in COVID-19.
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hyperinflammation is responsible for most detrimental
effects of the disease.3,4 In parallelwith the proinflammatory
changes, a prothrombotic state is also present, indicated by
an increased risk of venous, arterial, and microvascular
thrombotic events and by characteristic changes in labora-
tory parameters, such as elevated fibrinogen and D-dimer
levels.1,2,5,6 The concentration of von Willebrand factor
(VWF) is increased,7–10 whereas the activity of a disintegrin
and metalloproteinase with a thrombospondin type 1 motif,
member 13 (ADAMTS13) metalloprotease—responsible for
cleaving ultra-large VWF multimers—is decreased,11–14

resulting in an imbalance of the VWF-ADAMTS13
axis,12,15–17 which was associated with a higher severity
and mortality of COVID-19.11,14,18–21

Besides that of VWF, concentrations of further endothelial
markers are also increased in COVID-19,8,18,22,23 indicating a
role of altered endothelial cell function in the pathogenesis of
severe COVID-19 disease. Endothelial cells can directly be
infected by the SARS-CoV-2 virus via their angiotensin-convert-
ing enzyme 2 receptors24; moreover, they are important target
cells of inflammatory mediators, which are abundant in severe
COVID-19.3,4 The consequential endothelial activation and dys-
function may result in hemostatic abnormalities,25 and in the
dysregulation and overactivation of multiple plasma enzyme
systems, including the complement system.26 The complement
systemwas indeedfoundtobeactivated inCOVID-19; theextent
of complement activation was associated with the severity and
outcome of the COVID-19 disease.27–29 Furthermore, a strong
correlation was described between markers of endothelial and
complement activation in COVID-19,22 which may reflect the
fact that the two processes are linked on multiple levels:
endothelial dysfunction facilitates complement activation,
whereascomplementanaphylatoxinsandotheractivationprod-
ucts may in turn perturb endothelial function.30

Based on the above, we hypothesized that the pathological
activation of endothelial cells and the complement system
contribute jointly to thepathogenesis of theCOVID-19disease.

Accordingly, or aim was to determine the VWF antigen
(VWF:Ag) concentration, VWF collagen binding activity
(VWF:CBA), ADAMTS13 activity (ADAMTS13:Ac), and their
ratios in hospitalized COVID-19 patients, and to investigate
how these parameters and their constellations with markers
of complement activation relate to disease severity and in-
hospital mortality in COVID-19.

Methods

Patient Selection, Outcomes, and Definitions
To enroll a cohort of adult (above 18 years of age) hospitalized
COVID-19 patients, we screened and sampled 110 adult patients
whowere treated for suspectedCOVID-19disease in two tertiary
referral hospitals in Budapest between April 20 and July 2, 2020.
One hundred and two of the above patients with confirmed
COVID-19 infection—positive reverse transcription polymerase
chain reaction (RT-PCR) test result for SARS-CoV-2 in at least one
nasopharyngeal swab sample—were included in our study.

The enrolled hospitalized patientswere categorized accord-
ing to the maximal (peak) severity of the COVID-19 disease—

and also according to the severity at sampling—in agreement
with the World Health Organization (WHO) Ordinal Scale
for Clinical Improvement (https://www.who.int/blueprint/
priority-diseases/key-action/COVID-19_Treatment_Trial_Design_
Master_Protocol_synopsis_Final_18022020.pdf). Patients who
did not need oxygen therapy formed the HOSP (WHO-3:
hospitalized, no oxygen therapy) subgroup. Those patients
who received oxygen support, but did not require intubation
andmechanical ventilation or admission to intensive care unit
(ICU) formed theHOSPþO2 (WHO-4: oxygen bymaskor nasal
prongs) subgroup. The severity of the above cases was consid-
ered moderate, while fatal cases and cases requiring ICU
admission were considered severe. Surviving severe patients
constituted the ICU (WHO-6/7: intubation and mechanical
ventilation� additional organ support) subgroup, whereas
the deceased patients comprised the FATAL (WHO-8: death)
severity subgroup.

Twenty-six volunteers, who were registered to donate
convalescent plasma in a clinical trial and had evidence of a
previous COVID-19 disease (positive SARS-CoV-2 RT-PCR at
the time of the disease) not requiring hospitalization, were
sampled and included in the convalescent phase as a patient
control group. The scheme of patient and control subject
enrolment is represented in ►Supplementary Fig. S1 (avail-
able in the online version).

Digital hospital records were available for all enrolled
patients; these were used for the collection of the necessary
clinical, radiological, and basic laboratory data.

The study was conducted in accordance with the Declara-
tion of Helsinki and its subsequent revisions, and was
approved by the Hungarian Scientific and Research Ethics
Committee (ETT-TUKEB; No. IV/4403–2/2020/EKU). Written
informed consent was obtained from the patients and con-
trol subjects, or from the closest relative available, if the
patient was unable to give informed consent.

Samples
Blood samples were drawn from the antecubital vein or
from a central venous catheter, and were immediately
transferred to the processing laboratory, where the cells
and the supernatant—serum, citrate-, and ethylenediami-
netetraacetic acid-anticoagulated plasma—were separat-
ed by centrifugation. Serum and plasma aliquots were
immediately frozen and stored at –70°C until
measurements.

Only one sample per patient was included into the study,
if more samples were available, the one taken at the most
severe clinical stage was included. The median time from
hospital admission until sample collectionwas 3 days (inter-
quartile range: 1–7 days).

Laboratory Determinations
ADAMTS13:Ac was determined by a fluorescence resonance
energy transfer assay using the FRETS-VWF73 substrate, as
described earlier.31

VWF:Ag concentration and VWF:CBA were measured by
in-house sandwich enzyme-linked immunosorbent assay
methods described earlier.32
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Both parameters were expressed as percentages, where
the ADAMTS13:Ac, VWF:Ag, and VWF:CBAvalue of a citrated
plasma pool of healthy human individuals was regarded as
100%. The VWF:Ag level of our citrated plasma pool was
essentially similar (1.033 IU/mL) to that of a commercially
available calibrator (TECHNOZYM vWF:Ag Calibrator Set,
Technoclone GMBH, Vienna, Austria).

Determination of complement parameters was described
earlier.29

Further laboratory data were extracted from hospital
records.

Statistical Analyses
Categorical data are reported as frequencies (%); chi-square
and Fisher’s exact tests were used to compare categorical
data between groups. Most continuous variables showed
skewed distributions, so these data were presented as medi-
an and interquartile range, and nonparametric tests were
used: Mann–Whitney test for the comparison of two inde-
pendent groups, Kruskal–Wallis test with Dunn’s post-test
for the comparison of more than two independent groups,
and Spearman’s rank correlation test for analyzing the cor-
relations between continuous variables. Cases with missing
data were excluded pairwise. Receiver operating character-
istic (ROC) curveswere generated and analyzed to determine
optimal cutoff points for transforming continuous variables
into binary categorical variables. Uni- and multivariable
logistic regression models were built to assess the effects
of predictor variables on disease severity, and uni- and
multivariable Cox proportional hazard models were used
to assess the effects of various clinical and laboratory param-
eters on in-hospital mortality. Survival was defined as time
from hospitalization until the last follow-up visit before
September 5, 2020, or until death (all-cause, in-hospital
mortality). Kaplan–Meier curves were generated to show
the occurrence of primary events plotted against time.
Regression models were adjusted for a baseline model con-
sisting of age, the number of comorbidities, and C-reactive
protein (CRP) concentrations. The baseline model was the
final, best-fitting model built in a conditional forward step-
wisemanner based on age, the number of comorbidities, and
the following laboratory parameters associated with disease
severity: lymphocyte count, CRP, D-dimer, and interleukin-6
(IL-6) levels. Statistical interaction, analyzed in Cox propor-
tion hazard models, means that the association of a variable
with another is dependent on a third variable. Statistical
calculations were performed by GraphPad Prism 9 (Graph-
Pad Softwares Inc., La Jolla, California, United States), Statis-
tica (version 13.5.0.17, TIBCO Software Inc., Palo Alto,
California, United States), and IBM SPSS Statistics 27 (IBM
Corporation, Armonk, New York, United States) software.

Results

Description of the Patient Cohort and Severity
Subgroups
A total of 102 hospitalized COVID-19 patients were enrolled
in our study cohort (►Supplementary Fig. S1, available in the

online version). In addition, 26 plasma donors in the conva-
lescent phasewhowere outpatients at the time of a previous
SARS-CoV-2 infection (symptom onset median 54 [range:
26–74] days before sampling) were included as a patient
control group (CONTR).

Hospitalized patients (n¼102) were divided into sub-
groups based on the peak disease severity (►Supplementary

Fig. S1, available in the online version).
Twenty-seven patients did not need oxygen therapy during

their hospital stay; these patients formed the HOSP subgroup.
Thirty-three patients who received oxygen support, but did
not require intubation and mechanical ventilation or admis-
sion to ICU, formed the HOSPþO2 subgroup. Thirty patients
required intubation and mechanical ventilation, these and
further eight patients were admitted to the ICU. Seventeen
of the above patients survived, they composed the ICU sub-
group. Twenty-fivepatients diedduring theirhospital stay, the
deceased patients comprised the FATAL subgroup. None of the
patients in our cohort were treated by noninvasive ventilation
or high-flow oxygen therapy (WHO-5).

Demographic, anamnestic, clinical, and laboratory
parameters in the above outlined peak severity subgroups
are summarized in ►Table 1. (An alternative classification
based on the disease severity at the time of samplingwas also
performed; the description and basic laboratory parameters
of these groups are shown in ►Supplementary Table S1,
available in the online version.)

The patients’ age and the number of comorbidities were
higher in patients who later died, and several complications
(respiratory failure, macrothromboembolic complications
and acute kidney injury) were more frequent in severe cases
(i.e., in patients who were treated in the ICU and/or died)
compared with other patients.

Neutrophil granulocyte counts were higher, whereas
lymphocyte counts were lower in severe cases. Markers
and mediators of inflammation (CRP and IL-6) gradually
increased in parallel with increasing severity of COVID-19.

Platelet counts were in the normal range or slightly de-
creased and did not differ significantly across severity sub-
groups or from patient controls. Prothrombin time showed a
gradual increase in parallel with increasing disease severity.
Thrombin time was prolonged in fatal cases. D-dimer levels
weresignificantlyelevated inallgroupsofhospitalizedCOVID-
19 patients in comparison to patient controls, with 90.2% of
hospitalized COVID-19 patients’ values above the upper limit
of normal range. Fibrinogen levels showed a gradual increase
across the HOSP, HOSPþO2, and ICU groups, with 81.2% of
patients in the ICU group having elevated fibrinogen levels.
However, therewas adrop infibrinogen levels inmultiple fatal
cases: 40.0% of patients in the FATAL group had normal or
slightly decreased fibrinogen levels.

von Willebrand Factor Antigen, Collagen Binding
Activity, ADAMTS13 Activity, and Their Ratio in
COVID-19 Disease
►Fig. 1 shows VWF:Ag concentration, VWF:CBA,
ADAMTS13: Ac, and their ratios in patients classified accord-
ing to the peak severity of COVID-19 disease.
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Fig. 1 von Willebrand factor (VWF) antigen (VWF:Ag), VWF collagen binding activity (VWF:CBA), a disintegrin and metalloproteinase with a
thrombospondin type 1 motif, member 13 activity (ADAMTS13:Ac), and their ratios in groups based on the peak severity of the COVID-19
disease. Median and interquartile ranges are plotted. The dotted lines indicate the upper and lower limits of the normal range; the gray area
below the dashed line on panel D indicates severe ADAMTS13 deficiency. (p-values of Dunn’s multiple comparison tests below 0.05 are shown.)
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The levels of VWF:Ag and VWF:CBA showed a gradual
increase in parallel with increased disease severity. Roughly
half of the patients in the HOSP group had VWF:Ag levels
above the upper limit of the reference range (200%), whereas
VWF:Ag concentrations were increased in almost all fatal
cases. The VWF:CBA/VWF:Ag ratios in groups of hospitalized
COVID-19 patients did not differ significantly from each
other and from those of control subjects.

ADAMTS13:Ac markedly decreased in severe COVID-19
cases (FATAL and ICU groups), whereas it was normal or only
slightly decreased in cases of moderate severity (HOSP and
HOSPþO2). The proportion of patients with ADAMTS13:Ac
levels below the lower limit of the reference range (67%) was
around 30% in moderate cases, 70.6% in the ICU group, and
84.0% in the FATAL group. It is important to note, however,
that none of the hospitalized COVID-19 patients had severely
deficient (< 10%) ADAMTS13:Ac values.

In consequence of the above changes, the VWF:-
Ag/ADAMTS13:Ac and VWF:CBA/ADAMTS13 ratios in-

creased across groups in parallel with disease severity: the
median VWF:Ag/ADAMTS13:Ac ratio was over five times
higher in the FATAL group compared with the HOSP group.

Associations of von Willebrand Factor Levels and
ADAMTS13 Activity with Laboratory and Clinical
Parameters
The above parameters—VWF:Ag, VWF:CBA, ADAMTS13:Ac,
and VWF:Ag/ADAMTS13:Ac ratio—correlated with several
laboratory parameters associated with disease severity.
These correlations are presented in detail in
►Supplementary Table S2 (available in the online version).

Briefly, VWF:Ag levels showed moderate positive corre-
lations (Spearman’s r>0.3, p<0.01) withmarkers of inflam-
mation (CRP, procalcitonin, ferritin), urea, and lactate
dehydrogenase. ADAMTS13:Ac inversely correlated (Spear-
man’s r<–0.3, p<0.01) with the above parameters aswell as
with neutrophil granulocyte count, D-dimer, red blood cell
distribution width, and IL-6 values. In addition, ADAMTS13:

Table 2 Laboratory data of mild (HOSP and HOSPþO2) and severe (ICU and FATAL) COVID-19 cases

Variables Mild
(HOSP/HOSPþO2)
n¼ 60

Severe
(ICU/FATAL)
n¼ 42

p-Valuea

Neutrophil granulocyte count (2–7.5 G/L) 3.8 (2.8–5.8) 5.6 (3.2–9.4) 0.0022

Lymphocyte count (1.5–4 G/L) 1.5 (1.0–2.0) 0.9 (0.6–1.2) < 0.0001

Interleukin 6 (2–4.4 pg/mL) 16.9 (6.2–45.1) 47.8 (20.4–197.0) 0.0001

C-reactive protein (< 10mg/L) 24.1 (8.4–73.5) 123.9 (54.9–195.4) < 0.0001

Platelet count (150–400 G/L) 242 (189–349) 222 (147–285) 0.0602

INR (0.9–1.15) 1.02 (0.98–1.10) 1.15 (1.06–1.38) 0.0002

Fibrinogen (2.8–4.7 g/L) 5.3 (4.4–6.4) 6.0 (4.1–6.9) 0.5234

D-dimers (< 500 ng/mL) 1,105 (580–1,752) 1,620 (1,090–3,090) 0.0024

Complement parameters

Classical pathway (48–103 CH50/mL) 77 (67–89) 71 (48–85) 0.0678

Lectin pathway (35–125%) 73 (6–141) 56 (6–134) 0.7529

Alternative pathway (70–125%) 94 (79–107) 80 (58–96) 0.0038

C3 (0.9–1.8 g/L) 1.31 (1.13–1.48) 1.12 (0.86–1.37) 0.0050

C4 (0.15–0.55 g/L) 0.37 (0.29–0.46) 0.29 (0.21–0.51) 0.1530

sC5b9 (110–252 ng/mL) 268 (192–372) 364 (242–529) 0.0203

C3a (70–270 ng/mL) 220 (134–294) 353 (216–511) 0.0001

C3a/C3 (ng/mg) 154 (113–225) 316 (186–565) < 0.0001

VWF and ADAMTS13

VWF:Ag (50–200%) 242 (175–335) 382 (292–523) < 0.0001

VWF:CBA (%) 193 (141–250) 274 (199–412) 0.0002

VWF:CBA/VWF:Ag 0.84 (0.69–1.00) 0.80 (0.60–0.97) 0.6155

ADAMTS13:Ac (67–150%) 81 (64–114) 49 (34–57) < 0.0001

VWF:Ag/ADAMTS13:Ac 3.0 (1.9–4.3) 9.4 (4.2–14.2) < 0.0001

VWF:CBA/ADAMTS13:Ac 2.3 (1.5–3.6) 6.4 (3.5–11.9) < 0.0001

Abbreviations: ADAMTS13:Ac, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 activity; HOSP, hospitalized, no
oxygen support; HOSPþO2, hospitalized, with nasal oxygen support; ICU, intensive care unit; INR, international normalized ratio; VWF:Ag, von
Willebrand factor antigen; VWF:CBA, VWF collagen binding activity.
ap-Values of the Mann–Whitney U test are shown.
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Ac showed moderate positive correlations with the lympho-
cyte count, red blood cell count, and hemoglobin levels, with
the activity of the complement alternative pathway andwith
the concentrations of its components and regulators (C3,
factor I, factor H).

Interestingly, apart from the above described moderate
inverse correlation between ADAMTS13:Ac and D-dimer
level, neither ADAMTS13:Ac nor VWF:Ag or VWF:CBA corre-
lated with other parameters of hemostasis and coagulation
(platelet count, prothrombin time, activated partial throm-
boplastin time, thrombin time, or fibrinogen level).

ADAMTS13:Acwas lower, whereas VWF:CBAwas higher in
patients older than 67 years (median age in the cohort).
Furthermore, ADAMTS13:Ac tended to be lower in patients
with acute kidney injury (KDIGO 2 or 3), andwas significantly
lower in patients with malignant diseases (►Supplementary

Table S3, available in the online version). After stratification
according to disease severity and age or malignancy, we found
that the differences in ADAMTS13:Ac, VWF:Ag, or VWF:CBA
were not statistically significant in any subgroup
(►Supplementary Figs. S2 and S3, available in the online
version). There was no difference in the VWF:Ag, VWF:CBA,
or ADAMTS13:Ac values between severe COVID-19 patients
with and without macrothromboembolic complications.

von Willebrand Factor Antigen, Collagen Binding
Activity, and ADAMTS13 Activity as Biomarkers of
Disease Severity
To assess the potential of VWF:Ag, VWF:CBA, and
ADAMTS13:Ac as biomarkers of COVID-19 disease severity,
we divided the patients into two groups (in accordance with
theWHOOrdinal Scale for Clinical Improvement): fatal cases
and cases necessitating ICU admission were considered
severe (ICU and FATAL groups, n¼42), whereas other cases

requiring hospitalization (HOSP and HOSPþO2 groups,
n¼60) were considered of moderate severity. Laboratory
results of mild and severe cases are summarized in►Table 2.

Based on the median values of VWF:Ag (294%), VWF:CBA
(212%), and ADAMTS13:Ac (67%) in our cohort, we chose
300% as a cutoff value for VWF:Ag, 200% for VWF:CBA, and
67% for ADAMTS13:Ac; the latter coincided with the lower
limit of the ADAMTS13:Ac reference range. According to the
results of ROC curve analysis, these cutoff valueswere almost
optimal for distinguishing between moderate and severe
COVID-19 cases (►Supplementary Fig. S4, available in the
online version).

According to the results of logistic regression analysis, we
found that patients with VWF:Ag above 300%, VWF:CBA
above 200%, or ADAMTS13:Ac below 67% were 5.91 (95%
confidence interval [CI]: 2.34–14.93), 3.23 (1.31–7.98), and
8.56 (3.37–21.73) timesmore likely to have severe COVID-19
disease, respectively, when compared with other patients
(►Fig. 2A, ►Supplementary Table S4, available in the online
version). Importantly, VWF:Ag and ADAMTS13:Ac remained
significant indicators of disease severity in multivariable
models even after adjusting for a baseline model consisting
of age, the number of comorbidities, and CRP concentrations.
The VWF:Ag/ADAMTS13:Ac ratio was not superior to
ADAMTS13:Ac alone in differentiating between severe and
moderate COVID-19 cases.

von Willebrand Factor Antigen, Collagen Binding
Activity, and ADAMTS13 Activity as Predictors of In-
Hospital Mortality
Twenty-five COVID-19 patients in our study cohort died
during the hospital stay, which means that the overall in-
hospital mortality was 24.5%. Laboratory parameters of
survivors and nonsurvivors are summarized in ►Table 3.

0.1 1 10 100
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VWF:CBA > 200% (adj)

VWF:CBA > 200%
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Fig. 2 Associations of low a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 activity (ADAMTS13:Ac) and
high vonWillebrand factor (VWF) antigen (VWF:Ag) or VWF collagen binding activity (VWF:CBA) values with the risk of developing severe disease
(A) and with the risk of in-hospital mortality (B). ADAMTS13:Ac values below 67% were considered low, whereas VWF:Ag concentrations
above 300%, VWF:CBA values above 200%, and VWF:Ag/ADAMTS13:Ac ratios above 5 were considered high. Fatal cases and cases requiring
intensive care were regarded as severe. Odds ratios of logistic regression models (A), hazard ratios of Cox proportional hazard models (B), and
their 95% confidence intervals (95% CIs) are shown. Results of multivariable regression models in which each of the above variables were
adjusted for a baseline model (adj) including age (in decades), number of comorbidities, and C-reactive protein (CRP) level (grouped according to
median and quartiles) are shown in blue. (Results of the above logistic and Cox regression models are also presented as tables—in

►Supplementary Tables S4 and S5, respectively.)
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ADAMTS13:Ac was significantly lower, whereas VWF:Ag
and VWF:CBA were significantly higher in samples of
patients who later deceased, compared with survivors.

The above results suggest that these parameters
might prove to be useful biomarkers for predicting the in-
hospital mortality of hospitalized COVID-19 patients
(►Supplementary Fig. S5, available in the online version).

Indeed, in-hospital mortality was higher in patients with
ADAMTS13:Ac below 67% (41.2% vs. 7.8%, p<0.0001) or with
VWF:Ag levels above 300% (39.1% vs. 12.5%, p¼0.004),
compared with other patients. The difference between
patients with low and high VWF:CBA levels was not statisti-
cally significant. Kaplan–Meier curves showing cumulative
survival in the above groups are shown in ►Fig. 3.

Finally, we generated Cox proportional hazard models to
analyze the effect of decreased (< 67%) ADAMTS13:Ac and
elevated VWF:Ag (> 300%) and VWF:CBA (> 200%) levels on
the in-hospital mortality of COVID-19 patients. The hazard

ratio was 5.59 (95% CI: 1.92–16.32) for decreased
ADAMTS13:Ac and 3.31 (1.31–8.34) for increased VWF:Ag
(►Fig. 2B, ►Supplementary Table S5, available in the online
version) in univariable models.

However, the increased VWF:Ag and decreased
ADAMTS13:Ac levels did not prove to be significant indepen-
dent predictors of in-hospital mortality after adjusting to the
above described baselinemodel including age, the number of
comorbidities, and CRP concentration. The VWF:CBAwas not
a significant predictor, whereas the VWF:Ag/ADAMTS13:Ac
ratio was similar to ADAMTS13:Ac alone in predicting in-
hospital mortality.

The Concomitant Presence of Decreased ADAMTS13
Activity and Increased Complement Activation as a
Predictor of Severity and In-Hospital Mortality
Previously we described that the level of C3a—marker of
complement activation and anaphylatoxin—was increased,

Table 3 Laboratory data of COVID-19 patients who later survived or deceased

Variables Survived
(HOSP/HOSPþO2/ICU)
n¼77

Deceased
(FATAL)
n¼25

p-Valuea

Neutrophil granulocyte count (2–7.5 G/L) 3.9 (2.9–5.9) 6.0 (4.2–10.3) 0.0050

Lymphocyte count (1.5–4 G/L) 1.4 (0.9–1.9) 0.8 (0.5–1.1) 0.0002

Interleukin 6 (2–4.4 pg/mL) 19.0 (6.9–48.7) 90.4 (34.6–267.3) < 0.0001

C-reactive protein (< 10mg/L) 36.8 (10.8–97.4) 149.1 (54.9–196.8) 0.0002

Platelet count (150–400 G/L) 237 (188–306) 194 (131–285) 0.0592

INR (0.9–1.15) 1.05 (0.98–1.14) 1.17 (1.07–1.48) 0.0032

Fibrinogen (2.8–4.7 g/L) 5.7 (4.6–6.8) 5.0 (3.9–6.5) 0.2696

D-dimers (< 500 ng/mL) 1,140 (610–1,900) 1,430 (1,106–4,380) 0.0102

Complement parameters

Classical pathway (48–103 CH50/mL) 74 (66–89) 63 (44–80) 0.0084

Lectin pathway (35–125%) 72 (4–141) 56 (9–134) 0.7513

Alternative pathway (70–125%) 94 (80–103) 60 (35–87) < 0.0001

C3 (0.9–1.8 g/L) 1.31 (1.11–1.49) 1.05 (0.66–1.20) < 0.0001

C4 (0.15–0.55 g/L) 0.37 (0.26–0.48) 0.27 (0.16–0.43) 0.0468

sC5b9 (110–252 ng/mL) 281 (203–410) 364 (246–498) 0.1288

C3a (70–270 ng/mL) 237 (141–337) 375 (196–459) 0.0095

C3a/C3 (ng/mg) 179 (123–271) 337 (266–651) < 0.0001

VWF and ADAMTS13

VWF:Ag (50–200%) 257 (195–365) 387 (304–496) 0.0002

VWF:CBA (%) 205 (151–272) 298 (199–433) 0.0058

VWF:CBA/VWF:Ag 0.83 (0.69–1.01) 0.80 (0.55–0.94) 0.3812

ADAMTS13:Ac (67–150%) 74 (55–106) 43 (32–56) < 0.0001

VWF:Ag/ADAMTS13:Ac 3.5 (2.1–5.5) 11.4 (5.8–13.8) < 0.0001

VWF:CBA/ADAMTS13:Ac 2.7 (1.7–4.2) 7.0 (4.5–12.6) < 0.0001

Abbreviations: ADAMTS13:Ac, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 activity; HOSP, hospitalized, no
oxygen support; HOSPþO2, hospitalized, with nasal oxygen support; ICU, intensive care unit; INR, international normalized ratio; VWF:Ag, von
Willebrand factor antigen; VWF:CBA, VWF collagen binding activity.
ap-Values of the Mann–Whitney U test are shown.
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whereas the level of complement factor C3 was decreased in
fatal COVID-19 cases.29 We found that patients with a
C3a/C3 ratio over 200 ng/mg—indicating complement over-
activation and consumption—had a higher risk of death
compared with other patients. Along these lines, we inves-
tigated whether there is a relationship between
ADAMTS13:Ac, complement overactivation and consump-
tion, and the severity and outcome of COVID-19. Accord-
ingly, we applied stratified multivariable statistical analyses
with interaction terms. Hospitalized patients were divided
into four subgroups based upon their ADAMTS13:Ac and

C3a/C3 ratio. The subgroups are described in detail
in ►Table 4.

Peak disease severity according to ADAMTS13:Ac and
C3a/C3 values are shown in ►Fig. 4A. Respiratory failure
requiring intubation and mechanical ventilation was more
frequent in the group of patientswho had lowADAMTS13:Ac
and high C3a/C3 ratio in comparison with the other groups
(70.4% vs. 6.9%, 18.4%, and 13.6%, odds ratio>10 and
p<0.0004 for each comparison).

In-hospital mortality was also considerably higher in the
former subgroup than in any other subgroup (66.7% vs. 6.9%,
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Fig. 3 Mortality in patients according to a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 activity
(ADAMTS13:Ac), von Willebrand factor (VWF) antigen (VWF:Ag), VWF collagen binding activity (VWF:CBA), and VWF:Ag/ADAMTS13:Ac ratio.
Kaplan–Meier curves (in-hospital mortality plotted against time from hospital admission to death or last follow-up) for patients above and below
67% ADAMTS13:Ac (A), 300% VWF:Ag (B), 200% VWF:CBA (C), and a VWF:Ag/ADAMTS13:Ac ratio of 5 (D) are shown.
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Table 4 Characteristics of hospitalized COVID-19 patients in subgroups with different combinations of normal (> 67%) or low
(< 67%) ADAMTS13:Ac and low (< 200 ng/mg) or high (> 200 ng/mg) complement C3a/C3 ratio

Variables ADAMTS13:Ac
normal,
C3a/C3 low
n¼29

ADAMTS13:Ac
normal,
C3a/C3 high
n¼22

ADAMTS13:Ac low,
C3a/C3 low
n¼22

ADAMTS13:Ac low,
C3a/C3 high
n¼27

p-Valuea

Male sex, % (n) 62.1 (18) 50.0 (11) 59.1 (13) 48.1 (13) 0.690

Age (median, IQR) 57 (40–66) 67 (58–74) 66 (54–70) 76 (69–79) < 0.001

Comorbidities

Total number of
comorbidities (median, IQR)

2 (1–3) 2.5 (1–3) 2 (1–3) 3 (2–5) 0.042

Hypertension, % (n) 58.6 (17) 63.6 (14) 59.1 (13) 74.1 (20) 0.618

Chronic pulmonary
disease, % (n)

13.8 (4) 31.8 (7) 22.7 (5) 22.2 (6) 0.497

Diabetes mellitus, % (n) 20.7 (6) 27.3 (6) 13.6 (3) 33.3 (9) 0.409

Chronic heart disease, % (n) 31.0 (9) 27.3 (6) 22.7 (5) 48.1 (13) 0.238

Malignant disease, % (n) 3.4 (1) 9.1 (2) 31.8 (7) 48.1 (13) < 0.001

Presenting symptoms

Delay between first
symptom and sampling, days
(median, IQR)

12 (6–25) 8 (5–19) 9 (5–14) 10 (4–27) 0.858

Complications

Respiratory failure
necessitating mechanical
ventilation, % (n)

6.9 (2) 18.2 (4) 13.6 (3) 70.4 (19) < 0.001

Macrothromboembolic
complications, % (n)

0.0 (0) 18.2 (4) 4.5 (1) 7.4 (2) 0.085

Acute kidney injury (KDIGO:
2–3), % (n)

3.4 (1) 13.6 (3) 4.5 (1) 25.9 (7) 0.042

Transfer to ICU, % (n) 6.9 (2) 27.3 (6) 31.8 (7) 77.8 (21) < 0.001

Death, % (n) 6.9 (2) 9.1 (2) 9.1 (2) 66.7 (18) < 0.001

Laboratory findings (median, IQR)

Neutrophil granulocyte
count (2–7.5 G/L)

3.5 (2.8–4.5) 4.3 (2.8–6.1) 4.6 (3.2–5.9) 6.0 (4.2–10.4) 0.007

Lymphocyte count (1.5–4G/L) 1.8 (1.0–2.1) 1.1 (0.9–1.7) 1.0 (0.9–1.5) 1.0 (0.7–1.4) 0.008

Interleukin 6 (2–4.4 pg/mL) 12.5 (6.0–41.2) 24.5 (12.8–72.2) 29.1 (19.0–50.3) 50.0 (14.0–265.0) 0.040

C-reactive protein
(< 10mg/L)

15 (6–41) 77 (30–145) 45 (14–108) 149 (42–195) < 0.001

Platelet count (150–400 G/L) 233 (192–282) 236 (129–388) 236 (173–348) 204 (163–285) 0.545

INR (0.9–1.15) 1.05 (0.98–1.11) 1.02 (0.98–1.20) 1.06 (0.98–1.15) 1.12 (1.06–1.47) 0.142

Fibrinogen (2.8–4.7 g/L) 5.1 (4.2–6.6) 5.0 (4.0–6.6) 5.8 (4.9–7.6) 5.7 (4.4–6.5) 0.700

D-dimers (< 500 ng/mL) 1,030 (530–1,850) 1,547 (512–1,996) 1,480 (879–3,090) 1,366 (1,079–3,398) 0.164

VWF:Ag, % (50–200%) 247 (160–332) 266 (222–317) 240 (136–396) 392 (292–543) < 0.001

VWF:CBA, % 192 (137–233) 199 (146–241) 193 (145–338) 332 (200–461) < 0.001

VWF:CBA / VWF:Ag 0.86 (0.71–1.01) 0.70 (0.55–0.88) 0.95 (0.75–1.06) 0.82 (0.68–0.99) 0.052

Abbreviations: ADAMTS13:Ac, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 activity; ICU, intensive care
unit; INR, international normalized ratio; IQR, interquartile range; VWF:Ag, von Willebrand factor antigen; VWF:CBA, VWF collagen binding activity.
Note: Two patients had missing C3a data; these patients were not included in any of the subgroups. Other comorbidities included are listed
below ►Table 1. Reference ranges of laboratory markers are indicated in brackets.
ap-Values were obtained by the chi-square test for nominal variables, and by the Kruskal–Wallis test for continuous variables.
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9.1%, and 9.1%; odds ratio>19 and p<0.0001 for each
comparison).

In contrast, isolated lowADAMTS13:Acor elevated C3a/C3
ratio, alone, were not associated with increased risk of
respiratory failure or death.

Kaplan–Meier curves presented in►Fig. 4B show that the
cumulative survival in patients with low ADAMTS13:Ac and
high C3a/C3 ratio is clearly distinct from those of all other
groups.

These results indicate that there is a statistical interaction
between the above parameters: lowADAMTS13:Ac increases
the risk of in-hospital mortality only in the setting of a high
C3a/C3 ratio. To test how adjusting for our baseline model
(consisting of age, number of comorbidities, and CRP level)
influences the above statistical interaction, we prepared
multivariable Cox proportional hazard models with interac-
tion terms (presented in ►Fig. 4C and ►Supplementary

Table S6, available in the online version). Our results dem-
onstrate that adjusting for our baseline model did not affect
the association of the statistical interaction between low
ADAMTS13:Ac and high C3a/C3 ratio with in-hospital
mortality.

Discussion

Our study provides the first observational evidence that the
concomitant presence of decreased ADAMTS13:Ac and in-
creasedmarkers of complement activation is associatedwith
COVID-19 severity andmortality. These results suggest that a
potential interaction between the VWF-ADAMTS13 axis and
complement activation may be a key factor in the pathogen-
esis of COVID-19.

First, to investigate the role of the VWF-ADAMTS13 axis in
the pathogenesis of COVID-19, we measured ADAMTS13:Ac,
VWF:Ag, and VWF:CBA levels in a cohort of 102 hospitalized
COVID-19 patients of various disease severity and in a
control group of 26 convalescent plasma donors.

We found that VWF:Ag and VWF:CBA levels were elevated
in all groups of hospitalized COVID-19 patients; there was a
continuous increase in these parameters in parallel with
increasing COVID-19 severity. ADAMTS13:Ac, on the other
hand, decreased in parallel with disease severity; most
patients with severe COVID-19 (i.e., those who deceased or
required intensive care) had ADAMTS13:Ac values below the
lower limit of the normal range (67%). As a consequence of
the above alterations, the VWF:Ag/ADAMTS13:Ac ratio—
indicating the functional state of the VWF-ADAMTS13 axis
—increased considerably, exceeding 10 in the group of non-
survivors. The VWF:CBA/VWF:Ag ratio was variable, and did
not differ significantly between groups based on disease
severity. Severe ADAMTS13 deficiency was not observed in
our cohort, in contrast to cases of thrombotic thrombocyto-
penic purpura patients with concomitant COVID-19
disease.33

As ADAMTS13:Ac was significantly lower and VWF:Ag
and VWF:CBA were significantly higher in severe COVID-19
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Fig. 4 Peak disease severity and in-hospital mortality in patients with
different combinations of a disintegrin and metalloproteinase with a
thrombospondin type 1 motif, member 13 activity (ADAMTS13:Ac)
and C3a/C3 ratio, a marker of complement activation and
consumption. Peak disease severity according to ADAMTS13:Ac and
C3a/C3 ratio is shown on (A). Lines indicate the median-based cutoff
values of ADAMTS13:Ac (67%) and C3a/C3 (200 ng/mg) that were
used to define subgroups with low or high values. High (normal)
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whereas low ADAMTS13:Ac and high C3a/C3 ratio are considered
pathological. The proportions of deceased patients in each quartile
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cases and in nonsurvivors than in moderate cases and in
survivors, respectively, we assessed the potential of the
above parameters as biomarkers of severity and as predictors
of in-hospital mortality in hospitalized COVID-19 patients.

We found that patients with VWF:Ag levels over 300% and
those with ADAMTS13:Ac below the lower limit of normal
(67%) were 5.91 and 8.56 times more likely to have severe
COVID-19 disease, whereas the risk of in-hospital mortality
was 3.31 and 5.59 times higher in these groups, respectively.
When adjusting for a baseline model composed of key clinical
and laboratory parameters associated with the severity or
mortalityofCOVID-19—age,numberofcomorbidities, andCRP
concentration—decreased ADAMTS13:Ac and elevated VWF:
Ag level remainedsignificant predictorsofdiseaseseverity, but
were no longer significant predictors of in-hospital mortality.

Our results regarding the elevated VWF:Ag concentrations
and the moderately decreased—but not deficient—ADAMTS13:
Ac are in line with results described in other cohorts of
hospitalizedCOVID-19 patients.11,12,14–16,19–21,34–39 The obser-
vations that the increase of VWF:Ag and the decrease of
ADAMTS13:Ac were more pronounced in severe/critical
COVID-19 than in moderate cases, and that elevated VWF:Ag
and reduced ADAMTS13:Ac are thus predictors of in-hospital
mortality in COVID-19, are also in agreement with results of
previous studies.11,14–16,18–21,37–39

Taken together, our results support that the VWF-
ADAMTS13 axis is involved in the pathogenesis of the
COVID-19 disease. The hypoxic and inflammatory state
characteristic for severe COVID-19 can increase the secretion
and interfere with the cleavage of VWF by multiple mech-
anisms.40,41 In particular, there is emerging evidence sup-
porting the role of neutrophil granulocyte activation and the
release of neutrophil extracellular traps (NETosis) in the
pathogenesis of COVID-1942,43; these processes may also
affect the VWF-ADAMTS13 axis through the oxidative mod-
ification, sialylation or citrullination of its components, or by
otherwise interfering with their interaction.44–48 If their
cleavage is hindered by the above mechanisms, persisting
ultra-large VWF multimers form large strings that are capa-
ble of binding platelets firmly.49

However, the ultra-large VWFmultimers provide an ideal
surface not only for platelet adhesion, but also for comple-
ment activation.50 Complement deposition in lung capillar-
ies,51 and increased plasma levels of complement activation
products support the activated state of the complement
system in COVID-19.27,29,52 The concentrations of the acti-
vation products were found to be higher in severe COVID-19
patients,27,29,52 indicating that excessive complement acti-
vation is more likely in these cases. Furthermore, levels of
complement activation products correlated with those of
VWF and other markers of endothelial perturbation,52 sup-
porting that there is a link between endothelial VWF secre-
tion and complement activation.

Complement activation on the surface of endothelial cell-
bound ultra-large VWF multimers50 or exposure to comple-
ment activation products—C3a, C5a, C5b-9—induce
prothrombotic and proinflammatory changes in endothelial
cells, also termed as endothelial dysfunction.53–55 The con-

sequentially increased release of VWF and the decreased
expression of thrombomodulin further enhance comple-
ment activation and endothelial dysfunction.56 In addition
to this direct positive feedback loop, there is another one
involving platelets and neutrophil granulocytes. Comple-
ment activation products are able to activate platelets,
neutrophil granulocytes, and macrophages.57 Platelet-deco-
rated VWF strings provide an ideal scaffold for the adhesion
of neutrophil granulocytes.58 If the neutrophils are preacti-
vated, thismay be followedbyNETosis, which in turn induces
tissue factor expression and thus augments the thrombotic
potential of endothelial cells.59

In conclusion, if ultra-large VWF molecules are not
cleaved upon release, the endothelial VWF secretion and
complement activation amplify each other, eventually lead-
ing to immunothrombosis, a major cause of mortality in
COVID-19.60 ADAMTS13, however, is able to break this
vicious circle by cleaving the highly adhesive ultra-large
VWF multimers.

Based on the above, we hypothesized, that the decrease of
ADAMTS13:Ac would be more detrimental in the case of
excessive complement activation—providing positive feed-
back in the above describedways—than in a setting of awell-
regulated complement system.

To test this hypothesis, we compared disease outcomes in
groups of hospitalized COVID-19 patients with different
combinations of normal or decreased ADAMTS13:Ac and
low or high levels of C3a/C3 ratios.

The C3a/C3 ratio was introduced in our previous analysis
of the same cohort29 as a general marker of complement
overactivation and consumption. Complement C3 is the
central molecule of the complement system: all—the classi-
cal, lectin, and alternative—activation pathways converge on
the level of C3. Upon its activation, the soluble C3a fragment
is released, which is therefore a good indicator of comple-
ment activation. However, the absolute concentration of C3a
is dependent on the concentration of available C3molecules.
C3 concentrations, in turn, were found to moderately in-
crease in parallel with disease severity—probably in conse-
quence of the acute phase reaction—and then suddenly drop
in fatal cases, due to complement consumption.29 Based on
the above, we hypothesized that the C3a/C3 ratio better
reflected the activated state of the complement system
than C3a concentration alone. In line with this hypothesis,
the C3a/C3 ratio proved to be a stronger predictor of in-
hospital mortality of COVID-19 patients in comparison to
C3a in our previous study.

Most importantly, whenwe compared groups with differ-
ent ADAMTS13:Ac and C3a/C3 ratios, we found that the
frequency of respiratory failure and in-hospital death was
indeed markedly higher in the group of patients who had
decreased ADAMTS13:Ac and signs of excessive complement
activation at the same time, whereas decreased ADAMTS13:
Ac or increased complement activation alonewere not found
to be associatedwith increased disease severity or mortality.
Adjusting to our baseline model did not influence the above
described association between in-hospital mortality and the
combination of low ADAMTS13:Ac and high C3a/C3 ratio.
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Interestingly, VWF:Ag concentration andVWF:CBAwere also
significantly higher in the group of patients with both low
ADAMTS13:Ac and high C3a/C3 ratio, whereas it did not
differ between the other subgroups (►Table 4). This result
supports that endothelial activation and increased VWF
secretion might be a key link between decreased
ADAMTS13:Ac, complement overactivation, and the severity
of COVID-19.

The main strengths of our cohort were the concurrent
determination of VWF:Ag, ADAMTS13:Ac, and the detailed
characterization of the complement profile, which allowed
us to investigate the interactions of the VWF-ADAMTS13
axis and complement activation. Our cohort, as a whole,
represented a broad spectrum of COVID-19 severity, which,
however, was divided into multiple, relatively homogenous
subgroups. This enabled a detailed analysis of associations
between COVID-19 severity and different laboratory
parameters. As follow-up was complete in all cases, we
were able to formally evaluate mortality in survival models.
All relevant clinical and laboratory data were collected,
which enabled us to adjust for the most important
confounders.

A potential limitation of our study is its relatively small
sample size of 102 patients. However, the subgroups based
upon disease severity were nearly equal, which allowed us to
perform reliable statistical analyses. Forming groups based
on multiple variables, however, leads to subgroups with low
numbers of individuals; results of statistical analyses have to
be interpreted with caution in these cases.

A further limitation of our study was the high proportion
of patients with malignant diseases, especially among cases
with severe disease. However, there were no significant
differences in ADAMTS13 or VWF levels between patients
with and without malignant diseases in any severity sub-
group. Thus, the lower ADAMTS13:Ac and higher VWF:Ag
and VWF:CBA values observed in groups of higher severity
are not attributable to the higher proportion of patients with
malignant diseases in these groups. Accordingly, adjusting
ourmodels for the presence or absence ofmalignant diseases
did not influence our results.

Furthermore, the median age was lower in control sub-
jects and was higher in patients who subsequently died due
to COVID-19 disease (FATAL group) compared with other
groups. However, stratified analyses by disease severity
showed no significant differences between patients below
and above 67 years in any given subgroup. Furthermore, we
adjusted all our models of severity or survival for a baseline
model consisting of age, number of comorbidities, and CRP
level.

Finally, it has to be noted that data on anticoagulation
were not collected for all patients, although such treatment
may have influenced the laboratory values of coagulation.

To conclude, in this study we have shown that the concur-
rent presence of decreased ADAMTS13:Ac and increased
complement activation is associated with increased in-hos-
pital mortality in COVID-19 patients. These results suggest
that an interaction between the VWF-ADAMTS13 axis and
complement system plays an important role in the patho-

genesis of severe COVID-19 disease, most probably via
triggering immunothrombosis. The specific molecular back-
ground of the above interaction has yet to be investigated.
Importantly, our results indicate that if either ADAMTS13:Ac
is normal or pathological complement activation is absent,
the risk of in-hospital mortality is significantly lower in
COVID-19. This finding raises the possibility of ADAMTS13
replacement therapy in selected cases with low ADAMTS13:
Ac, and underlines the importance of studies on complement
inhibitory drugs in COVID-19.

What is known about this topic?

• In a subset of patients infected with the SARS-CoV-2
virus, immunothrombosis develops in lung microves-
sels, which is a major cause of respiratory failure and
mortality in COVID-19.

• Endothelial perturbation—which is a central event in
the development of immunothrombosis—results in
elevated VWF antigen concentrations, whereas
ADAMTS13 activity is moderately decreased in
COVID-19 patients.

• The complement system is also activated in COVID-19,
levels of complement activation markers correlated
with that of VWF and other markers of endothelial
activation.

What does this paper add?

• In this study, we validated the role of increased VWF
antigen concentrations and decreased ADAMTS13 ac-
tivity as good markers of severity and predictors of in-
hospital mortality, andwe report for the first time that
concomitant changes in the VWF-ADAMTS13 axis and
complement activation are associated with the severi-
ty and mortality of the COVID-19 disease.

• The risk of respiratory failure and of in-hospital mor-
tality is higher in COVID-19 patientswith concurrently
decreased ADAMTS13 activity and increased C3a/C3
ratio—indicating complement overactivation and con-
sumption—whereas decreased ADAMTS13 activity or
high C3a/C3 ratio, alone, were not associated with
increased risk of respiratory failure or death.
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