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Abstract: Rice, as a major food crop, provides necessary energy and nutrition for humans and
livestock. However, its nutritional value is affected by lysine. Using point mutation, we previously
obtained AK2 (aspartokinase) and DHDPS1 (dihydrodipicolinate synthase) genes insensitive to
lysine feedback inhibition and constructed transgenic lines AK2-52 and DHDPS1-22, which show
increased lysine synthesis, as well as Ri-12, which shows decreased lysine degradation by inhibiting
rice lysine ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) activity. In this study,
further transgenic lines were hybridized and evaluated. The lysine content of mature seeds from
pyramid lines PRD and PRA increased 32.5- and 29.8-fold, respectively, compared with the wild-type,
while the three-gene pyramiding line PRDA had a moderate lysine content. The total lysine, total
free lysine, and total protein contents of PRD and PRA also increased and had no obvious impact
on the physical and chemical quality, seed appearance, and main agronomic traits. Meanwhile,
comparative analysis with polygenic polymeric lines GR containing bacterial AK (lysC) and DHDPS
(dapA) genes revealed differences in the way bacterial and endogenous rice AK and DHDPS regulate
lysine biosynthesis. These results provide a reference for further evaluation and commercialization of
high-lysine transgenic rice.

Keywords: rice; lysine; amino acid; physicochemical quality; field performance

1. Introduction

Ensuring food security is the key to overcoming world hunger and malnutrition.
Innovations in plant breeding and effective use of crop biotechnology play a crucial role in
simultaneously solving the problems of food and nutrition security linked to the COVID-19
pandemic and the risk of growing global hunger associated with the rapid growth target of
10 billion people by 2050 [1]. Rice, as an important food crop, contains high-quality protein
that is easily digestible, providing essential energy and nutrients for both humans and
livestock [2]. However, its nutritional value is limited by its relatively low content of lysine,
the first limiting amino acid in rice, which prevents efficient absorption and utilization of
rice protein. In turn, this has a negative impact on the overall dietary structure, resulting in
malnutrition and other diseases [3]. Strategies aimed at increasing the content of lysine in
crops in order to improve their nutritional quality are thus required.

Lysine enhancement in cereal crops has been studied for more than 50 years, although
few quantitative trait loci (QTLs) and high-lysine mutants have yet been detected. Despite
the successful breeding of o2 mutants and quality protein maize (QPM), limited progress
has been made in terms of increasing the lysine content in other QTLs and mutants [4].
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However, with the development of new molecular biotechnologies and the clarification of
aspartate metabolism in plants, direct regulation of lysine metabolism through metabolic
engineering has become a feasible strategy.

The lysine metabolic pathway in higher plants branches from the aspartate pathway,
separate branches of which also regulate the biosynthesis of threonine, isoleucine, and
methionine [5]. A number of studies have shown that lysine biosynthesis and degra-
dation are controlled by various branching enzymes, of which aspartokinase (AK) and
dihydrodipicolinic acid synthase (DHDPS) have the greatest impact [5]. AK is the first
key enzyme in the aspartate pathway and is subject to concerted feedback inhibition of
lysine and threonine [5]. The molecular properties of AK have been determined in both
microorganisms and plants [5]. For example, in Escherichia coli, AKIII is encoded by the lysC
gene, the specificity of which is subject to lysine feedback inhibition. Meanwhile, Shaul et al.
(1992) isolated a lysC allele insensitive to lysine feedback inhibition and transformed it into
tobacco, improving the activity of AK and the accumulation of free threonine [6]. AK has
at least two isoenzyme forms in plants, one of which is subject to lysine feedback inhibition
and the other to threonine feedback inhibition [5]. Compared with AK, DHDPS is subject to
specific lysine feedback inhibition in plants and is the first major rate-limiting enzyme in the
branched pathway of lysine biosynthesis. However, early studies showed that DHDPS in
bacteria is significantly less sensitive to lysine than DHDPS in plants [7]. Lysine-insensitive
or -hyposensitive mutant bacterial AK and DHDPS have thus been applied to plants to im-
prove free lysine levels [7]. Natural and induced mutants of lysine-insensitive AK and/or
DHDPS (showing resistance to the lysine analog S-(2-aminoethyl)-cysteine) have also been
found in plants, revealing single amino acid changes in their sequences [8]. However,
these mutants, especially in crops, show slightly increased levels of lysine [4]. For example,
Yang et al. (2021) recently modified the cDNA encoding AK and DHDPS in rice using
overlapping polymerase chain reaction (PCR), obtaining two AK mutants and five DHDPS
mutants with reduced sensitivity to lysine feedback inhibition [9]. Upon introduction into
rice, they significantly increased the lysine content of the seeds.

Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) also plays a
key role in the catabolism and accumulation of lysine in plants [5]. Regulation of lysine
catabolism was previously achieved by inhibiting or knocking out LKR activity, while
co-expression with AK or DHDPS expressing reduced sensitivity to lysine also allowed
regulation of the biosynthetic pathway, resulting in a series of engineered crops, all with
significantly increased levels of lysine in mature seeds [10,11]. In maize, overexpression of
the bacterial DHDPS gene showing insensitivity to lysine feedback inhibition with the LKR-
RNAi structure significantly improved free lysine levels in the seeds [10,12]. Meanwhile, in
rice, simultaneous overexpression of bacterial AK and DHDPS genes, as well as inhibition
of LKR/SDH gene expression via a CaMV 35S promoter, increased free lysine levels in the
mature transgenic rice seeds 25-fold compared with the wild-type (WT) [11]. Moreover,
free lysine levels in mature transgenic rice seeds increased 58.5-fold compared with the
WT following combined expression of endogenous mutant AK2 and DHDPS1 with LKR-
RNAi [9].

However, studies suggest that increased levels of lysine also have an effect on plant
metabolism, as well as subsequent growth and development [7]. For example, in rice,
overexpression of DHDPS showing reduced sensitivity to maize lysine feedback inhibition
resulted in a fourfold increase in free lysine in the mature seeds as well as subsequent
morphological changes [13]. Moreover, overexpression of bacterial AK and DHDPS in rape
and soybean resulted in shrunken seeds, low germination rates, and other abnormal pheno-
types [7]. Overexpression of bacterial lysine-insensitive DHDPS and inhibition of LKR gene
expression also led to delayed germination of Arabidopsis seeds [14]. Furthermore, overex-
pression of bacterial AK and DHDPS and inhibition of rice LKR gene expression resulted
in mature high-lysine rice seeds with a brown-black appearance [11]. In contrast, there
were no obvious changes in the mature seeds following overexpression of endogenously
mutated AK2 and DHPDS1 [9]. Subsequent studies suggested that the above damages of
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the lysine excessive accumulation to plant growth and development, physiological and
biochemical characteristics, and agronomic traits were connected with the tricarboxylic
acid cycle, tryptophan metabolism, starch metabolism, unfolded protein response, and
abiotic and biotic stress responses [15]. Moreover, expression of the LKR/SDH gene is
induced by the plant stress hormone abscisic acid and methyl jasmonate [16]. Synergisti-
cally with the defense hormone salicylic acid, the lysine metabolic pathway has a key role
in plant systemic acquired resistance (SAR) to pathogen infection in Arabidopsis [17]. In
contrast, Yang et al. (2018) found the lysine metabolism inducing the jasmonate signaling
pathway and TDC expression in rice, coinciding with serotonin accumulation and dark-
brown pigmentation [18]. Xu et al. (2022) found that high ethylene level impedes amino
acid biosynthesis in rice grains and reduces the content of some amino acids including
lysine [19]. Thus, not only does lysine metabolism involve a complex regulatory network,
but it may also vary among species [7,15]. Recently, the role of micronutrient-lysine chelates
in reducing Cr or Cd toxicity and improving plant growth in crops by regulating antioxi-
dant enzyme activities has been revealed [20–22]. This may relieve the pressure of lysine
redundancy on plants to some extent.

Tissue-specific promoters can be used to specifically improve crop quality in plant
genetic engineering, while avoiding the adverse effects caused by constitutive expression.
The characteristics of the rice endosperm-specific promoter Gt1 are well known, thus it is
widely used in rice genetic engineering, especially in the improvement of edible endosperm
traits [23]. We previously expressed respective mutant AK2 and DHDPS1 in rice using the
Gt1 promoter, significantly increasing the free lysine content of the ripe endosperm [9]. In
this study, we further hybridized the Gt1-driven AK2, DHDPS1, and LKR-RNAi structures
and screened high-lysine rice in order to evaluate the resulting field agronomic traits, as
well as physical and chemical qualities.

2. Results
2.1. Hybrid Breeding of High-Lysine Rice

We previously employed point mutation to obtain AK2 and DHDPS1 mutants showing
reduced sensitivity or insensitivity to lysine feedback inhibition, with expression in the
endosperm driven by the rice endosperm-specific promoter Gt1 [9]. In this study, to further
increase the lysine content of the endosperm, we combined the LKR-RNAi structure with
AK2 and DHDPS1 (all driven by the Gt1 promoter) to obtain multigene pyramiding PRD,
PRA, and PRDA (Figure 1A–C; Supplementary Table S1). Stable transgenic plants were
subsequently obtained after more than three consecutive generations of PCR screening
(Figure 1D–F).
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Figure 1. PCR analysis of target genes in the transgenic rice plants. (A–C) Construction of the
recombinant vector and detection primers. Detection of (D) the AK gene, (E) the DHDPS gene, and
(F) LKR-RNAi structure in the transgenic and wild-type (WT) rice.
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2.2. Molecular Identification of High-Lysine Pyramiding Lines

Total RNA was isolated from developing seeds of transgenic rice and WT plants
15 days after flowering (DAF) and used for the analysis of transcriptional levels of AK,
DHDPS, and LKR target genes. Expression levels of AK and DHDPS in seeds of AK2-52,
DHPDS1-22, and their pyramid line PDA increased significantly, while expression of the
key gene LKR was also significantly increased compared with the WT (Figure 2A–C). This
was possibly due to an increase in the lysine biosynthetic pathway, which induced im-
provements in the degradation pathway. Expression levels of AK and DHDPS in transgenic
rice containing all three genes were also significantly higher than in the WT, but they were
lower than those in the AK2-52 and DHPS1-22 transgenic lines (Figure 2A,B). LKR gene
expression was significantly lower in all transgenic lines and pyramid lines containing the
LKR-RNAi structure, suggesting that the LKR gene was effectively inhibited (Figure 2C).
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Figure 2. Expression analysis of AK, DHDPS, and LKR genes in developed rice seeds from the
transgenic and wild-type (WT) rice. (A–C) Transcription level analysis of AK, DHDPS, and LKR
genes in developed seeds obtained 15 days after flowering (DAF). (D–F) Western blot analysis of
AK, DHDPS, and LKR proteins in developed seeds obtained 15 DAF. (G) SDS-PAGE analysis of total
protein contents.

To further verify the changes in protein levels of the target genes, total protein was
extracted from seeds collected at 15 DAF and subjected to Western blotting. Overall, protein
expression in transgenic rice with a single gene and their pyramid lines was essentially in
agreement with the transcriptional levels (Figure 2D–G), suggesting that AK2 and DHDPS1
were effectively transferred and expressed, while LKR was correspondingly inhibited.

2.3. Rice AK2/DHDPS1 Significantly Increased the Lysine Content and Was Superior to Bacterial
lysc/dapA in the Rice Endosperm

Amino acid and protein levels were subsequently compared in mature milled seeds of
transgenic and WT plants. The free lysine content of AK2-52, DHDPS1-22, and their pyra-
mid line PDA was limited, while that of Ri-12 and its hybrid lines increased significantly
compared with the WT. Notably, the free lysine contents of the two-gene pyramid lines
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PRD and PRA increased 32.5- and 29.8-fold, respectively, compared with the WT, and were
higher than those of the Gt1-driven transgenic lines GR-14 and GR-65, which combined
bacterial AK and DHDPS with rice LKR-RNAi (Figure 3A). However, the free lysine content
of the multigene pyramid line PRDA, which simultaneously contained Ri-12, AK2-52, and
DHDPS1-22, was higher than that of the WT, but not that of the parents (Figure 3A). These
findings suggest that regulation of the lysine biosynthetic pathway plays a limited role
in increasing the free lysine content of rice, although its effect is significantly improved
when combined with the lysine degradation pathway. This is consistent with the previous
conclusion [24]. In addition, total free amino acid levels also increased significantly with the
increase in free lysine levels, especially in the pyramid lines PRD and PRA, with increases of
5.4- and 8.4-fold, respectively, compared with the WT (Figure 3C). Moreover, the percentage
of free lysine to total free amino acids in mature milled seeds of the PRD transgenic line
reached 78.3% (Figure 3B).
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Figure 3. Analysis of lysine, total free amino acids, and total protein in mature milled rice flour
from the transgenic and WT rice. (A) The free lysine content (mg/g dry milled seed weight) and
(B) percentage of free lysine to total free amino acids (g/100 g dry milled seed weight). (C) The total
free lysine content (mg/g dry milled seed weight) and (D) total lysine content (mg/g dry milled seed
weight). (E) The percentage of total lysine to total protein (g/100 g dry milled seed weight). (F) The
crude protein content (mg/g dry milled seed weight). “*” indicates significant difference (p < 0.05),
“**” indicates extremely significant difference (p < 0.01).
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In addition, the total lysine content was significantly enhanced in the high free-lysine
transgenic rice, with increases of 18.1 and 14.4% in the PRD and PRA mature milled seed,
respectively, compared with the WT (Figure 3D). The protein content also increased in all
transgenic lines (Figure 3F), with 12.5 and 9.5% increases in PRD and PRA, respectively,
compared with the WT. Corresponding increases in the proportion of total lysine to pro-
tein were also observed in the high free-lysine transgenic lines, thereby optimizing the
proportion of lysine (Figure 3E,F). Taken together, these findings suggest that combined
expression of rice AK2/DHDPS1 genes showing reduced sensitivity to lysine feedback
inhibition with the LKR-RNAi structure greatly enhanced the lysine content and nutritional
quality of the rice endosperm. Moreover, the effect was greater than that of the similar
bacterial AK and DHDPS genes in rice.

2.4. Effects of Lysine Enrichment on Other Amino Acids

Higher plants possess a complex regulatory network of free amino acids, with various
amino acids cooperating to maintain metabolic balance. In this study, mature milled
seeds of the AK2-52 transgenic line and its hybrid lines showed a significant increase in
downstream amino acids threonine, serine, glycine, methionine, leucine, isoleucine, and
valine, all of which are regulated by AK (Figure 4). Visible changes in other amino acids
were also observed. Interestingly, however, in the DHDPS1-22 transgenic line and its hybrid
PRD (lacking AK2-52), these additional amino acids were less affected (Figure 4). Overall,
these findings suggest that regulating expression of the AK gene has a greater impact on
the aspartate metabolic pathway than regulating expression of the DHDPS gene.

Meanwhile, the pyramid line PRDA also showed differential changes in amino acid
levels compared with the transgenic lines GR-14 and GR-65, which contained bacterial AK
and DHDPS. For example, Thr and Gly were significantly higher in the PRDA transgenic
line compared with the WT, with no obvious differences in GR-14 and GR-65 (Figure 4).
These findings suggest that rice endogenous AK and DHDPS act differently to bacterial AK
and DHDPS in regulating amino acid biosynthesis, transport, and accumulation in rice.

2.5. Effect of Lysine Enrichment on the Physicochemical Quality of Milled Rice

As shown in Supplementary Figure S1, there was no obvious impact on the shape of
mature transgenic rice seeds following specific expression of AK2 and DHDPS1, with the
LKR-RNAi structure (Supplementary Figure S1). However, transgenic lines showing high
expression of the AK gene had greater chalkiness (Supplementary Figure S1).

As the main compound of the rice endosperm, the content and properties of starch
determine overall quality. We thus examined the physicochemical qualities of the transgenic
lines. As a result, the apparent amylose content of single-gene transgenic lines was found
to be unaltered, while the gel consistency of Ri-12 and AK2-52 was improved. The apparent
amylose content of the pyramid lines was reduced, while the corresponding gel consistency
improved, leading to a softer texture compared with the WT (Figure 5A,B). The high-lysine
line PRD had similar RVA profiles to the WT, while those of the remaining pyramid lines
were different, with lower Setback values and a higher Peak time (Figure 5C, Supplementary
Table S1). Further RVA spectrum analysis of starch extracted from the high-lysine lines
PRD and PRA showed that the RVA spectrum and eigenvalues of the starch were not
significantly different from those of the WT (Figure 5D, Supplementary Table S1). These
findings suggest that differences in the physical and chemical qualities of rice flour are
caused by an increase in amino acid and protein levels. Overall, the results suggest that
lysine enrichment has a certain impact on the physical and chemical qualities of rice flour
from milled mature seed, but has no or little impact on starch in the pyramid rice.
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2.6. Field Agronomic Traits in the Transgenic Rice

All transgenic rice grew well and similar to the WT throughout the growing period.
Moreover, comparisons of the main agronomic traits of the transgenic lines and WT after
maturity revealed no obvious differences (Figure 6). Grain number per ear in transgenic
line DHPDS1-22 was higher than that of the WT (Figure 6E), while the 1000-grain weight
of PRA was reduced (Figure 6F), but there was no statistically significant difference. In
general, agronomic traits are greatly affected by field planting and the local environment.
To verify the effect in the transgenic lines, the main agronomic traits were thus investigated
in a subsequent generation. As a result, the agronomic traits of transgenic lines planted in
Yangzhou in 2018 were not significantly different from those of the WT (Supplementary
Figure S2). Overall, these findings suggest that expression of AK2, DHDPS1, and LKR-RNAi
had no substantial impact.
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Figure 6. Investigation of the main agronomic traits of the transgenic and WT rice. (A) Plant height
(cm). (B) Main panicle length (cm). (C) Effective tiller number. (D) Seed-setting rate (%). (E) Grain
number per panicle. (F) 1000-grain weight (g).

3. Discussion

With clarification of the metabolic pathway of aspartate, metabolic engineering tech-
nology has become an effective way of improving the lysine content of crops. By regulating
the aspartate pathway, lysine content has been successfully increased in soybean, rape,
maize, Arabidopsis, and rice [7]. In this study, the free lysine content of transgenic lines
AK2-52 and DHDPS1-22 harboring AK2 and DHDPS1, respectively, driven by the rice
endosperm-specific promoter Gt1 increased 1.3- and 4.2-fold, while the free lysine con-
tent considerably increased in corresponding pyramid lines PRA and PRD generated via
hybridization with Ri-12 (Figure 3). These findings suggest that increases in the lysine
content require simultaneous regulation of lysine synthesis and catabolism, consistent
with previous findings [24]. However, the levels of free lysine in the two-gene transgenic
lines PRD and PRA were significantly higher than those in the three-gene pyramid line
PRDA (Figure 3A), suggesting that simultaneous regulation of AK and DHDPS did not
affect the lysine biosynthesis pathway. This was possibly caused by the amino acid pool
balance, which is required for normal cell growth [25]. Moreover, the lysine content of
rice possessing endogenous AK2, DHDPS1, and LKR-RNAi also showed a limited increase
compared with transgenic rice containing similar bacterial AK and DHDPS (Figure 3A,D).
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For high-lysine crop breeding, overexpression of AK2 was found to be more effective
at increasing levels of threonine than levels of lysine (Figure 4). Moreover, compared with
moderate regulation under DHDPS expression, regulation of AK expression also had an
effect on contents of other amino acids (Figure 4). These findings suggest that metabolic
engineering aimed at increased lysine levels should give priority to overexpression of the
DHDPS gene and inhibition of LKR.

Expression of maize-mutated DHDPS in rice using the endosperm-specific promoter
Gt1 was found to have no effect on the free lysine content of mature seeds [13]. Similar
findings were also observed following expression of bacterial DHDPS insensitive to lysine
feedback inhibition [26]. In contrast, specific expression of bacterial DHDPS in rape and
soybean effectively increased the free lysine content of the resulting seeds [27]. Here,
specific expression of mutated rice AK2 or DHDPS1 in rice also caused a significant increase
in the lysine content of the mature endosperm (Figure 3A). These differing findings may
have been caused by differences between species or DHDPS characteristics.

Meanwhile, specific expression of bacterial AK and DHDPS genes insensitive to lysine
feedback inhibition in rice had little or no impact on the expression of endogenous rice AK
and DHDPS genes (Supplementary Figure S3), suggesting differences in the expression and
regulation of AK and DHDPS genes between species. In higher plants, lysine, threonine,
methionine, and isoleucine all employ aspartate as the shared synthetic precursor, mainly
via the aspartate metabolic pathway [5]. AK, as the first rate-limiting enzyme in the aspar-
tate pathway, decomposes aspartate to produce aspartyl phosphate, which respectively
enters the lysine and threonine synthesis pathways. In this study, increased expression of
AK significantly increased free threonine, lysine, methionine, and isoleucine contents in the
mature seeds, as well as contents of the closely related glycine, valine, and leucine, while
aspartate decreased accordingly (Figure 4). Unexpectedly, contents of alanine, histidine,
arginine, proline, tyrosine, and phenylalanine, all of which are distantly related to the
aspartate pathway, varied greatly (Figure 4). These amino acids are all related to plant
stress responses, suggesting that the aspartate pathway is involved in multiple metabolic
pathways related to plant growth and development, as well as metabolic regulation, playing
multiple roles.

Previous studies have shown that excessive accumulation of lysine in plants has
adverse effects, resulting in wrinkled seeds, a reduced germination rate, altered oil content,
and decreases in yield [7]. Meanwhile, research further suggests that these changes are
related to energy metabolism, stress responses, carbon and nitrogen metabolism, and other
metabolic pathways [9]. Hence, the regulatory metabolic connections to rate-limiting target
genes of lysine metabolism should also be studied to break the barrier of homeostasis,
allowing metabolic flow to elevate lysine. The micronutrient-lysine chelates in reducing
heavy metal toxicity and improving plant growth in crops may provide a new strategy
to reduce the lysine toxicity [20–22]. Moreover, the utilization of excellent germplasm
resources can also effectively improve the nutritional quality of crops [28,29]. In physiology
and ecology, optimized hormone treatment and cultivation techniques are both good
choices to increase the lysine content of crops and reduce their toxicity [22,30].

In this study, the main agronomic traits of the transgenic lines and corresponding
pyramid lines were not significantly different from those of the WT, which is consistent
with previous results in high-lysine rice [9]. However, chalkiness in the transgenic line
expressing AK2 and its corresponding pyramid line increased to varying degrees. As
already known, the expression of AK gene is regulated by the photosynthesis-related
metabolites sucrose and phosphate, and regulates nitrogen and carbon metabolism [31]. In
addition, the glycine content also increased in high lysine plants and was found to be the
key intermediate metabolite during photorespiration [32]. Thus, this is possibly due to the
effect of high AK expression on UPR protein folding or photosynthesis via the aspartate
pathway, which in turn affect the formation and levels of chalkiness [31,33]. Meanwhile, the
transgenic line overexpressing DHDPS1 and its corresponding pyramid line PRD did not
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change significantly, possibly because DHDPS has less impact on other metabolic pathways
than AK.

4. Materials and Methods
4.1. Experimental Materials

The rice materials used in this study were japonica variety Wuxiangjing 9 and seven
new transgenic rice lines (Supplementary Table S2). The seven transgenic lines were
derived from different DNA structures and combinations as follows: Ri-12 contained
the RNAi structure of the rice LKR gene driven by the endosperm-specific promoter Gt1;
DHPS1-22 contained the Gt1-initiated DHDPS1 gene (mutated rice DHDPS gene); AK2-52
contained the Gt1-initiated AK2 gene (mutated rice AK gene); PRA (Ri-12/AK2-52), PRD
(Ri-12/DHDPS1-22), PDA (DHDPS1-22/AK2-52), and PRDA (Ri-12/DHDPS1-22/AK2-52)
represent transgenic hybrid polylines obtained from traditional hybrid polymerization of
Ri-12, DHDPS1-22, and AK2-52. All transgenic lines were isogenic. They were planted
in Yangzhou, Jiangsu, and managed according to conventional planting methods. PCR
identification was performed using transgene-specific primers (Supplementary Table S3)
according to the method of Yang et al. (2021) [9]. Transgenic lines GR-14 and GR-65 were
used for comparative analysis. They were driven by three gene segments from the rice
endosperm promoter Gt1 promoter and resulted in overexpression of the two bacterial
genes lysC (AK) and dapA (DHDPS), as well as a decrease in endogenous LKR/SDH genes
in rice.

4.2. Quantitative RT-PCR and Western Blot Analysis

Total RNA was extracted from unripe seeds about 15 DAF using an RNA extraction
kit (TAKARA, Tokyo, Japan). The isolated RNA was purified and reverse transcribed into
cDNA for quantitative PCR analysis. The specific primers used are listed in Supplementary
Table S3. The rice actin gene was used as an internal reference gene and the relative expres-
sion of the target gene was analyzed based on the ∆∆Ct method [34]. Total protein was
extracted from developed seeds obtained 15 DAF, as described previously [24]. Expression
levels of the target proteins were detected with Western blotting using rice AK, DHDPS,
and LKR-specific antibodies.

4.3. Composition and Quality Analysis of Seed Endosperm Compounds

Mature seeds were refined and milled into rice flour for analysis of composition, as
well as physical and chemical qualities [35]. A Megazyme kit (Megazyme, Wicklow, Ireland)
was used to determine the total starch content [36], while the crude protein content was
determined based on the Kjeldahl method. Starch was prepared and purified based on the
neutral protease method [36]. The total starch content, protein content, AAC, GC, and RVA
contents were analyzed as described previously [35,36]. Total amino acid and free amino
acid contents were analyzed according to Yang et al. (2016) [11]. Three biological repeats
were designed for each of the above samples.

4.4. Investigation of Field Agronomic Traits

Transgenic lines Ri-12, DHDPS1-22, AK2-52, polylines, and corresponding non-transgenic
WT were planted in the test field of Yangzhou University from 2017 to 2021, and grown
together under the same climatic conditions. Three replicate plots were established, with
random planting of test strains in each plot. After reaching maturity, agronomic traits
such as plant height, effective tiller number, setting rate, and the 1000-kernel weight were
determined.

4.5. Statistical Analysis

Sample data described in this experiment were obtained from at least three sets of
repeats unless otherwise specified. All presented data represent the mean SD. All data were
analyzed based on the Tukey (HSD) test using SPSS software to determine any statistical
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differences between each transgene and the WT. * represents a statistically significant
difference between the transgenic line and the WT (p < 0.05) and ** represents a highly
statistically significant difference between the transgenic line and the WT (p < 0.01).
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