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Oral clefts are common birth defects that have a major impact on the affected
individual, their family and society. World-wide, the incidence of oral clefts is 1/700
live births, making them the most common craniofacial birth defects. The successful
prediction of oral clefts may help identify sub-population at high risk, and promote new
diagnostic and therapeutic strategies. Nevertheless, developing a clinically useful oral
clefts risk prediction model remains a great challenge. Compelling evidences suggest
the etiologies of oral clefts are highly heterogeneous, and the development of a risk
prediction model with consideration of phenotypic heterogeneity may potentially improve
the accuracy of a risk prediction model. In this study, we applied a previously developed
statistical method to investigate the risk prediction on sub-phenotypes of oral clefts. Our
results suggested subtypes of cleft lip (CL) and palate have similar genetic etiologies
(AUC = 0.572) with subtypes of CL only (AUC = 0.589), while the subtypes of cleft
palate only (CPO) have heterogeneous underlying mechanisms (AUCs for soft CPO and
hard CPO are 0.617 and 0.623, respectively). This highlighted the potential that the
hard and soft forms of CPO have their own mechanisms despite sharing some of the
genetic risk factors. Comparing with conventional methods for risk prediction modeling,
our method considers phenotypic heterogeneity of a disease, which potentially improves
the accuracy for predicting each sub-phenotype of oral clefts.

Keywords: sub-phenotype, multi-class likelihood-ratio ensemble method, cleft lip with or without palate, cleft
palate only, genetic heterogeneity

Introduction

Oral clefts comprise a significant component of birth defects. Individuals born with orofacial
clefts are likely to require subsequent dental, speech, and psychosocial therapies to correct for the
craniofacial anomalies to various degrees (Strauss, 1999; Mossey et al., 2009; Wehby and Cassell,
2010). Traditionally, oral clefts are classified into cleft palate only (CPO) and cleft lip (CL) with or
without palate (CL/P; Fraser, 1955, 1970). The birth prevalence of CL/P is about 1/700 with wide
variability associated with geographic origin, whereas CPO affects 1/2500 births with less variability
compared to CL/P (Mossey, 2003; Genisca et al., 2009; Beaty et al., 2011; Dixon et al., 2011). Oral
clefts can also be divided into non-syndromic and syndromic forms, where approximately 70% of
CL/P and 50% of CPO are non-syndromic (Jones, 1988; Stoll et al., 2000; Calzolari et al., 2007;
Genisca et al., 2009; Jugessur et al., 2009; Dixon et al., 2011). With the advent of genomic era, major
breakthroughs have beenmade into identifying genetic variants predisposing to the syndromic oral
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clefts, while our knowledge of non-syndromic oral clefts genetic
etiology were still far behind. This could be partially due to
the heterogeneous etiology and the non-Mendelian inheritance
pattern of non-syndromic oral clefts (Murray, 2002; Dixon et al.,
2011). For this particular reason, for the rest of this paper we
focus on non-syndromic oral clefts with the consideration of their
phenotypic heterogeneity.

Compelling evidences suggest that genetic variants play a
substantial role in the development of oral clefts (Little and
Bryan, 1986; Wyszynski et al., 1998; Murray, 2002; Mossey
et al., 2009; Grosen et al., 2010; Beaty et al., 2011; Grosen
et al., 2011). Twin studies indicate that the concordance rates
of CL, cleft lip and palate (CLP), and CPO are higher for
monozygotic twins than for dizygotic twins (Little and Bryan,
1986; Murray, 2002; Grosen et al., 2010, 2011; Beaty et al.,
2011). For example, in a nationwide study in Denmark, the
proband-wise concordance rate is 33% for monozygotic twins
while the rate is 7% for dizygotic twins, which is only slightly
higher than the 3% recurrence risk observed for full siblings
(Grosen et al., 2010, 2011). Moreover, the recurrence risk of oral
clefts in families is greater than that predicted by the familial
aggregation of environmental risk factors. Evidence also shows
that the risk of oral clefts among first degree relatives of cases
is much higher than that in the general population (Wyszynski
et al., 1998; Sivertsen et al., 2008). Conventionally, CL/P and CPO
are treated separately, because the developmental origins of these
two defects are different during the embryonic stage. Through
genetic linkage studies, various loci and genetic regions, such
as MTHFR, TGFA, and TGFB3, were found to play a potential
role in CL/P (Prescott et al., 2000; Zeiger et al., 2003). Genes
related to growth factors [e.g., TGFA (Mitchell, 1997; Zeiger et al.,
2005; Vieira, 2006)], transcription factors [e.g., IRF6(Zucchero
et al., 2004; Park et al., 2007; Vieira et al., 2007a,b; Jugessur
et al., 2008)], nutrient metabolism [e.g., MTHFR (Vieira et al.,
2005)], and immune response [e.g., PVRL1(Sozen et al., 2001)]
have also been examined through genetic association studies. As
with many other candidate gene studies, rigorous confirmatory
replication is not common, except for the gene IRF6, which is
linked strongly to the isolated form of clefts. The association
finding of IRF6 with CL/P has been replicated in many different
populations and ethnic groups (Zucchero et al., 2004; Park et al.,
2007; Vieira et al., 2007a,b; Jugessur et al., 2008; Mossey et al.,
2009). To date, much of the attention has been paid to CL/P
rather than CPO among non-syndromic oral clefts (Beaty et al.,
2011; Dixon et al., 2011). This may be explained by relatively
large samples of CL/P that are available, better ascertainment
and less confounding issues for CL/P as compared to CPO
(Dixon et al., 2011). More studies will be needed to fill in the
gap to shine light on the underlying biological mechanism of
CPO. Despite these discoveries, the results from both linkage
and association studies are largely inconsistent, indicating the
challenge of identifying disease-associated genetic variants for
complex diseases with heterogeneous etiology (Carter et al., 1982;
Harville et al., 2005; Sivertsen et al., 2008; Mossey et al., 2009;
Dixon et al., 2011).

With the increasing genetic and epidemiologic findings for
oral clefts, the translation of these discoveries into health practice

becomes one of the major challenges of the coming decades.
It is hoped that the genetic risk prediction could help identify
sub-population at high risk of oral clefts and then advanced
disease prevention and intervention strategies can be used to
reduce the risk. Despite such promise, the existing genetic
findings are insufficient to explain the familial aggregation of
oral clefts (Mossey et al., 2009; Dixon et al., 2011) and as
the result the risk prediction models for oral clefts formed
to date have lacked sufficient accuracy for clinical use. Part
of this difficulty is due to the phenotypic heterogeneity, i.e.,
oral clefts with the same or similar clinical manifestations
have different genetic etiologies. When heterogeneous sub-
phenotypes were treated as a single entity, the predictive power
of the disease-associated variants could be substantially reduced,
leading to a prediction model with low accuracy (Morris et al.,
2010; Dixon et al., 2011). The use of more refined sub-
phenotypes defined based upon disease symptom, severity of
illness, and age at onset, facilitates the identification of new
genetic variants contributing to each sub-phenotype, and helps
build a more accurate risk prediction model (Morris et al.,
2010). The improved risk prediction model could be used to
identify high risk sub-population deserving special attention
so that more targeted prevention and intervention strategies
can be used to reduce the mortality and morbidity. However,
in the absence of a well-defined diagnosis criterion to classify
oral clefts into more homogeneous sub-phenotype groups, a
risk prediction model simply built on each sub-phenotype
could be subject to low accuracy and high variability because
of the small sample size for each sub-phenotype. Recently, a
multi-class likelihood-ratio ensemble (MLRE) method has been
proposed. It gradually combines sub-phenotype groups with
similar genetic etiology into homogeneous subgroups, and in
general does not require any prior knowledge of subgroup
information (Wen and Lu, 2013). With explicitly accounting
for phenotypic heterogeneity, the method has been shown to
have greater power over the existing methods. By applying
the new method to a large-scale oral clefts genetic data,
we simultaneously consider nine refined sub-phenotypes of
non-syndromic oral clefts defined primary based on clinical
manifestations, and gradually combine sub-phenotypes with
similar genetic etiology. We further build risk prediction models
on each combined sub-phenotype group by considering 148
candidate single nucleotide polymorphisms (SNPs) and their
potential interactions.

Materials and Methods

The International Consortium to Identify Genes
and Interactions Controlling Oral Clefts
(ICOCs) Study Dataset
The Interactions Controlling Oral Clefts (ICOCs) is one of
the largest and most comprehensive family based studies
conducted to date, aimed at discovering genes and interactions
contributing to oral clefts. It was developed through the trans-
NIH Genes, Environment, and Health Initiative (GEI) and
pulled together a large collection of cases and their parents
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from multiple populations based on similar research protocols
(Beaty et al., 2010; Cornelis et al., 2010), which comprised
nearly 1908 case-parent trios from different racial groups,
including Caucasian, African Americans, and Asians. DNA
samples were collected from both cases and their parents,
and were genotyped using the Illumina Human 1M DNA
Analysis Bead Chip. Cases were affected offspring identified
through a treatment center of population based registry and
were individuals diagnosed with an isolated, non-syndromic
oral cleft that included soft CPO, hard CPO, left cleft lip,
right cleft lip, bilateral cleft lip, left cleft lip, and palate,
right cleft lip, and palate, bilateral cleft lip, and palate,
microforms of oral cleft, and unknown types of oral clefts.
Parents of the affected children were also recruited for the
study. The DNA samples were genotyped with Illumina’s 610
Quad platform at the Johns Hopkins University Center for
Inherited Disease Research (CIDR). Based on existing literature,
we have identified 148 SNPs potentially associated with oral
cleft, which were available in the dataset. Due to the small
sample size, individuals with microforms and bilateral cleft lip
were excluded from the analyses. Individuals with unknown
types of oral clefts were also excluded from the analyses, as the
genetic causes for unknown types of oral clefts could be highly
heterogeneous.

Genetic Risk Prediction Analysis Allowing for
Phenotypic Heterogeneity
In this risk prediction analysis, we use a newly developed
MLRE, method (Wen and Lu, 2013) to take the heterogeneous
nature of oral clefts into account. The MLRE method gradually
combines sub-phenotypes into homogeneous groups based on
the genetic similarities among sub-phenotypes. It assumes no
mode of inheritance and allows for the identification of high-
order gene-gene interactions by using a computationally efficient
forward selection algorithm. The MLRE starts with all sub-
phenotype groups under investigation and treats each sub-
phenotype as a distinct disease outcome. It then applies the
receiver operating characteristic (ROC)-based forward selection
algorithm to identify genetic risk factors for each sub-phenotype
and then measures the pair-wise genetic similarities among all
sub-phenotypes. It gradually combines the most similar sub-
phenotypes and evaluates the overall classification accuracy of
the model using a global ROC statistic, which addresses both
the lack of accuracy due to the presence of heterogeneity
among sub-phenotypes and the accuracy loss caused by reduced
sample size when some sub-phenotypes indeed share the same
genetic etiology. The process continues until all sub-phenotypes
are clustered into one group. The optimum number of sub-
phenotype groups with sufficient sample size of each group and
least possible phenotype heterogeneity is determined through
a K-fold cross validation procedure using the global ROC-
statistic as a criterion. With the selected optimal number of
sub-phenotypes, the method is then applied to all samples to
build a risk prediction model for each sub-phenotype group.
Through extensive simulation studies, Wen and Lu (2013) have
demonstrated that MLRE attained higher accuracy compared

with commonly adopted methods under various underlying
numbers of sub-phenotype groups and disease models.

The major advantage of MLRE over existing methods (e.g.,
those analyzing sub-phenotype separately or analyzing all sub-
phenotypes as a single entity) is that MLRE incorporates genetic
information obtained from data and gradually combines sub-
phenotype groups that share similar genetic etiology to improve
both accuracy and precision of risk prediction models. Therefore,
it overcomes the obstacles when the prior information of defining
sub-phenotypes is lacking or inaccurate, and provides a powerful
and flexible framework to search for genetic variants contributing
to complex human diseases, allowing for heterogeneous genetic
causes among sub-phenotypes of a disease.

Results

Descriptive Analysis
Table 1 describes the samples of all sub-phenotypes and controls
in relation to the distribution of gender in the ICOC dataset.
Noteworthy, while the distribution of gender among controls is
roughly balanced, there is an excess of cleft palate cases in females
and an excess of CL with/without palate cases in males.

Risk Prediction Modeling
While prior studies have focused on building risk prediction
models for either CL with/without palate or CPO, we extended
the risk prediction analysis by explicitly considering all sub-
phenotypes of oral clefts, defined by their clinical manifestations
(e.g., the pattern of symptoms). By using a more refined sub-
phenotype, it is possible to detect genetic variants contributing to
a refined sub-phenotype, leading to an improved risk prediction
model for the sub-phenotype. The details of analyses are
summarized in Table 2 and the ROC curves of risk prediction
models for all sub-phenotype groups are depicted in Figure 1
(CL/P) and Figure 2 (CPO). Consistent with our current
understanding of oral clefts, left CLP, right CLP and bilateral
CLP showed similar genetic etiologies and were combined into

TABLE 1 | Distribution of sub-phenotypes in the Interactions Controlling
Oral Clefts (ICOCs) dataset.

Sub-phenotypes of oral clefts All Male Female

Control 3692 1759 1933

Cleft palate only CP-Soft only 223 85 138

CP- Hard 172 76 96

Cleft lip only Left CL 244 152 92

Right CL 114 66 48

Bilateral CL 30 15 15

Cleft lip and palate Left CLP 485 314 171

Right CLP 271 183 88

Bilateral CLP 336 240 96

Unknown 615 361 254

Microforms 3 2 1
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TABLE 2 | Risk prediction model for each sub-phenotype group of oral clefts.

Selected SNPs Allele Chromosome Gene Position AUC

Cleft lip and palate

rs6072081 A/G 20 MAFB 39261054 0.572(0.556,0.589)a

rs2073485 A/G 1 IRF6 209962794

rs560426 A/G 1 ABCA4 94553438

Cleft lip only

rs2073485 A/G 1 IRF6 209962794 0.589(0.562,0.617)

rs590223 A/G 1 IRF6 209946707

Cleft palate – hard

rs2073485 A/G 1 IRF6 209962794 0.623(0.583,0.663)

rs17389541 A/G 1 IRF6 208053795

rs1530300 C/T 8 8q24 129988640

Cleft palate-soft only

rs227731 A/C 17 17q22 54773238 0.617(0.583,0.652)

rs861020 A/G 1 IRF6 209989270

rs2514527 A/C 8 GDF6 97169326

a95% confidence interval (CI).

FIGURE 1 | Receiver operating characteristic (ROC) curves of risk prediction models for cleft lip with and without palate (CL/P), cleft lip with palate
(CLP), and cleft lip only (CL).

one group by the MLRE method. The area under the ROC curve
(AUC) of the CLP risk prediction model, which comprised of
rs6072081 (MAFB), rs2073485 (IRF6) and rs560426 (ABCA4),
was estimated to be 0.572 with 95% confidence interval (CI)
of (0.556, 0.589). Left CL and right CL were also treated as

a single entity by the MLRE method. The CL risk prediction
model (Figure 1) with rs2073485 (IRF6) and rs590223 (IRF6)
selected as risk predictors has an AUC value of 0.589 with 95%
CI of (0.562, 0.617). Contrary to most of the current findings,
our analyses treated cleft palate-soft only and cleft palate-hard
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FIGURE 2 | Receiver operating characteristic curves of risk prediction models for cleft palate only (CPO), cleft palate-hard and cleft palate-soft.

TABLE 3 | Risk prediction models for cleft palate only and cleft lip with and without palate.

Selected SNPs Allele Chromosome Gene Position AUC

Cleft palate only

rs227731 A/C 17 17q22 54773238 0.604(0.577,0.631)a

rs861020 A/G 1 IRF6 209989270

rs2514527 A/C 8 GDF6 97169326

Cleft lip with and without palate

rs2073485 A/G 1 IRF6 209962794 0.556(0.542,0.570)

rs7078160 A/G 10 VAX1 118827560

a95% CI.

as two separate groups. For these two groups, rs227731 (17q22),
rs8610209 (IRF6), and rs2514527 (GDF6) were selected as risk
predictors for cleft palate-soft only, whereas rs2073485 (IRF6),
rs17389541 (IRF6), and rs1530300 (8q24) jointly contributed to
the risk of cleft palate-hard. The risk prediction model formed for
cleft palate-soft only (Figure 2) achieved an AUC value of 0.617
with 95% CI of (0.583,0.652), while the risk prediction model
formed for cleft palate-hard (Figure 2) had an AUC value of 0.623
with 95% CI of (0.583,0.663).

We also compared the risk prediction models formed by
MLRE to those formed based on empirical knowledge. For such
purposes, as suggested by previous literature, we classified the
oral clefts into two sub-phenotype groups (i.e., CL/P and CPO).
The same forward selection algorithm was then used to search

for the most parsimonious risk prediction models for CL/P and
CPO. The details of the risk prediction models are summarized
in Table 3 and the ROC curves for CL/P and CPO are depicted in
Figures 1 and 2, respectively. The risk prediction model for CL/P,
which comprised of rs2073485 (IRF6) and rs7078160 (VAX1),
achieved an AUC value of 0.556 with 95% CI of (0.542, 0.570).
For CPO, rs227731 (17q22), rs8610209 (IRF6), and rs2514527
(GDF6) were selected as risk predictors, and the corresponding
AUC value of the model was 0.604 with 95% CI of (0.577,
0.631).While there is a considerable overlap of predictors selected
by MLRE and the conventional approach, AUCs of the risk
prediction models formed by the convention approach without
considering phenotypic heterogeneity were smaller than those
built by the MLRE method (Figures 1 and 2).
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Discussion

Genetic risk prediction studies have been recognized as
an important step toward personalized genome medicine.
Substantial evidences suggest that the oral clefts with the
same or similar clinical manifestations have heterogeneous
pathophysiological and etiological mechanisms (Harville et al.,
2005; Mossey et al., 2009; Morris et al., 2010; Dixon et al., 2011).
In the presence of phenotypic heterogeneity, methods treating all
sub-phenotypes as the same outcome are subject to low predictive
power, as the effects of genetic variants associated with one
unique sub-phenotype are attenuated in the whole population
(Mossey et al., 2009; Morris et al., 2010; Dixon et al., 2011).
However, most of the genetic prediction studies of oral clefts
do not explicitly explore the effect of phenotypic heterogeneity
either because there is limited information to classify cases
into homogeneous sub-phenotype groups or the sample size for
each sub-phenotype is too small for valid statistical inference.
Therefore, studies that infer homogeneous sub-phenotype groups
based on empirical data could facilitate the identification of
new genetic variants, leading to more accurate risk prediction
models. In this study, we considered all sub-phenotypes of
oral clefts and searched for genetic variants contributing to
homogenous sub-phenotype groups of oral clefts. Among the
sub-phenotypes considered, left CLP, right CLP, and bilateral
CLP showed similar genetic etiologies, while left and right CL
shared similar genetic causes. Different from traditional studies,
where cleft palate-soft only and cleft palate-hard were treated
as a single entity, our analysis suggested that they did not
have exactly the same underlying genetic etiology. Although
other criteria could be used to define the initial sub-phenotype
groups, this study made use of the information from clinical
diagnosis to define initial sub-phenotype groups. To the best of
our knowledge, no prior risk prediction studies were conducted
based on each sub-phenotype of oral clefts with the consideration
of both phenotypic heterogeneity and gene-gene interactions.
The approach used in this study could serve as the first step
toward inferring homogeneous sub-phenotype groups of oral
clefts, identifying new genetic variants associated with each
sub-phenotype group, and exploring risk prediction models
for each sub-phenotype group. With knowledge accumulated
through further investigation and validation, a more accurate
definition of oral clefts can be established, which might help us
to better understand the process of the craniofacial anomalies
in embryonic development and to build new diagnostic and
therapeutic strategies to prevent the abnormity formed at
embryonic stage.

Consistent with most of current findings, the interferon
regulatory factor 6 (IRF6) has been selected as an important
predictor for all forms of oral clefts (Zucchero et al., 2004;
Ghassibe et al., 2005; Scapoli et al., 2005; Richardson et al.,
2006; Park et al., 2007; Vieira et al., 2007a; Birnbaum et al.,
2009; Grant et al., 2009; Beaty et al., 2010; Mangold et al.,
2010). Starting from the 7th week of embryonic development,
the palatal shelves rise to a horizontal position above the
tongue and come into contact, and IRF6 is one of the most
important factors to ensure the palatal shelves rise and adhesive

correctly (Sperber, 2002; Mossey et al., 2009; Dixon et al., 2011).
IRF6 transcription is activated by p63, which underlies several
malformation syndromes including oral clefts (Sun et al., 2000;
Ashique et al., 2002; Thomason et al., 2008; Mossey et al., 2009).
The protein encoded by IRF6 contribute to the development of
van der Woude’s syndrome and popliteal pterygium syndrome,
both of which are characterized by various degrees of cleft lip,
cleft lip and palate, and CPO (Kondo et al., 2002; Richardson
et al., 2006). In addition to IRF6, v-maf musculoaponeurotic
fibrosarcoma oncogene homolog B (MAFB) and intron 6 of
the ATP-binding cassette subfamily A member 4 (ABCA4) also
contribute to the risk of cleft lip and palate (Mossey et al., 2009;
Beaty et al., 2010; Huang et al., 2012). The genetic regions close to
MAFB harbor numerous binding sites for transcription factors
that are known to play a role in palate development (Beaty
et al., 2010; Huang et al., 2012). Animal models further confirm
the role of MAFB in oral clefts. In mouse, the MAFB mRNA
and protein were highly expressed in the epithelium around the
palatal shelves and in the medial edge epithelium during palatal
fusion (Beaty et al., 2010). Although no evidence of ABCA4
expression has been observed in mouse palatal shelves and no
apparent relationship between ABCA4 and oral clefts, ABCA4
may be served as a surrogate to a nearby disease-associated
gene (Beaty et al., 2010). Traditionally, cleft lip only and cleft
lip with palate are treated as a single entity with homogenous
genetic etiology while CPO has its own mechanism, as the cleft
lip and primary palate have different developmental originals
from the secondary palate (Fraser, 1955, 1970; Dixon et al., 2011).
Recently, several studies suggest that the etiology of cleft lip
may also be different from that of cleft lip with palate (Harville
et al., 2005). Nevertheless, our analysis is not supportive of the
completely unified genetic etiology of CL and CLP, although CL
only and CLP do share some risk factors. It remains controversial
whether cleft lip should be treated the same as cleft lip with
palate due to the complex and heterogeneous nature of the
disease.

It is noteworthy that based on our analyses cleft palate-hard
and cleft palate-soft only should be treated as two separate sub-
phenotypes of isolated cleft palate. Our results highlighted the
potential that the hard and soft forms of isolated cleft palate
have their own mechanisms each though they share some of
the genetic risk factors. Treating all forms of isolated CPO as
a single entity may jeopardize our ability to uncover important
genetic risk predictor predisposing to a specific sub-phenotype.
Nevertheless, current studies considered hard and soft cleft palate
as variants of the same defect without systematic investigation on
each of them. This is partially due to limited knowledge of disease
etiology and relatively small sample size of sub-phenotypes of
CPO. Our analyses could be served as an initial step toward
exploring sub-phenotypes of CPO, and subsequent explorations
and validations of etiologies underlying various sub-phenotypes
hold great promise to move forward our understanding of
cleft palate, which may eventually lead to new diagnostic and
therapeutic strategies for CPO.

One possible limitation of the study is that only genes
previously reported to be associated with oral clefts were
included. Consequently, new genetic variants contributing to a
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specific sub-phenotype of oral clefts were not investigated in this
study, which could lead to low performance of risk prediction
models. A natural extension of current analysis is to conduct
a genome-wide risk prediction analysis with the consideration
of both gene–gene interactions and phenotypic heterogeneity.
Another limitation of this study is related to the sub-phenotype
definition. We used the sub-phenotypes defined in the data
as our starting point and gradually combined the groups with
similar genetic etiologies. The formed risk prediction models
could have low performance if the initial sub-phenotype groups
do not reflect the underlying genetic etiology. It is worthwhile
to investigate other criteria of defining initial groups in future
analysis.

Conclusion

We used a newly developed statistical method to form risk
prediction models for oral clefts with the consideration of

heterogeneous disease etiology. The method first combined sub-
phenotype groups shared similar genetic etiology, and then
constructed risk prediction models for each newly formed sub-
phenotype group. Further replication and follow-up studies are
needed to validate the findings, but our analyses could serve as
an initial step toward constructing risk prediction models for
homogeneous sub-phenotype groups of oral clefts.
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