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ABSTRACT: We propose here a single Pfaffian correlated variational ansatz that
dramatically improves the accuracy with respect to the single determinant one,
while remaining at a similar computational cost. A much larger correlation energy
is indeed determined by the most general two electron pairing function, including
both singlet and triplet channels, combined with a many-body Jastrow factor,
including all possible spin−spin, spin−density, and density−density terms. The
main technical ingredient to exploit this accuracy is the use of the Pfaffian for
antisymmetrizing a highly correlated pairing function, thus recovering the Fermi
statistics for electrons with an affordable computational cost. Moreover, the
application of the diffusion Monte Carlo, within the fixed node approximation,
allows us to obtain very accurate binding energies for the first preliminary
calculations reported in this study: C2, N2, and O2 and the benzene molecule. This
is promising and remarkable, considering that they represent extremely difficult
molecules even for computationally demanding multideterminant approaches, and
opens therefore the way for realistic and accurate electronic simulations with an algorithm scaling at most as the fourth power of the
number of electrons.

1. INTRODUCTION

The accurate determination of the many-electron wave
function (WF) has always been a challenging task starting
from the early stage of quantum mechanics.1 So far, several
attempts have been made toward this direction ranging from
CCSD(T)2 to tensor network3 and density matrix renormal-
ization group (DMRG),4 up to the very recent breakthrough
with the use of machine learning methodologies.5 All these
schemes pay the price of being computationally demanding,
with a computational complexity ranging from a large degree
polynomial of the number of electrons to exponential
complexity.
Quantum Monte Carlo (QMC) techniques for electronic

structure calculations have proven to be very successful in
describing the electronic correlation encoded in a many-body
WF.6−8 In particular, the variational Monte Carlo (VMC)9−11

samples the real space electronic configurations of the
considered system with a probability distribution given by
the WF square, thus providing the efficient evaluation not only
of the total energy but also of the expectation values of most
commonly used many-body operators. Within VMC, it is
possible to improve the description of the ground state (GS)
WF by minimization of the total energy expectation value. The
WF obtained can be used as it is or further improved by the
diffusion Monte Carlo calculation (DMC) method.10−13 This
technique is a projection algorithm performed statistically
using the information on the sign contained in the given WF,

dubbed here as a guiding function. In this way, we can
considerably improve the description of the GS, projecting on
the lowest possible energy WF with the same signs of the
guiding WF. In the ideal case of a guiding function that, for
every configuration, has the same sign of the GS, the above-
described DMC algorithm provides the exact solution.10,11

In the framework of QMC, different ansatzs are used to
approximate the true GS WF, with the purpose to achieve an
affordable compromise between the accuracy of the calculation
and its computational cost. Though a good representation of
the GS can sometimes be achieved with a simple and “cheap”
WF, in most cases, the use of a very complicated and
computationally demanding ansatz is necessary to get a correct
answer.
Slater determinants (SDs) are the simplest fermionic WF

used for QMC. They provide a single particle picture of the
quantum many-body problem, preserving the Pauli principle,
that is, the Fermi statistics for electrons. They can be obtained
directly from mean-field calculations. Unfortunately in many
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situations of interest, it is not possible to give a good
description of the system in terms of a single SD.14−17 In
QMC, there are two possible strategies to overcome this
problem: the use of a linear combination of different SDs17−21

or different ansatzs with larger variational freedom.22,23 The
multideterminant WFs can be systematically improved and in
principle can describe exactly every GS with a large enough
number of SDs. Unfortunately the number of SDs that has to
be taken into account scales exponentially with the number of
electrons preventing the calculations on large systems.24

The use of pairing function replaces the single particle
description of the SD with a richer one in terms of electron
pairs. The corresponding WF is a natural extension of the
single SD ansatz and represents a direct and efficient
implementation of the Anderson resonating valence bond
(RVB)25 theory of many-electron WFs. In particular, it
provides a direct description of the singlet and triplet
correlations that are absent in the SD. Depending on the
definition of the pairing function, qualitatively different WFs
can be obtained. They will be described in Section 2, where we
will focus also on the technical details required for the
calculation. We will introduce the symmetric antisymmetrized
geminal power (AGP)22,26,27 and the broken symmetry
antisymmetrized geminal power (AGPu),28 but we will mainly
focus on the most general AGP. In the previous literature,23,29

it has been indicated as Pfaffian WF, and people have been
referring to the AGPs as AGP, but since the AGP (or Pfaffian
WF) literally realizes the most general antisymmetrized
geminal power, we dub this case with the shortest acronym,
that is, AGP. It will be shown that this approach becomes very
efficient in combination with an explicit correlation term,
known as a Jastrow factor (JF),14,30,31 that promotes or
penalizes the bonds according to the electronic correlation. As
it will be shown later, we have introduced a quite general JF,
depending both on spin and electron charges. When it is
applied to an AGP without definite spin, it allows its almost
complete restoration, mimicking in this way a spin projection
operation that, though approximate, is much cheaper than
other approaches.32,33 Even if the pairing functions cannot be
improved systematically, these WFs have a much larger
variational freedom than the SDs, nevertheless remaining
with a similar computational cost.
If on one hand, for the multideterminant WF, the calculation

can be computationally very expensive, on the other hand, for
the pairing functions, the optimization of a large number of
nonlinear variational parameters can become a serious
limitation if not handled efficiently. Indeed, in order to exploit
the full potential of these ansatzes, it has been fundamental to
use the most recent techniques for the calculation of the
derivatives and optimization strategies.
In a previous attempt, the AGP WF was used by exploiting

only a very small fraction of the large variational freedom of the
ansatz.23,29 The results were not encouraging, and the energies
obtained with this ansatz did not improve the ones of the
AGPs that, in turn, has a lower computational cost. Despite the
Pfaffian was no longer used in the electronic system to our
knowledge, the experience with lattice models has shown that
the AGP WF is able to improve considerably the description of
magnetic and correlated systems.34 Moreover, the introduction
of a powerful JF and the recent results obtained in combination
with the AGPs14,35,36 encouraged us to look for the
unexpressed potential of the full AGP WF.

In this paper, we will compare the results obtained with AGP
WF with available state of the art VMC and DMC calculations.
In particular, we benchmark our WF on the diatomic
molecules with corresponding high spin atoms in the first
row of the periodic table, i.e., carbon, nitrogen, and oxygen,
and on the benzene. The first ones are systems that, despite
their apparent simplicity, represent useful benchmarks for
many highly correlated methods.37−40 We will show that, with
the use of our best WFs, even with a very compact basis set, we
are able to achieve an accuracy comparable with the state of
the art multideterminant WFs at a computational cost similar
to the one of a single SD. Not only the total energies and the
dissociation energies are extremely accurate but we also
analyzed the magnetic proprieties of these molecules, unveiling
the unexpected rich physics behind these systems. Finally we
consider the benzene molecule, a system that represents the
prototypical example of the RVB theory and thus a
fundamental test case for our approach.

2. WFS AND PROCEDURES

For all calculations we present in this paper, we used the
TurboRVB package for QMC calculations.41,42 The WFs used
for this work are factorized as the product of a fermionic mean
field and an explicit bosonic correlation factor. Being Ψ(X) the
WF of a given configuration X = (r1σ1, r2σ2, ..., rNσN) of N
electrons of spins σi and positions ri, we can write Ψ(X) as

JX X X( ) ( ) ( )Ψ = × Φ (1)

where Φ(X) takes into account the fermionic nature of the
electrons, while J(X) is the JF: an exponential modulation of
the WF that substantially improves the electronic correlation
description for all types of WFs studied here. The fermionic
term of the WF, dubbed as Φ(X) in eq 1, is the most
important part, directly encoding the behavior of the electrons
while imposing the antisymmetrization under particle
exchange. In the following section, we will describe the basis
set used, the definition of the AGPs, AGPu, and AGP after a
brief introduction to the SD. Finally we will discuss the JF
correlator.

2.1. Basis Set. We expand our ansatz in an atom-centered
basis set of Gaussian orbitals for the calculation of the JF and a
hybrid basis set for the fermionic part of the WF, as it will be
discussed below. The Gaussian orbitals basis set is indicated as
{ϕI,ν(r)}, with each element being the νth orbital centered on
the Ith atom at the position RI. The elements in the basis set
have the form

Y Yr( ) eI
Z

l m l m
r R

, , ,
I

2
ϕ ∝ [ ± ]ν

− | − |
−

ν
ν ν ν ν (2)

where Zν is a numerical coefficient that describes how diffused
the atomic orbital is around the atom, while Ylν,mν

is the
spherical harmonic function with angular quantum numbers lν
and mν, corresponding to the orbital type ν which is always
assumed to be real. This basis set has been used without
further contractions for the description of the JF. Instead, for
the fermionic part of our WF, we have used hybrid atomic
orbitals (HOs)26,27 to expand them over a richer set of
Gaussian orbitals and, by means of the contraction, considering
only an affordable number of variational parameters. The HOs,
indeed, are obtained as linear combinations of all the elements
of the Gaussian basis set used for a given atom, labeled by I

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00165
J. Chem. Theory Comput. 2020, 16, 6114−6131

6115

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00165?ref=pdf


r r( ) ( )I I, , ,∑ϕ μ ϕ̅ =ω
ν

ω ν ν
(3)

The above hybrid orbitals allow us to take into account the
modification of the standard Slater orbitals corresponding to
isolated atoms, to the case when they are instead placed in a
complex environment. Therefore, we have chosen to use a
number of hybrid orbitals equal to the single particle ones
occupied in the absence of electron−electron interactions and
including also all the ones corresponding to the same shell of
degenerate one particle levels. The corresponding orbitals are
the ones that should physically play a role in the considered
electronic systems. Hence, in all of the first row molecules, we
have considered the full hybridization of five atomic orbitals,
coming from two s-wave and three p-wave ones, that can be
corrected by several components with much higher angular
momenta. This is because the full spherical symmetry is no
longer satisfied even in a simple homonuclear molecule. For
the sake of compactness, we indicate here all basis elements as
{ϕk(r)} combining the indices ω and I, and I and ν in a single
index k for a lighter notation. Every time we refer to the AGPs,
AGPu, and AGP, it is meant to be a basis of HOs.
The exponents Zν have been chosen from the ccpVDZ or

ccpVTZ basis set according to this criterium: the contraction
are removed and all exponents with Zν > 150 a.u−2. are
eliminated. This is possible because contracted orbitals
containing very large exponents are necessary only with a
pure Gaussian basis in order to satisfy the electron-ion cusp
conditions. They are instead appropriately considered by the
one-body term of our JF, as described in Section 2.4. The
exponents chosen are then further optimized at molecular
equilibrium distance and kept fixed in the corresponding
atomic calculation (where the optimization of the exponents
has an almost negligible effect) and the dispersion energy
curves.
2.2. Slater Determinant. Here, we will provide a

preparation description of the SD that is important both for
the initialization of the pairing function and for comparing our
results with the existing literature.17 From theoretical and
computational point of view, the simplest fermionic WF is the
SD, called Jastrow SD (JSD) in the presence of a JF. The SD is
built from the vacuum state by populating a number of
orthogonal single particle molecular orbitals (MOs) equal to
the number of electrons in the system. Henceforth, we omit
the spin indices, by assuming that each spin component
corresponds to a different SD. In our basis, the MO are in the
form

Pr r( ) ( )
k

k k
mol

1
,∑ ϕΦ =α α

= (4)

The MOs can be obtained directly from a density functional
theory (DFT) or Hartree−Fock calculation, but they can also
be further optimized with VMC.43 It is well known that the
antisymmetric product of these MO leads to the determinant
of the matrix in which every MO is evaluated for each electron
position

i

k

jjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzz

X

r r r

r r r

r r r

( ) det

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )N N N

N

N

N

SD

1
mol

1 1
mol

2 1
mol

2
mol

1 2
mol

2 2
mol

mol
1

mol
2

mol

Φ =

Φ Φ Φ

Φ Φ Φ

Φ Φ Φ

μ

μ

∂ ∂ ∏ ∂

μ (5)

For weakly correlated systems, the JSD can often give
reasonably good results with an affordable computational cost
and a limited number of variational parameters. It is also a
common choice to use a linear combination of SDs to improve
the description of the WF, with ansatzs that take different
names depending on the type and number of SDs considered.
In this paper, we will compare directly the results of our WFs
to the ones obtained with one of the most successful
multideterminant WFs, the full valence complete active space
(FVCAS) WF.

2.3. Pairing Function. The use of the pairing function in
correlated WFs allows an electronic description that goes
beyond the single particle picture of the SD. The building
block of this WF has the following general form

f r r r r( , ) ( ) ( )
k l

k l k l1 1 2 2
,

, 1 2
1 2

1 2
∑σ σ λ ϕ ϕ= σ σ

σ σ
(6)

where all the elements of the matrix λ represent most of the
WF variational parameters. They depend on the orbitals
considered and on the spin σ1, σ2 of the so called geminal
function f. In principle, when we break the spin symmetry, the
basis sets used for ↑ and ↓ electrons can be different, otherwise
the chosen basis does not depend on the spin component. In
order to set up a consistent many-body WF starting from the
geminal, several choices are possible depending on the criteria
adopted for the definition of the geminal. To highlight the
different possibilities, we can recast eq 6 in a way in which the
spin dependency is more explicit

f f

f

f r r f

r r r r

r r

r r

( , )
1
2

( ) ( , )

1
2

( ) ( , )

( , ) ( , )

1 1 2 2 1 2

1 2

1 2 1 2

σ σ = | ↑ ↓ ⟩ − | ↓ ↑ ⟩

+ | ↑ ↓ ⟩ + | ↓ ↑ ⟩

+ | ↑ ↑ ⟩ + | ↓ ↓ ⟩

+

−

↑ ↓ (7)

where

f f f

f f

r r r r r r

r r r r

( , ) ( , ) ( , ),

( , ) ( , ) with ,

1 2 1 2 1 2

1 2 1 2σ σ σ

= ↑ ↓ ± ↓ ↑

= = ↑ ↓σ

±

(8)

In order to satisfy the Pauli principle, we have f±(r1,r2) =
±f±(r2,r1) and fσ(r1,r2) = −fσ(r2,r1) for σ = ↑, ↓. Our WF is
then obtained by antisymmetrizing the product over all
electron pairs considered that, by definition, occupy the
same pairing function. For simplicity, we will enumerate the
spin up electrons from 1 to N↑ and the spin down ones from
N↑ + 1 to N.
As suggested by the name AGP, our goal is to define a WF

that is literally the antisymmetrized product of the geminals
and the unpaired orbitals (if present), namely

f f

f r

X r r r r

r r r

( ) Sgn( )( ( , ) ( , )

( , ) ( ) ( ))p p p p p N p N

1 1 2 2 3 3 4 4

1 1 1 1

∑ α σ σ σ σ

σ σ

Φ = ···

Θ ···Θ
α

− − + −

α α α α α α α α

α α α α α α (9)

where α is one of the possible way of distributing the N
electrons between the p/2 pairs and the N − p unpaired
orbitals Θ, and Sgn(α) is the sign of the corresponding
permutation of the particles that is required to ensure the
fermionic behavior. In particular, different choices of the
pairing function, obtained by excluding one or more terms in
the eq 8, lead to different ways to compute eq 9. These choices
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also impact quantitatively and qualitatively on the kind of
physics that we can describe by means of this type of WF.
Therefore, we will distinguish among three distinct cases: if we
consider only the singlet term in eq 8 we obtain the AGPs, if
we include the singlet and the Sz = 0 triplet term we have the
AGPu, while the most general case is just the definition
adopted here for the AGP.
2.3.1. AGPs. Let us consider for the moment the unpolarized

case N↑ = N↓, the extension to the polarized cases will be
straightforward and will be discussed later on. When no triplet
correlations are allowed, we build our WFs using only singlet
pairs, and the pairing function in eq 7 contains only the
symmetric element f+

f fr r r r( , )
1
2

( ) ( , )1 1 2 2 1 2σ σ = | ↑ ↓ ⟩ − | ↓ ↑ ⟩ + (10)

In this case, we project a perfect singlet that we denote as
AGPs. The λ matrix elements in eq 10 are nonzero only for σ1
≠ σ2, and they are symmetric for spin exchange. In order to
calculate the AGPs, we can write all the possible combinations
of pairs of opposite spin electrons in a matrix defined as

i

k

jjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzz

F

f f f

f f f

f f f

r r r r r r

r r r r r r

r r r r r r

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

N N N

N N N

N N N N N N

1 1 1 2 1

2 1 2 2 2

1 2

=

↑ ↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑ ↓

+ +

+ +

+ +

↑ ↑

↑ ↑

↑ ↑ ↑ ↑ ↑

μ

μ

∂ ∂ ∏ ∂

μ

(11)

In this way, each row of the matrix corresponds to an electron
of spin ↑ and each column an electron of spin ↓. The definition
of the matrix F in this form is convenient because it allows the
antisymmetrization requested by the eq 9 in a simple and
efficient way. Indeed, it can be demonstrated26 that the correct
antisymmetrization of the pairs considered in this case is given
by

FX( ) detAGPsΦ = (12)

This is somehow intuitive because we want to sum all the
possible products of N/2 matrix elements of F, where in all
these factors, a column element or a row element is present
only once, exhausting all the possible configurations of the
system considered with an appropriate ± sign that, in this case,
is just given by the one corresponding to the determinant of F.
When the system is polarized and N↑ ≠ N↓, we cannot build

the solution using only the singlet terms because the matrix F
written as in eq 11 is a rectangular matrix and its determinant
cannot be computed. Supposing for simplicity that N↑ > N↓, in
this case, we have to add a number N↑ − N↓ of unpaired spin-
up MOs {Θi(r)} not only for fulfilling the polarization required
but also, most importantly, to turn the matrix F to a perfectly
defined square matrix

i

k

jjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzz

F

f

f

f

r r r r

r r r r

r r r r

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

N N N

N N N

N N N N N N

1 1 1 1 1

2 1 1 2 2

1 1

=

↑ ↓ Θ Θ

↑ ↓ Θ Θ

↑ ↓ Θ Θ

+ −

+ −

+ −

↑ ↑ ↓

↑ ↑ ↓

↑ ↑ ↑ ↑ ↓ ↑

μ μ

μ μ

∂ ∏ ∂ ∏ ∂

μ μ

(13)

Also in this case, a consistent antisymmetric WF can be again
calculated as the determinant26 of the matrix F exactly in the
same way as the singlet pairing in eq 12.

2.3.2. AGPu. For the AGPu, only the parallel spin term of
the triplet component are omitted. This means that the spin
symmetry is broken, and a magnetic order parameter can be
directed along the z-quantization axis. This WF is called the
broken symmetry AGP (AGPu), and the difference from the
previous AGPs is the presence of the antisymmetric f−
component in the definition of the pairing function in eq 7,
that for this case is

f f

f

r r r r

r r

( , )
1
2

( ) ( , )

1
2

( ) ( , )

1 1 2 2 1 2

1 2

σ σ = | ↑ ↓ ⟩ − | ↓ ↑ ⟩

+ | ↑ ↓ ⟩ + | ↓ ↑ ⟩

+

− (14)

In order to define this pairing function, we break the spin
symmetry in the opposite electron spin case with σ1 ≠ σ2, by
keeping equal to zero the σ1 = σ2 components of eq 6. With
exactly the same procedure used in the case of the AGPs,
depending on the polarization, we can build the same matrix F
of eqs 11 or 13 that is no longer symmetric now. Even in this
case, the correct antisymmetrized sum of these pairs is given by
the determinant.26 Thus, analogously to eq 12, we obtain

FX( ) detAGPuΦ = (15)

that implements the simplest broken symmetry ansatz based
on the pairing function.

2.3.3. AGP. The AGP (also known in the literature as
Pfaffian WF23) is in our opinion the most important pairing
function, being the most general one and encoding new
variational freedoms into the AGPs and the AGPu. We will
show that it represents the most powerful description of the
chemical bond within the paradigm developed in this work.
This WF represents also the most general mean-field state, that
is, the GS of a mean-field Hamiltonian containing BCS
anomalous terms projected on a given number N of particles

and total spin projection S z
i
N

itot 1 σ= ∑ = along the z-

quantization axis. In this case, the definition of the pairing
function is exactly the one in eq 7, containing all terms
including the parallel spin terms of the triplet. This means that
now, when we build the AGP, we have to include also the
parallel spin electron pairs in the WF. In this way, the AGP can
also describe a magnetic order parameter in any direction of
the space, and thus, it is also possible to rotate the spin
component of the WF in any direction. This will allow us to
break the symmetry along the spin-quantization axis and then
rotate it. As we will explain later, this plays a crucial role when
we use this WF in combination with our JF because it allows us
to preserve the total Sz of the molecules and include spin
fluctuations.
Of course, we cannot create a WF using only pairs if the

number of electrons in the system is odd, so, for the moment,
let us assume N is even. The extension to the odd number of
electrons is trivial and will be discussed immediately after. We
will dub as W the matrix containing all possible pairs
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f f f
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r r r r

r r r r r r

r r r r

0 ( , ) ( , )

( , ) 0 ( , )

( , ) ( , ) ( , )

( , ) ( , ) 0

N

N

N N N N

N N

1 2 1

2 1 2

1 1 1 2 1

1 2

=

↑ ↑ ↑ ↓

↑ ↑ ↑ ↓

↓ ↑ ↓ ↑ ↓ ↓

↓ ↑ ↓ ↑
− − −

μ

μ

∂ ∂ ∏ ∂

μ

μ

(16)

where the matrix is antisymmetric for the fermionic
commutation rules, and thus, the elements of the diagonal
are set to zero. We can recast the W highlighting its different
spin sectors as

i

k
jjjjjj

y

{
zzzzzzW

W W

W W
=

↑↑ ↑↓

↓↑ ↓↓ (17)

where W↑↑ and W↓↓ are respectively N↑ × N↑ and N↓ × N↓
antisymmetric matrices that take into account the parallel spin
terms of the triplet, while W↑↓ is a N↑ × N↓ matrix such that
W↑↓ = −W↓↑

T , describing the remaining triplet and singlet
contributions. In the case of AGPs and AGPu, we can also
build a similar matrix where the matrices W↑↑ and W↓↓ are
identically zero.
Analogously to the case of the AGPs and AGPu, we have to

identify a way to calculate the antisymmetric product of all
pairs considered. In this case, it is easy to identify the
antisymmetrization procedure defined in eq 9 as the Pfaffian of
the matrix W. After introducing this algebraic operation, the
reason will be straightforward to the reader.
The Pfaffian is an algebraic operation acting on antisym-

metric square matrices with an even number of rows and
columns. Being N even, the matrixW satisfies these hypothesis.
The usual definition of the Pfaffian requires the introduction of
the concept of partition of the matrix W

A W( ) sign( )
k

N

i j
1

/2

,k k
∏α α=

= (18)

where all ik and jk are different, ik < jk for each k and i1 < i2 < ...
< iN. The sign(α) is given by the permutation that orders the
vector of the indices {i1, j1, i2, j2, ..., iM, jM}. In this way, all
indices are considered only once. The Pfaffian is then defined
as

W APf( ) ( )∑ α=
α (19)

where the sum over α is extended over all possible partitions.
However, an alternative definition44 of the Pfaffian can better
clarify the correspondence to the eq 9. It can indeed be defined
alternatively as

W N P WPf( ) ( /2) 2 sign( )N

P k

N

i j
/2 1

1

/2

,

P

kP kP
∑ ∏= [ ! ]−

= (20)

where P now represents a generic permutation of the possible
row and column indices of the matrix without any constraints,
and the sign(P) is the parity of the permutation. In this
definition, it is easy to recognize the antisymmetrized sum
corresponding to the eq 9. Let us introduce now a further
property of the Pfaffian that will be useful in the following
section. We will indicate with 0 a m × m matrix containing
only 0 and B a generic m × m matrix, we have

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
B

B
BPf

0

0
( 1) det( )

T
m m( 1)/2

−
= − −

(21)

For odd number of electrons, it is necessary to use a spin-
dependent unpaired orbital Θσ(r) so that we can accommodate
the remaining electron that is not considered by the product of
the pairs. The unpaired orbital introduces a supplementary row
and column to the matrix W. Being Θ↑ = (Θ↑(r1), Θ↑(r2), ...,
Θ↑(rN↑)) the vector containing the values of the unpaired
orbital Θ↑ at the ↑ electron positions and Θ↓ = (Θ↓(rN↑+1),
Θ↓(rN↑+2), ..., Θ↓(rN)) the one calculated for the ↓ electron
ones, we modify the matrix in eq 17 as

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz
W

W W

W W

0T T

=

Θ

Θ

− Θ − Θ

↑↑ ↑↓ ↑

↓↑ ↓↓ ↓

↑ ↓ (22)

Also in this case, the permutation sum implied by the Pfaffian
leads to the correct antisymmetrization required from eq 9.
The matrix W satisfies the hypothesis of the calculation having
an even leading matrix dimension N̅ = N + 1. We can further
notice that no assumption has been made on the polarization
of the system, and so no unpaired orbital is required except for
a single one in the case of odd N.
It is however possible in principle to introduce further pairs

of unpaired orbitals, if, for example, we want to describe AGPs
or AGPu with a full AGP WF. We define Θiσ(r) as the set of
the considered m unpaired orbitals and Θi↑ = (Θi,↑(r1), Θi,↑(r2),

..., Θi,↑(rN↑
)) the vector containing the values of the unpaired

orbital Θi,↑ for the ↑ electron positions and Θi↓ = (Θi,↓(rN↑+1),

Θi,↓(rN↑+2), ..., Θi,↓(rN)) the one calculated for the ↓ electron
ones. We can modify the matrix in eq 17 as

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzz

W

W W

W W

0

0 0

m

m

T T

m
T

m
T

1

1

1 1=

Θ Θ

Θ Θ

− Θ − Θ

− Θ − Θ

↑↑ ↑↓ ↑ ↑

↓↑ ↓↓ ↓ ↓

↑ ↓

↑ ↓

μ

μ

∏ ∂

∂ ∂ ∂ ∏ ∂

μ (23)

that is a N̅ × N̅ matrix where N̅ = N + m. We can again
antisymmetrize this product using the definition of the Pfaffian
provided in eq 20. A careful reader could have noticed that, by
applying the Pfaffian definition, we are antisymmetrizing not
only over the electron indices but also over the orbital indices
of the unpaired orbitals. This antisymmetrization, however,
contains the one over the physical electrons, and leads
therefore to a physically allowed electronic WF.
Moreover, we can notice that, by using the previous

definition, we can identify the AGPs and the AGPu as sub-
cases of the general AGP. Indeed, by using the expressions of
the pairing function and the unpaired orbitals of the AGPs and
AGPu, we obtain W↑↑ = 0, W↓↓ = 0, Θi↓ = 0, and N̅ = 2N↑. By
merging eqs 13 and 17, we can define

i
k
jjjj

y
{
zzzzW

F

F

0

0T
=

− (24)

and this means that, by applying eq 21, we immediately obtain
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W FPf( ) det( )= ± (25)

where the sign only depends on the number of electrons and is
constant, thus irrelevant. This shows in a straightforward way
that the AGPs and AGPu defined in the previous subsection
are nothing but particular cases of the most general AGP.
2.4. Jastrow Factor. Within QMC, it is easy to improve

the quality of the WF by multiplying the WF with an
exponential JF. This last one enriches the description of the GS
by encoding explicitly the electronic correlation, while
speeding up the convergence to the complete basis set limit.7

Indeed, with an appropriate choice, the JF can satisfy exactly
the electron−electron and electron-ion cusp conditions of the
many-body WF, consequences of the Coulomb 1/r singularity
at a short distance. In this paper, we introduce a new kind of JF
that contains a richer dependence on the spin and that plays a
fundamental role when used in combination with the AGP
WF. The JF is defined as

J X( ) eU Uei ee= +
(26)

where Uei is a single body term that deals explicitly with the
electron−ion interaction and Uee is a many-body term that
properly accounts for the electronic correlation. The single
body term is

U u r( )ei
i

N

ei i
1

∑=
= (27)

with uei being

u Z
b R
b

gr
r

r( )
1 exp( )

( )ei i
I

I
ei i I

ei
I i

1

ions

∑= −
− | − |

+
=

#

(28)

In eq 28, ZI is the atomic number of the atom I and bei is a
variational parameter, while gI(ri) encodes the most general
nonhomogeneous electron−ion one-body term, that is,
depending explicitly on all nuclear and electron coordinates
and not only on their relative distances, that is defined as

g r r( ) ( )I i I I i, ,∑ ξ ϕ=
ν

ν ν
(29)

where the summation is extended over all Gaussian orbitals in
the JF basis set centered on the Ith atom. The electron−
electron term instead is written as

U u r r( , )ee
i j

ee i i j j∑ σ σ=
< (30)

where the sum is extended over the pairs of different electrons
and where

u k
b

gr r
r r

r r
r r( , )

1
( , )ee i i j j

i j
ee

i j
ee i i j j,

,
i j

i j

σ σ σ σ=
| − |

+ | − |
+σ σ

σ σ (31)

with the 2 × 2 matrix b ee
,σ σ′ described by one b bee ee

, =σ σ′ or
two variational parameters for σi = σj when kσi,σj = 1/4 and

b bee ee
, =σ σ′ for σi ≠ σj when kσi,σj = 1/2 and b bee ee

, =σ σ′ ⊥ . The
conventional expression for the JF can be obtained by
removing all spin dependencies in the previous expressions
and considering only the variational parameters corresponding
to the opposite spin case kσi,σj = 1/2 and b bee ee

, =σ σ′ .

In our expression, the first term in eq 31 deals explicitly with
the electron−electron cusp conditions, the second term in eq
31 instead is a bosonic pairing function in the form

g r r r r( , ) ( ) ( )ee
k l

k l k l1 1 2 2
,

, 1 2
1 2

1 2
∑σ σ ζ ϕ ϕ= σ σ

σ σ
(32)

with the elements of the matrix ζ defining further variational
parameters. Notice that both gI and gee do not affect the cusp
conditions because they are expanded over cuspless Gaussian
orbitals. The gee term has the same form of eq 6, but since the
fermionic behavior is already encoded in the fermionic part of
the WF, this term is symmetric under particle exchange. The
use of a pairing function in the JF enriches the description of
the charge and spin correlations of the system, noticeably
improving the quality of the global WF. It is a common
practice to adopt a simplified or even absent spin dependency
in the function u of eq 31. This is often accurate for systems
where the magnetic properties are not relevant. We will refer to
it below with the prefix Js in the WF, in contrast with the prefix
J used for the full spin-dependent JF.
A perfect singlet remains as such after the multiplication of a

spin-independent Jastrow, and so our spin-dependent JF is not
appropriate if we do not want to break the spin symmetry. It is,
instead, necessary if we want to recover, at least approximately,
the singlet from a spin contaminated broken symmetry ansatz.
A general spin-dependent u, as defined in eq 31, is therefore of
fundamental importance for the AGPu or the AGP ansatzs.
Let us start with a simple example. We consider two atoms

with opposite spins and break the spin symmetry by orienting
the spins of the atoms along the z-quantization axis. In this
case, the JF is not able to change the classical antiferromagnetic
spin state because it acts as an irrelevant constant when applied
to it. It is instead more physical to orient the spin moment of
the atoms in a direction perpendicular to the quantization axis
chosen for the JF. In this way, the JF can act on the electrons
and the spins while the magnetic moment is free to fluctuate
and recover its genuine quantum character. As previously
mentioned, with the AGP it is possible to rotate the spin of the
WF in every direction and orient the magnetic moment in any
direction of the space. This works particularly well in
combination with our JF that can suppress the unfavored
triplet configurations with parallel spins generated by the
rotation. This optimal spin orientation of the atoms, that is
perpendicular to the JF one, is rigorously valid within the well-
known spin-wave theory of a quantum antiferromagnet.34 In
this case, the JF defined with a spin-quantization axis
perpendicular to the magnetic moment of the atoms allows
the description of the quantum fluctuations and the
corresponding zero point energy (ZPE), even for a finite (as
is our case) number of atoms.34

2.5. Procedure. The first step to calculate and optimize our
WF is to identify a reasonable starting point. We chose to start
from a DFT calculation because of its flexibility. We have used
LDA calculations for spin symmetric systems, while for the
ones with opposite spin antiferromagnetic moments we have
broken the symmetry with a LSDA calculation, by adopting an
appropriate initialization of the WF. The SD obtained from a
DFT calculation is mapped without loss of information into
AGPs or AGPu and then in a second analogous step, we
convert the AGPs and AGPu into a full AGP.
For the first conversion, let us consider eq 6. If we compute

it in the basis set of the MOs obtained from the DFT, we have
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f r r r r( , ) ( ) ( )1 2 ,
mol

1
mol

2∑ λ↑ ↓ = ̅ Φ Φ
α

α α α α
↑↓

↑ ↓
(33)

namely only the diagonal terms in the matrix λ̅ are present.
Moreover, we can also remove the spin dependency if there is
no symmetry breaking. For the polarized case, the unpaired
orbitals are the last occupied MOs. By substituting the
definition of the MOs with their expansion over a localized
atomic basis set, as given in eq 4, we can recast the above
equation exactly in the same form shown in eq 6 with a matrix
λ

P Pk l
k

k l, , , ,∑λ λ= ̅α α α α
† ↑↓

(34)

When we convert AGPs or AGPu into an AGP WF, we
already have an initialization for the sectors of the pairs with
different spins W↑↓ and W↓↑ that can be obtained directly from
the AGPs or AGPu pairing functions. The main challenge is to
find a reasonable initialization for the two sectors W↓↓ and W↑↑
that are not described by the AGPs or AGPu.
There are two different procedures that we can follow: the

first one is used for polarized systems, and the second one
instead is preferred in the case of broken spin symmetry and in
the presence of antiferromagnetism, namely, molecules well
described by opposite atomic magnetic moments. If there is no
antiferromagnetism and the polarization is such that |Stot

z | < 1,
the W↓↓ and W↑↑ are instead identically zero. This holds true
not only for Stot

z = 0 but also for Stot
z = ±1/2, where the single

unpaired MO used in eq 22 acquires also a spin dependency,
not present in the AGPs and AGPu cases.
Obviously the atoms, and also the O2 molecule, do not have

antiferromagnetism, but, on the other side, they have a net
polarization. We can build the W↑↑ block of the matrix using
the two unpaired orbitals Θ1 and Θ2 for the definition of the
parallel spin matrices of the AGPs or AGPu in the following
way

f r r r r r r( , ) ( ( ) ( ) ( ) ( ))1 2 1 1 2 2 1 2 2 1λ↑ ↑ = ̅ Θ Θ − Θ Θ (35)

where the presence of the minus sign guarantees the pairing
function to be antisymmetric under particle exchange, while
the λ̅ is an arbitrary scaling factor that has no influence on the
final value of the WF. Once we map the unpaired orbitals in
the desired basis set, we obtain the variational parameters of
the matrix λ for the ↑↑ sector.
In the presence of opposite atomic magnetic moments, it is

possible to rotate the spin component of the pairing function
to initialize the W↓↓ and W↑↑ sectors. As we mentioned earlier,
a further effect of this operation is to direct the atomic
magnetic moments in a direction perpendicular to the spin-
quantization axis. It is worth mentioning that, within our
method, the spin orientation with respect to the molecular axis
is irrelevant because in a nonrelativistic Hamiltonian, the spin−
orbit coupling is not present. In this case, we have chosen to
work with the atomic magnetic moments perpendicular to the
zaxis, hence we applied a rotation of π/2 around the ŷ
direction. This operation maps

( ) and

( )

1
2

1
2

| ↑ ⟩ → | ↑ ⟩ + | ↓ ⟩

| ↓ ⟩ → | ↑ ⟩ − | ↓ ⟩ (36)

If we apply this transformation to the pairing function from eq
14, we obtain

f f

f f

r r r r

r r r r

( , )
1
2

( ) ( , )

( , ) ( , )

1 1 2 2 1 2

1 2 1 2

σ σ = | ↑ ↓ ⟩ − | ↓ ↑ ⟩

+ | ↑ ↑ ⟩ − | ↓ ↓ ⟩

+

− − (37)

This transformation provides a meaningful initialization to
our AGP WF that now has to be optimized to reach the best
possible description of the GS. Indeed, within VMC, it is only
thanks to the optimization that we can improve the description
of the GS. So far, we have only converted the DFT WF from
one ansatz to another, but the key for the success of this
procedure is the optimization of all possible variational
parameters. It is indeed crucial to optimize not only the ones
corresponding to the matrix λ and the JF parameters but also
the coefficients of the hybrid orbitals μ and the exponents of
the Gaussian basis set Zν. This is realized computationally in a
very efficient way using a coding technique called adjoint
algorithmic differentiation45 that allows calculations of total
energy derivatives with respect to all variational parameters
involved in a given algorithm that computes only the energy.
This is remarkably done by paying a very small slowing down
of a factor ≈2−3 with respect to the latter algorithm. We have
also used a state of the art optimization scheme46,47 for a
correct search of the energy minimum. Remarkably, even when
there is some possible dependency among the many variational
parameters considered in our ansatz, the stochastic reconfigu-
ration technique remains stable and efficient, thanks to an
appropriate regularization of the stochastic matrix S.10 Once
we calculate the variational minimum, the best description of
the GS is then obtained with the DMC calculation.
Even considering that the number of variational parameters

involved in the calculation may be quite large, the optimization
has a very small impact over the total computational cost, that
is indeed mostly given by the DMC for all cases reported in
this work. In Table 1, we compare the computational cost of

the DMC calculations for the different WFs considered. We
notice that the JAGP is even less expensive than the JSD and
JsAGPs WFs. The JAGP and JAGPu are so efficient because, in
this case, the variance of the energy is considerably smaller, as
we can see from Table 1. This implies that JAGP and JAGPu
require a smaller number of DMC iterations to reach the
desired accuracy because they have lower variance compared
with the JsAGPs and the JSD, thanks to the spin-dependent JF.
For large number N of electrons, the DMC calculation

should scale as N4 for fixed total energy accuracy, and the main

Table 1. DMC Computational Time Required to Obtain an
Accuracy of 0.1 mH and Energy Variance on the Oxygen
Dimer with an Intel Xeon Architecture Using a Recent
LRDMC Algorithm48 With a Lattice Spacing Equal to 0.05
bohr, the Smallest Used in This Worka

WF CPU time variance [H2]

JSD 2806 2.909
JsAGPs 2526 2.819
JAGPu 14,523 2.455
JAGP 1857.79 2.125

aIn these systems, the cost for doing about 10,000 iterations for the
VMC optimization of our WFs is less than 30 h. The CPU time
reported in the table corresponds to the total one (time spent by a
single core times the number of cores) for obtaining the required
accuracy, for example, with 256 cores parallel computation, the JAGP
calculation can be obtained with about 7 h of walltime.
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question, that we have not studied here, is whether the
optimization remains computationally negligible because the
number of variational parameter scales as N2. In this respect,
we have experienced that an optimization technique performed
with a slow but very stable method, that is, with a large number
of “cheap” optimization steps, each one determined by a
relatively small number of samples (even much smaller than
the number of parameters) is very promising for future large N
applications.
Finally we introduced a technique to deal with particularly

unstable AGP WFs. Indeed, it is possible, after a very large
number of optimization steps (>10,000), that some
eigenvalues of the matrix λ become too small as compared
with the largest reference eigenvalue. This creates some
instabilities in the inversion of the matrix W required for the
QMC fast updates. For this reason, by an appropriate use of
the PFAPACK library,49 we identified a procedure to map the
diagonalization of a full skew-symmetric matrix λ to the one
corresponding to a real tridiagonal symmetric matrix. After this
mapping, we can use the most powerful and stable LAPACK
routines for diagonalization. Indeed, most linear algebra
packages cannot deal with antisymmetric matrices, and a
general diagonalization tool was not available for this case. The
introduction of this procedure, described in detail in the
Appendix, allows us to describe the matrix λ in terms of
eigenvalues and orthogonal orbitals playing the role of
eigenvectors of an antisymmetric matrix. We will refer to
them in the Appendix as MOs because it may be considered
their formal definition, within the formulation introduced in
this work. With this meaningful decomposition, we can finally
regularize the matrix λ by replacing the too small eigenvalues
with reasonable lower bounds and continue, if necessary, with
the optimization of the variational parameters.
2.6. S2 Operator. The basic concept of QMC relies on the

real space configurations sampling of a general electronic
system. All observables can be indeed calculated in the basis
where the electron positions and their spins are defined. In
particular, for the systems considered, it is interesting to
estimate the spin observables in order to understand their
magnetic properties and the quality of the corresponding WFs.
If during the simulation the value of Sz is fixed, when we break
the symmetry the value of the S2 is instead the result of the
interplay between the JF and the AGP or the AGPu. The
efficient computation of the expectation value of the S2

operator has already been described in ref 50 for the JsAGPu
and will be shown now for the JAGP.
Here, we show how to evaluate S2 in a region of the space

with a fast and computationally cheap approach based on the
fast update algebra of the AGP and the spin-dependent JF. Let
us consider the expectation value of the S2 operator over a
generic WF Ψ by direct application of its definition. Here, we
use the completeness of the spatial configurations

X X I
X

∑ | ⟩⟨ | =
(38)

where the summation symbol implies a 3N-multidimensional
integral over the electron coordinates. Assuming a fixed
polarization, we can write the explicit expression of the total
spin square as
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(39)

where the operators Si in the above equation act on the spin
component corresponding to the electron position ri of the
configuration X. We can notice that

p X
X

X
( )

X

2

2
ψ

ψ
= |⟨ | ⟩|

∑ |⟨ | ⟩| (40)

and that, by using QMC sampling, we generate configurations
according to the probability density p(X). Thus, we can
evaluate the above multidimensional integral by directly
sampling the estimator S2(X) that multiplies p(X) in eq 39,
as follows

S
S S

N N NX
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(41)

The content of the former equation can be evaluated
efficiently as we will explain in the following section. Indeed,
the application of the operator Si

+Sj
− to the configuration X

generates only a configuration Xij = {(r1↑), ..., (ri↓), ..., (rj↑), ...,
(rN↓)}. Considering X our sampled configuration and using
the previously given definition of Xij, we can recast eq 41 as

S N N NX
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X
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1
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( )
1
2 i

N

j N

N
ij2 2

1 1

∑ ∑
ψ

ψ
= − + +

⟨ | ⟩
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= = +

↑

↑ (42)

The only hard challenge of eq 42 is the calculation of the N↑×
N↓ ratios

r
X

Xij
ij ψ

ψ
=

⟨ | ⟩
⟨ | ⟩ (43)

for i = 1, 2, ..., N↑ and j = N↑ + 1, N↑ + 2, ..., N, that in our case
read

r
J

J

X X

X X
r r

( ) ( )

( ) ( )ij
ij ij

ij ij
AGP

AGP

AGP JF=
Ψ
Ψ

=
(44)

The configurations X and Xij differ for a spin flip of the
electrons i and j, but we can also consider Xij as the
configuration in which the electron i evolved to the position
previously occupied by j and vice versa. We can then calculate
the ratios in eq 44 using a fast algebra to update two positions
for the AGP and for the JF with a direct evaluation based on
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the Sherman−Morrison algebra and some simple manipu-
lations, as discussed in detail later on.
It is also possible to calculate the value S2(Λ) of the S2

operator in a sub-region of the space Λ. For this quantity, we
can obtain the similar expression to eq 42

S N N NX

X

X

( )
1
4

( )
1
2

i j

ij

2 2

, ,

∑ ∑ ψ

ψ

= − +

+
⟨ | ⟩
⟨ | ⟩

Λ ↑
Λ

↓
Λ Λ

={Λ ↑} ={Λ ↓} (45)

where Nσ
Λ (σ = ↑, ↓) is the number of σ-electrons in the region

Λ, NΛ = N↑
Λ + N↓

Λ. The summation symbol over i ∈ {Λ, σ}
indicates the sum for all σ-electron whose coordinate is in the
region Λ. Therefore, we can use the same method as described
below.
2.6.1. AGP Contribution. To calculate the AGP contribu-

tion to rij, we were able to find a slim and fast algebra making
an extensive use of the Pfaffian properties.51 It was
fundamental to find an efficient algebra to calculate the
whole matrix of the ratios r with a computational cost that is
O(N3), by using mostly BLAS3 operations, thus avoiding that
this computation could become the bottleneck of the whole
procedure. In this way, we could ensure the evaluation cost of
S2 to be comparable with the one of a typical QMC cycle over
all N electrons that is at most O(N3). Before describing the fast
updating rules for the position of two electrons with a single
move, we need to introduce some quantities fundamental for
the calculation.
Let us denoteW−1 as the inverse ofW. This inverseW−1 can

be computed from scratch for each configuration used to
sample the spin square. The electron coordinates ri are given
for i = 1, ..., N, but since the corresponding spin can change
with respect to the original choice (↑ for i ≤ N↑, and ↓ for i >
N↑) because of the spin flips mentioned in the previous
subsection, we will consider explicitly the values of the spin
here.
We then define the matrix θ as

f f f

f

r r r r r r

r r

( , ) ( , ) ( , )

( , )

ij i j i j i j

i j

θ = ↑ ↓ + ↓ ↑ − ↑ ↑

− ↓ ↓ (46)

For the spin ↑ electrons, we can define the vectors

i

k

jjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzz

v

f f

f f r

f f

r r r r

r r r

r r r r

( , ) ( , )

( , ) ( , )

( , ) ( , )

k

k k

k k

N k N k

1 1

2 2=

↑ ↑ − ↑ ↓

↑ ↑ − ↑ ↓

↓ ↑ − ↓ ↓

↑

∂

(47)

while for the spin ↓, we have instead

i

k

jjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzz

v

f f

f f

f f

r r r r

r r r r

r r r r

( , ) ( , )

( , ) ( , )

( , ) ( , )

l

l l

l l

N l N l

1 1

2 2=

↑ ↓ − ↑ ↑

↑ ↓ − ↑ ↑

↓ ↓ − ↓ ↑

↓

∂

(48)

We can use these vectors to build the N × N matrix

V v v v v v V V( ) ( )N N N1 2 1= ··· ··· =↑ ↑ ↑
+

↓ ↓ ↑ ↓
↑ ↑ (49)

that allows us to define

U U U W V W V W V( ) ( )1 1 1= = =↑ ↓ − − ↑ − ↓ (50)

and finally

D V U( )T= ↑ ↓ (51)

Now, we have all ingredients that we need for our fast
updating algebra, and upon application of Sherman−Morrison
algebra, we arrive at the ratio

r W W

U U U U D W

X XPf ( ) /Pf ( )

(1 )(1 ) ( )

ij ij

ii jj ij ji ij ij ij

AGP

1θ

= [ ] [ ]

= + + − − + −

(52)

We can notice that the preliminary calculation of the auxiliary
matrices θ, V, U, and D, including the inversion of W, amounts
to a total of O(N3) operations, while the calculation of the
ratios is O(N2) once the matrices have been computed.

2.6.2. JF Contribution. In the JF that we introduced in the
previous section, only the two-body term of eq 30 has a spin
dependency, and thus, only this part contributes to the ratio.
By simple substitution, it is easy to prove that

r D D u u

u u

r r r r

r r r r

exp( ( , ) ( , )

( , ) ( , ))

ij i j ee i j ee i j

ee i j ee i j

JF = − + ↑ ↓ + ↓ ↑

− ↑ ↑ − ↓ ↓ (53)

where we have defined

D u ur r r r( , ) ( , )k
l

ee l l k ee l l k∑ σ σ= ↓ − ↑
(54)

The whole operation has a O(N2) computational cost and so
does not limit the calculation in terms of performances.

3. RESULTS AND DISCUSSION
We apply this new approach for two types of systems: the first
row high spin atoms (carbon, nitrogen, and oxygen) and their
diatomic molecules and the benzene molecule. The first ones
still represent useful benchmarks for the quantum chemistry
approach, and a reasonable description of their properties and
binding energies requires very expensive multireference
methods. It is therefore very interesting to test our approach
to find whether we are able to obtain a good description with a
single Pfaffian ansatz. Benzene molecule on the other side is
the most famous and important example of the RVB theory, so
it represents a fundamental benchmark test for a method
inspired by this theory. Here, we compare our results with
exact available solutions, JSD WFs and with the JFVCAS
multideterminant expansions for QMC. We will also show that
our WF satisfies the size consistency both at VMC and DMC
levels, a primary requirement if we want to use this approach
for more challenging chemical studies.

3.1. Carbon. Carbon dimer is probably the most interesting
example discussed in this study. A full understanding of the
behavior of the carbon−carbon interaction is still missing, and
the bond order of this molecule is still under debate.52 The
role of the spin fluctuations in this molecule has already been
discussed,53 but we believe that it is very instructive and
represents the most important achievement of the JAGP WF.
Indeed, it is only thanks to the spin fluctuations that we can
have a correct description of its dimer bond.
The carbon atoms have spin triplet electronic configurations,

and their mutual interaction leads to a singlet molecule. As we
can see from Figure 1 and Table 3, the JAGP not only
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improves the results of the JSD WF but remarkably also the
description given by the JsAGPs and JAGPu. The huge
difference between the multideterminant expansion JFVCAS
and the JSD binding energies helps to quantify the effect of the
multideterminantal nature of this molecule, and what makes
this even more surprising is that the quality of the results
obtained with a single JAGP WF, with a computational cost
comparable to a SD, is already very close to the exact value.
As already mentioned before, the explanation for the

impressive improvement of the binding energy from JsAGPs
and JAGPu to JAGP resides on the description of the strong
spin fluctuations in this molecule. The JAGP gives a very
accurate picture of its magnetic properties as we can see from
Table 2, giving results very close to S2 = 2 for the atom and S2

= 0 for the molecule. Conversely, by using the JsAGP (the
AGP without spin-dependent JF) and the JAGPu, we cannot
recover the singlet from the broken symmetry initialization.
Interestingly, as expected, the molecule does not have any
magnetic moment on the z-direction because it is an almost
perfect singlet. The atomic spins, localized around each atom,
point in opposite directions in order to form the singlet
molecular state. Because there is no magnetic moment along z,
we can measure its magnetic moment only by separately
evaluating the S2 in the two semi-infinite regions, each one
containing a single atom, separated by a plane perpendicular to
the molecular axis and at the same distance from the two
atoms. In Figure 2, we show that, even at bond distance, there

is a very strong magnetic moment around the atoms and, in
this way, we can explain the strong effect of the ZPE of the spin
fluctuations described by the JAGP.
Moreover, Figure 2 shows that only with the JAGP WF, we

have a size consistent solution with the molecule that recovers
the energy of two independent atoms at large distance. This
feature is fundamental if we want to use this WF to describe
chemical reactions and perform large-scale simulations, with a
size consistent behavior at large distances. The importance of
the variational optimization of the WF is particularly evident in
this small molecule. With the standard approach, by applying
DMC to a SD taken by DFT (here obtained with Purdue and
Zunger LDA56), a level crossing in the occupation of the π
MOs occurs at around 3 bohr distance, above which the π
bonding orbitals are only partially occupied. This implies clear
artifacts in the DMC energies. We have verified that this level
crossing is reproduced with a standard DFT-LDA calculation
by Gaussian 16 A.03 revision57 and an almost converged basis
set (the standard cc-pVQZ). The level crossing has also been
observed in ref 58. In our variational optimization instead, we
have verified that it is important to start at large distance with

Figure 1. Comparison of the different DMC energies for different
WFs. The results are shown for the three dimers described in this
paper. The JFVCAS and the JSD results are taken from the
literature.17

Table 2. Spin Measures with Different WFs for the Carbon
Atom and Dimer at VMC Level

S2 2μB

atom molecule moment∥z
JsAGPs 2.00 0.00 0.0005(4)
JAGPu 2.00534(3) 0.1743(5) 0.5833(4)
JsAGP 2.00418(5) 0.2880(4) 0.7194(4)
JAGP 2.00542(1) 0.0327(1) 0.0013(5)
exact 2.00 0.00

Table 3. Carbon Energiesa

carbon

atom molecule binding

source energy [H] energy [H] energy [eV]

JSD −37.81705(6)b −75.8088(5)b 4.75(1)b

JFVCAS −37.82607(5)b −75.8862(2)b 6.369(6)b

JsAGPs −37.8243(1) −75.8611(2) 5.78(1)
JAGPu −37.8263(1) −75.8706(2) 5.93(1)
JAGP −37.827965(3) −75.88650(4) 6.274(3)
JSD (DMC) −37.82966(4)b −75.8672(1)b 5.656(3)b

JFVCAS (DMC) −37.83620(1)b −75.9106(1)b 6.482(3)b

JsAGPs (DMC) −37.8364(1) −75.8938(2) 6.01(1)
JAGPu (DMC) −37.8364(1) −75.8935(2) 6.00(1)
JAGP (DMC) −37.8363(1) −75.9045(2) 6.31(1)
estimated exact −37.8450c −75.9265d 6.44(2)d,e

aThe JsAGPs, JAGPu, and JAGP results are calculated with an
optimized ccpVTZ basis set. bReference 17. cReference 54.
dReference 55. eA more recent estimate yields 6.39 eV (Cyrus
Umrigar, private communication).

Figure 2. DMC energy dispersion of the carbon dimer: only the JAGP
allows the system to be size consistent at large distance, which means
that it is able to recover the energy and the expectation value of the S2

operator of two isolated atoms at bond distance; however, the carbon
atoms maintain a large value of S2. The sharp change of the projected
S2 value at around 3 a.u. is probably due to an avoided crossing of two
energy levels belonging to the same irreducible representation, in
agreement with DMRG.59 Within LSDA, this effect is reproduced by a
discontinuous change in the occupation of the π orbitals in the
corresponding SD. Lines are guides to the eye.
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the WF predicted by LSDA, otherwise a sizably higher energy
is obtained. This effect is reflected also by the sharp change of
the projected S2 at around 3 bohr distance (see Figure 2), that
could be compatible with an avoided crossing between two
energy levels belonging to the same 1Σg

+ representation.59

3.2. Nitrogen. Nitrogen is in some sense similar to the
carbon case: also its dimer is indeed a singlet formed by two
large spin 3/2 atoms.
As we can notice from Figure 1 and Table 4, at the DMC

level, the JsAGPu and JAGP are both exact within chemical

accuracy. All our calculations compare with the exact result
better than the JFVCAS solution. Surprisingly, at the VMC
level, the binding energies calculated with JAGP, JsAGPs, and
JAGPu are also very good.
We remark that a very powerful method, as the recently

proposed Fermi net5 (a neural network-based WF), cannot
reach the same precision in the binding energy even if the total
energies of the molecule and atom are the best available ones.
This clearly shows that all our ansatzs allow a remarkable
cancellation of errors, when computing the total energy
differences between the molecule and the two independent
atoms.
In this case, however, the difference between JAGP and

JsAGPs/JAGPu is much smaller than in the previous case and
should be related to a less important role of the spin
fluctuations and also to a smaller magnetic moment of the
atoms at equilibrium distance. By repeating the reasoning done
for the carbon dimer, we can quantify the magnetic moment
from the S2 value in the semi-infinite region separated by a
plane perpendicular to the axis of the molecule and equidistant
from the atoms. As shown in Figure 3, at bond distance, the S2

of the atom is much smaller than the one of an independent
atom, and therefore, even if the nitrogen atom has a large spin,
when it is forming a dimer it does not give rise to a strong
antiferromagnetism.
Also in this case, it is important to notice that the JAGP

solution is size consistent both in energy and spin. Despite the
very good description at bond distance provided by the
JsAGPs, we notice from Figure 3 that it is not perfectly size
consistent. Within our approach, a fully consistent picture and
a very accurate dispersion are possible only by means of the

JAGP ansatz, that is able to work properly also in the strong
correlation regime at large interatomic distance.

3.3. Oxygen. The oxygen is very different from the
previous cases but nevertheless very interesting for different
reasons. The oxygen dimer consists of two triplet atoms, but
this time the molecule is a triplet. There are small atomic
magnetic moments in the GS of the oxygen molecule, but the
role of the magnetic interaction remains important, as shown
by the application of the JAGP ansatz. In this case, it looks that
the interaction of parallel spin electrons is particularly
important, and this can be described by the JAGP ansatz
more accurately than the corresponding JsAGPs and JAGPu
ones, as discussed in the previous sections. Thus, we expect to
recover with the JAGP some correlation that we miss when we
simplify the ansatz by using the unpaired orbitals in the
JsAGPs and in the JAGPu WFs.
As shown in Figure 1 and Table 5, at the DMC level, the

energies obtained with the JAGP WF are extremely good even
for the oxygen dimer. In this case, the correct description of

Table 4. Nitrogen Energiesa

nitrogen

atom molecule binding

source energy [H] energy [H] energy [eV]

JSD −54.5628(1)b −109.4520(5)b 8.88(1)b

JFVCAS −109.4851(3)b 9.78(1)b

JsAGPs −54.55794(6) −109.4781(7) 9.856(3)
JAGPu −54.55998(5) −109.48155(7) 9.840(3)
JAGP −54.56633(5) −109.49226(7) 9.785(3)
JSD (DMC) −54.57587(4)b −109.5039(1)b 9.583(3)b

JFVCAS (DMC) −109.5206(1)b 10.037(3)b

JsAGPs (DMC) −54.5765(1) −109.5164(2) 9.88(1)
JAGPu (DMC) −54.5767(3) −109.5140(2) 9.81(1)
JAGP (DMC) −54.57709(9) −109.5192(1) 9.933(6)
Fermi net −54.58882(6)c −109.5388(1)c 9.828(5)c

estimated exact −54.5892d −109.5427e 9.908(3)e

aThe JsAGPs, JAGPu, and JAGP results are calculated with an
optimized ccpVTZ basis set. bReference 17. cReference 5. dReference
54. eReference 55.

Figure 3. DMC energy dispersion of the nitrogen dimer: only the
JAGP appears to be perfectly size consistent, thus recovering the
energy and the expectation value of the S2 operator of two isolated
atoms at large interatomic distance. At bond distance, however, the
nitrogen atoms have a smaller value of S2, in contrast to what
observed for the carbon dimer. Lines are guides to the eye.

Table 5. Oxygen Energiesa

oxygen

atom molecule binding

source energy [H] energy [H] energy [eV]

JSD −75.0352(1)b −150.2248(5)b 4.20(1)b

JFVCAS −150.2436(2)b 4.713(8)b

JsAGPs −75.0268(3) −150.2372(6) 5.00(3)
JAGPu −75.0339(3) −150.2503(5) 4.97(3)
JAGP −75.0346(2) −150.2572(4) 5.11(2)
JSD (DMC) −75.05187(7)b −150.2872(2)b 4.992(7)b

JFVCAS (DMC) −150.29437(9)b 5.187(5)b

JsAGPs (DMC) −75.0518(3) −150.2894(3) 5.06(2)
JAGPu (DMC) −75.0519(3) −150.2902(4) 5.06(2)
JAGP (DMC) −75.05289(7) −150.2942(1) 5.127(5)
estimated exact −75.0673c −150.3724d 5.241d

aThe JsAGPs, JAGPu, and JAGP results calculated with an optimized
ccpVTZ basis set. bReference 17. cReference 54. dReference 55.
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the triplet pairing correlations, possible within the JAGP
ansatz, appears to be fundamental. Indeed, the final result is so
accurate that the binding energy is comparable to the one
obtained with the multideterminant JFVCAS WF. It is even
more surprising that the absolute energies of the atom and
molecule are very close where not even better than the ones
provided by the multideterminant expansion both at VMC and
DMC levels. We have to point out, however, that within
JFVCAS method, it is not possible to improve the JSD atom17

and that the binding energy slightly better than the JAGP one
derives from the poorer quality of the atom rather than a better
description of the molecule.
The problem of the size consistency for the oxygen dimer is

absolutely nontrivial and even more complicated than the
previous cases. Starting from bond distance, we have a
molecule of spin one and fixed projection Sz = 1, but we
have to recover the behavior of two independent atoms. This
means that, by keeping the projection Sz = 1 constant, while
separating the atoms far apart, we have to recover the correct
atoms of spin one and thus we need to have one atom with the
spin oriented in a direction perpendicular to the z-axis. This is
impossible for the JsAGPs and the JAGPu but allowed by the
JAGP, a remarkable and absolutely nontrivial feature of this
WF. As we can see from Figure 4, at large distance, only with

the JAGP the system recovers the energy and the spins of the
independent atoms, showing that, by means of our advanced
optimization tools, it is possible to dramatically change the WF
up to the point of rotating completely the spin of an atom.
3.4. Benzene. The benzene molecule represents one of the

most successful examples of the RVB theory with the carbon−
carbon bonds resonating among several valence bond
configurations, for example, Kekule ́ and Dewar. QMC methods
are able to provide a very good description of this important
molecule,61,62 and thus, it is interesting to check whether, with
our new approach, we can obtain a very accurate result. In
particular, in Table 6, we compare the results obtained by JSD,
JAGP, JAGPu, and JsAGPs WF, showing that all results
obtained with a pairing function (from JsAGPs to JAGP)
provide a very good estimate of the absolute energies,
noticeably improving the results of the JSD. Moreover, the
corresponding atomization energies are extremely accurate at

the DMC level, whereas the JSD largely overestimates it. It is
finally interesting to notice that, even if there is a sizeable gain
in terms of absolute energy with our best ansatz, that is, the
JAGP, it is not clear why this systematic improvement does not
sizeably affect the atomization energy, likewise this could be
almost converged to the exact value. This might be in principle
explained because, at present, the accuracy of the state of the
art “estimated exact” calculation is probably not enough to
establish an energy difference ≪0.1 eV. For instance, the ZPE
has been estimated by DFT63 and some work is certainly
necessary to clarify this issue, for example, by calculating the
ZPE directly with QMC.
We remark here that the JsAGPs description of the benzene

molecule is already very accurate and it is not improved by the
JAGP. This is probably due to the lack of any sizeable spin
moment around any atom composing this molecule. Indeed,
the S2 value calculated for the JAGP and JAGPu solutions are
0.032(1) and 0.0123(7), respectively, proving that any local
magnetic moment is almost completely melted during the
optimization, despite its nonzero initialization. We conclude
therefore that in the benzene molecule, the spin fluctuations
are not relevant and the use of the Pfaffian leads only to a
marginal improvement of the total energy while the molecule is
correctly described by a perfect singlet RVB ansatz given by the
JsAGPs, in agreement with the classical RVB picture by L.
Pauling.64

4. CONCLUSIONS
In this work we have proposed a new WF for QMC
calculations given by the most general fermionic pairing
function ansatzs in combination with a spin JF that provides a
very rich description of the electronic correlation by means of a
bosonic pairing function complementary to the fermionic one.
With a computational cost comparable to a SD, we were able
to improve not only the results achieved with a simple JSD but
also with JsAGPs and JAGPu, reaching a level of accuracy
comparable to the one obtained with the multideterminant
JFVCAS WF. The powerful optimization techniques are
probably the keys to explain the remarkable improvement we
obtained with this WF, compared to previous attempts.23,29 In
particular, we have shown that the JAGP ansatz provides a very
accurate description of high spin atoms and their dimers and
that it is size consistent. This should increase the number of
possible applications, providing a reasonably accurate and
computationally feasible tool for studying chemical reactions.

Figure 4. DMC energy dispersion of the oxygen dimer with the
JAGP, JsAGP,60 and JSD (with the SD obtained from DFT
calculations): at large distance, only the JAGP WF is size consistent.
In the plot, also the expectation value of the projected S2 operator on
the atoms for the JAGP that recovers the value of two isolated atoms
at large distance. Lines are guides to the eye.

Table 6. Benzene Energies

benzene

C atoma molecule atomization energy

source energy[H] energy[H] energy[eV]

JSD −37.8074(1) −232.0261(3) 59.37(1)
JsAGPs −37.82383(4) −232.0805(3) 58.166(8)
JAGPu −37.82651(5) −232.0900(3) 57.986(8)
JAGP −37.82921(4) −232.1060(2) 57.982(7)
JSD(DMC) −37.8299(1) −232.1879(6) 60.09(2)
JsAGPs(DMC) −37.8368(1) −232.1947(6) 59.16(2)
JAGPu(DMC) −37.8367(1) −232.1943(6) 59.16(2)
JAGP(DMC) −37.83751(9) −232.1998(5) 59.18(2)
estimated exact −37.8450b −232.250(1) 59.32(2)c

aCalculated with the same basis set used for the benzene molecule.
bReference 54. cReference 63.
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The triplet correlations have proven to be necessary to take
into account correctly the ZPE of the spin fluctuations that we
can now correctly describe thanks to a physical and accurate
setup obtained by orienting the atomic magnetic moments of
the AGP in the direction perpendicular to the spin-
quantization axis chosen for the JF. For this reason, we have
obtained a very good description of the carbon and nitrogen
dimers, remarkably even when the first molecule was found to
be very poorly described by the JsAGPs and the JAGPu.
Moreover, it is only thanks to the presence of the triplet
correlations that we were able to improve the description of
the oxygen dimer as a strongly correlated triplet molecule with
a highly entangled spin interaction among the atoms.
Comparison with other methods different from QMC is
shown in App. A. Our QMC variational energy is much better
than state of the art quantum chemistry methods that seem to
be affected by strong basis set errors even when considering
only energy differences. For instance, the total energy
difference ΔE at R = 4.2 a.u. and R = 2.11 a.u. in Table 8
should be close to the estimated exact binding energy (i.e.
≃9.91 eV from ref 55) at most weakly corrected by the residual
dispersive interaction. Both DMRG and MRCI clearly miss
more than 1 eV with the DZ basis, that is, ΔE ≃ 8.49 eV. In
order to show more clearly that the discrepancy between our
DMC results and DMRG and MRCI is actually an artifact of
the small basis, we have carried out UCCSD(T) calculation
both for small (ΔE = 8.6 eV) and large (ΔE = 9.55 eV) basis
set, and, as expected, our calculation (ΔE = 9.63) is much
more in agreement with the most accurate large basis set
calculation. In any event, our binding energy for N2 (9.933 ±
0.006 eV) is surprisingly more accurate than the best state of
the art calculation with CCSD(T) (9.73 eV from the
Computational Chemistry Comparison and Benchmark Data-
Base65), implying that, most likely, our results should be

considered to be the state art for the full dispersion curve of
these small molecules.
Finally we demonstrated that for the benzene dimer, the

JAGP is able to provide a very accurate atomization energy,
though it is not clear in this case whether the triplet
correlations are crucial for a highly accurate calculation.
However, it is important to highlight that the accuracy in the
binding energy is always much better than the accuracy in the
total energy and that therefore there exists always a remarkable
cancellation of errors in the total energy differences. This
feature indeed is fundamental for a compact ansatz like the
JAGP, and it challenges other very expensive highly correlated
methods, even when these are able to achieve almost exact
total energies as it was the case for the Fermi net approach to
the nitrogen dimer.
The relatively low computational cost of QMC combined

with powerful optimization techniques, allowing a reasonably
large number of variational parameters, makes this approach
ideal for studying systems even much larger than the ones
considered in this work. Indeed, we believe that the paradigm
presented in this paper could represent in the future a very
powerful tool to investigate the electronic structure of
interesting chemical compounds and physical systems where
the spin interaction may play an important role, that in turn
may be a number much larger than previously believed, as we
have presented here the C2 molecule as the very first and
remarkable example of an antiferromagnetic chemical bond.

■ APPENDIX

Energy Dispersion Comparison
Comparison between the energy dispersion calculated with
DMC JAGP WF and unrestricted single reference coupled
cluster (UCCSD-T) with ccpVDZ and ccpV5Z basis sets. We
further compared the carbon energy dispersion with DMRG,

Table 7. Carbon Energy Dispersion (Hartree)a

numerical technique

distance JAGP (DMC) DMRG HCI UCCSD-Tfrozen UCCSD-Tfull FCI

2.0787 −75.86652(3) −75.76125c −75.76701d −75.76085 −75.78683 −75.7624e

2.2677 −75.90207(3) −75.79924c −75.80461d −75.78450 −75.80878 −75.7987e

2.3480 −75.90456(3) −75.80269c −75.80786b,d −75.78370 −75.80754 −75.8025e

2.4566 −75.90008(3) −75.79937c −75.80444d −75.77928 −75.80247 −75.7993e

2.6456 −75.87825(4) −75.77937c −75.78460d −75.76465 −75.78664 −75.7798e

3.0235 −75.81700(8) −75.72405c −75.72895d −75.71762 −75.73765 −75.7243e

3.7794 −75.73649(8) −75.64560c −75.65043b,d −75.62162 −75.63996 −75.6454e
aThe JAGP results were obtained with the optimized ccpVDZ basis set (as explained in Section 2.1), the DMRG results with the ccpVQZ basis, the
HCI with ccpV5Z basis set, the FCI with ccpVQZ basis set, whereas the UCCSD-T ones, both full- and frozen-core, are shown for ccpV5Z basis
sets. bInterpolated. cReference 59. dReference 66. eReference 67.

Table 8. Nitrogen Energy Dispersion (Hartree)a

numerical technique

distance JAGP (DMC) DMRG MRCC UCCSD-T (DZ) UCCSD-T (5Z)

2.118 −109.51694(5) −109.27833c −109.27683c −109.27652 −109.41303b

2.4 −109.46459(6) −109.23838c −109.23687c −109.23202 −109.35926
2.7 −109.37935(6) −109.16029c −109.15895c −109.14731 −109.26936
3.0 −109.29961(6) −109.08619c −109.08442c −109.06570 −109.18331
3.6 −109.19745(6) −108.99489c −108.99272c −108.97982 −109.08833
4.2 −109.16376(7) −108.96471c −108.96002 −109.06204

aThe JAGP results were obtained with the optimized ccpVDZ basis set (as explained in Section 2.1), the DMRG and MRCC results with the
ccpVDZ basis, whereas the corresponding UCCSD-T ones are shown also for a much larger basis (ccpV5Z), resulting in much better agreement
with the present DMC results. bInterpolated. cReference 68.
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heat-bath configuration interaction (HCI) and full config-
uration interaction (FCI) from the literature,59,66,67 and the
nitrogen dispersion with multireference coupled cluster
(MRCC) and DMRG.68 UCCSD(T) calculations were
performed using Gaussian 16 A.03 revision with the counter-
poise correction, with the frozen-core approximation and the
full-core correlation.57 Table 7 and Figure 5 show that there

are significant discrepancies between different methods in the
carbon dimer dispersion curve at large distances. However, one
has to consider that even in a quadruple zeta basis, the binding
energy De = 6.22 eV67 is about 6 mH lower than the estimated
exact one and therefore if we reference all curves at the bond
length minimum energy, as reported in the mentioned figure, a
method that is supposed to be weakly dependent on the basis,
as our DMC, should be slightly higher in energy at large
distance, provided it remains close to the exact dispersion
energy curve. Moreover, there may be sizeable corrections due
to the frozen-core approximation employed by DMRG, HCI,
and FCI. We have indeed verified that they are non-negligible
in the UCCSD-T calculation, implying that core−valence
interaction can lead to a further nonparallelity error of about 3
mH (see Figure 5). Core−valence interaction is considered in
our DMC calculations simply because, within this technique, it
is not possible to employ the frozen-core approximation.
Nevertheless, it is clear that our results may have some error,
but it is remarkable that if we use the corresponding energy
values for computing the ZPE of the dimer, we find excellent
agreement with the experimental value, given by 0.1146 eV.69

Indeed, the ZPE calculated values, using a standard fit with a
quartic polynomial close to the equilibrium distance, are
0.1153(6), 0.108, 0.106, 0.112, 0.114, and 1133(3) eV for our
DMC, UCCSD-T full-core, UCCSD-T frozen-core, DMRG,
HCI, and FCI, respectively. In summary, by taking into
account all possible sources of error, we believe that our results
are in reasonable agreement with the expected “exact result”
converged in the complete basis set limit and with full core−
valence interaction taken into account. Indeed, we believe that
only a more direct comparison with experiments or a full-core
FCI/DMRG or HCI extrapolated to the complete basis set
limit can further improve the accuracy of the dispersion curve.

Diagonalization of a Skew Symmetric Generally Complex
Matrix λ
Here, we discuss a general procedure to transform a generic
complex antisymmetric matrix into a canonical Youla form that
represents the equivalent of the standard diagonalization of
Hermitian matrices. This is obtained by means of an
appropriate unitary matrix U defined by an orthonormal set
of states that we will address in the following MOs.
Given a N̅ × N̅ antisymmetric matrix λ, our goal is to

identify a set of p paired states {(ϕj
1, ϕj

2)} of orthonormal
MOs, such that p ≤ N̅ is even and

aj j j
1 2λϕ ϕ= (55)

aj j j
2 1λϕ ϕ= − (56)

where the LHS of the above equations indicate standard matrix
vector products, with shorthand notations adopted also in the
remaining part of this Appendix. In this basis, we can write any
skew-symmetric matrix λ in the canonical Youla form

i

k

jjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzz

a

a

a

a

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
MO

1

1

2

2

λ =

−

−

μ

μ

μ

μ

∂ ∂ ∂ ∂ ∏ ∂ (57)

using only p/2 strictly positive parameters aj. These ones play
the same role of the eigenvalues for an ordinary Hermitian
matrix and henceforth we will use this name for them, even if
the matrix λMO is not diagonal but represents the simplest
nonvanishing skew-symmetric matrix.
The transformation of the original matrix λ to the

corresponding canonical Youla form by means of an
appropriate unitary transformation λ = U*λMOU

† provides us
also a very simple way to regularize the matrix λ, as discussed
in the main text. In the case of odd N̅, it will be shown later
that there exists always an eigenvector of λ with a vanishing
eigenvalue, but the decomposition remains possible as λMO will
contain at least one vanishing row and corresponding column.
Here, we define that an eigenvector is singular if it corresponds
to a vanishing eigenvalue as in the odd N̅ case.
It would be ideal for this calculation to use a very robust and

stable diagonalization routine to maintain machine accuracy
for the MOs. Unfortunately these routines are not commonly
available for antisymmetric matrices and thus several
mathematical transformations are necessary to map our task
to a sequence of more commonly used or at least easily
available algorithms.
A generic N̅ × N̅ antisymmetric matrix is written in the

following way
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−

− −

− − −

̅

̅

̅

̅ ̅ ̅

μ

μ

μ

∂ ∂ ∂ ∏ ∂
μ (58)

The first step is to transform λ in a tridiagonal antisymmetric
real matrix. This operation is implemented in the subroutine

Figure 5. Energy dispersion of the carbon dimer calculated with JAGP
(DMC), UCCSD-T (ccpV5Z), DMRG,59 HCI,66 and FCI.67 Lines
are guides to the eye.
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zsktrd (dsktrd) contained in the PFAPACK library.49 The use
of the Householder algorithm allows us to decompose the
generic matrix λ as

U U1 Tr 1λ λ= * †
(59)

where U1 is the unitary transformation matrix output of the
algorithm, while λTr is a tridiagonal real antisymmetric matrix
written in the standard tridiagonal form

i

k

jjjjjjjjjjjjjjjjjj

y
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b

b b

b

0 0 0

0 0

0 0 0
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1

1 2

2
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−

−

μ

μ

μ

∂ ∂ ∂ ∏ ∂ (60)

Thus, we can multiply the matrix λTr for the imaginary unit i,
yielding a more conventional tridiagonal Hermitian matrix λiH,
defined by purely imaginary matrix elements.
We highlight that it is possible to map the matrix λiH into a

real Hermitian matrix via a unitary transformation and use the
appropriate LAPACK routine for its fast diagonalization. This
procedure is well known and will be discussed later.
At this point, we can use the spectral theorem for Hermitian

matrices to decompose the matrix λiH = ψλdiagψ
†, where λdiag is

a diagonal matrix containing in its diagonal part the real
eigenvalues ai of λiH, and ψ is the unitary matrix, where each
column is given by the eigenvector in the principle complex,
corresponding to each eigenvalue, in the chosen order. This
decomposition implies:

iU U1 diag 1λ ψλ ψ= − * † †
(61)

However, because the matrix ψ is generally complex and ψ† ≠
ψT, some manipulation is necessary if we want to satisfy the
skew-symmetry property of λ in an easy and transparent way.
If we consider one eigenvector ψ̅j associated to an eigenvalue

aj > 0, we have

i aiH j j j jTrλ ψ λ ψ ψ̅ = ̅ = ̅ (62)

the complex conjugate of this expression is

i aj j jTrλ ψ ψ− ̅* = − ̅* (63)

where we have used that both λTr and the eigenvalues aj are
real. This means that if ψ̅j is an eigenvector of λiH relative to the
eigenvalue aj, then ψ̅j* is an eigenvector corresponding to the
eigenvalue −aj and thus orthogonal to ψ̅j because of the
orthogonality between eigenvectors of an Hermitian matrix
corresponding to different eigenvalues ± aj. We can thus easily
verify, by using the relations given in eqs 62 and 63, the
following simple equations

a( ) ( )iH j j j j jλ ψ ψ ψ ψ̅ + ̅* = ̅ − ̅* (64)

a( ) ( )iH j j j j jλ ψ ψ ψ ψ̅ − ̅* = ̅ + ̅* (65)

aIn this way, we can define pairs of real orthogonal vectors
2 ( )j j

1ψ ψ̅ = ℜ ̅ and 2 ( )j j
2ψ ψ̅ = ℑ ̅ such that

iaiH j j j
1 2λ ψ ψ̅ = ̅ (66)

iaiH j j j
2 1λ ψ ψ̅ = − ̅ (67)

Once we have identified all pairs corresponding to all positive
eigenvalues aj > 0, we can write the unitary matrix ψ̅, that is
now real, by adding the remaining eigenvectors (that can be
also chosen real, as shown in subsection Singular Eigenvectors)
with vanishing eigenvalues in the remaining rightmost
columns. In this way, we can finally define a unitary real
matrix ψ̅ yielding λTr = −iλiH = ψ̅λMOψ̅

T, where λMO is defined
in eq 57 and therefore by using eq 59

U UT
1 MO 1λ ψλ ψ= * ̅ ̅

†
(68)

which represents the desired decomposition because the
product of two unitary matrices U* = U1*ψ̅ remains a unitary
matrix and its transponce U† coincides with ψ̅TU1

†, yielding λ =
U*λMOU

†, that is the purpose of this Appendix.

Triangular Hermitian Matrices: A Mapping from Imaginary
to Real
In order to use the LAPACK routines for diagonalization, we
have to map the tridiagonal fully imaginary Hermitian matrix
λiH, defined only (the diagonal elements are zero to fulfill
Hermitianity) by its upper diagonal elements ibj with bj real for
j = 1, 2, ..., N̅ − 1, into a tridiagonal real symmetric matrix λR.
We can implement this mapping by applying a unitary
transformation to the matrix λiH. For this purpose, we
introduce the following transformation described by the matrix
U2

U UiHR 2 2λ λ= †
(69)

The matrix U2 is a complex diagonal matrix defined as
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The explicit calculation of the right-hand side of the eq 69
gives
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(71)

By setting the imaginary units ± i = exp(±iπ/2) (when not
exponentiated in the previous equation), we can easily impose
that all phase factors cancel in all the corresponding matrix
elements of λR with the choice

j
2

( 1)jϕ π= − −
(72)

that therefore implies that λR, with the above definition, is a
real symmetric matrix. At this point, we can diagonalize the
matrix λR by means of a real unitary matrix UR, that is the
output of a standard LAPACK diagonalization routine of
tridiagonal real matrices (e.g., dstevx for double precision
arithmetic). In this way, λiH can be diagonalized as λiH =
U2URλdiagUR

TU2
†, where λdiag is a diagonal matrix containing the

corresponding eigenvalues of the LAPACK diagonalization.
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Singular Eigenvectors
Within this formulation, it is also particularly easy to compute
all the real singular eigenvectors of λiH corresponding to the
possible vanishing eigenvalues. They were used in this
Appendix to complete the columns of the unitary real matrix
ψ̅. From the outcome of the previous subsection, any
eigenvector ϕk

j of λiH can be obtained by applying the diagonal
matrix U2 to a real eigenvector ϕ̅k

j of λR, namely, ϕk
j = ϕ̅k

j

exp(−iπ/2(k − 1)), implying that even k-components are
purely imaginary and odd k-components are purely real. Then,
it is obvious to realize that ϕ̅k

j corresponds to a singular
eigenvector of λR, and also ( )k

jϕℜ and ( )k
jϕℑ [and therefore

also ( ) ( )k
j

k
jϕ ϕℜ + ℑ ] correspond to singular eigenvectors or

at most null vectors (not both) of λiH because this matrix is
purely imaginary, and the complex conjugation of a singular
eigenvector is again a singular eigenvector by eqs 62 and 63
with aj = 0.
Then, it follows that all orthogonal eigenvectors ϕ̅j (output

of dstevx) corresponding to the zero eigenvalues of the matrix
λR can be used to define the real singular eigenvectors
corresponding to the matrix λiH, that is

l
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oooo
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oooo
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k
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k

j
k

j
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j
k

k
j

k
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(73)

that are explicitly real and orthogonal to each other because
∑kϕ̃k

jϕ̃k
l = ∑kϕ̅k

jϕ̅k
l = δl,j. They are also orthogonal to all the

other pairs of non-singular eigenvectors because of the
orthogonality property of eigenvectors of an Hermitian matrix
λiH that we have already used in the previous section.
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