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Abstract

Background: Allogeneic hematopoietic stem cell transplantation (AHSCT) is a curative therapeutic approach for
different hematological malignancies (HMs), and epigenetic modifications, including DNA methylation, play a role in
the reconstitution of the hematopoietic system after AHSCT. This study aimed to explore global DNA methylation
dynamic of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) from donors and their respective
recipients affected by acute myeloid leukemia (AML), acute lymphoid leukemia (ALL) and Hodgkin lymphoma (HL)
during the first year after transplant.

Methods: We measured DNA methylation profile by lllumina HumanMethylationEPIC in BM HSPC of 10 donors (t0)
and their matched recipients at different time points after AHSCT, at day + 30 (t1), + 60 (t2), + 120 (t3), + 180 (t4),
and + 365 (t5). Differential methylation analysis was performed by using R software and CRAN/Bioconductor
packages. Gene set enrichment analysis was carried out on promoter area of significantly differentially methylated
genes by clusterProfiler package and the mSigDB genes sets.

Results: Results show significant differences in the global methylation profile between HL and acute leukemias, and
between patients with mixed and complete chimerism, with a strong methylation change, with prevailing hyper-
methylation, occurring 30 days after AHSCT. Functional analysis of promoter methylation changes identified genes
involved in hematopoietic cell activation, differentiation, shaping, and movement. This could be a consequence of
donor cell “adaptation” in recipient BM niche. Interestingly, this epigenetic remodeling was reversible, since methylation
returns similar to that of donor HSPCs after 1 year. Only for a pool of genes, mainly involved in dynamic shaping and
trafficking, the DNA methylation changes acquired after 30 days were maintained for up to 1 year post-transplant. Finally,
preliminary data suggest that the methylation profile could be used as predictor of relapse in ALL.

Conclusions: Overall, these data provide insights into the DNA methylation changes of HSPCs after transplantation and a
new framework to investigate epigenetics of AHSCT and its outcomes.
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Background

Epigenetic regulation, including DNA methylation, his-
tone modification, chromatin remodeling, and noncod-
ing RNA regulation, has been reported to regulate gene
expression [1, 2]. One important hallmark of the epige-
nome is its great plasticity in response to internal (i.e.,
during development and transplant) and environmental
factors [3]. In fact, this process is important for normal
biological functions like immune cell development and
differentiation [4] and for tumor conditions [3].

DNA methylation is a reversible process of attaching
methyl residues to cytosines adjacent to guanines (CpGs)
[5]. CpGs are distributed throughout the whole genome,
including repetitive sequences, enhancers, promoters,
and gene body [6]. DNA methylation had deep effects
on gene expression by influencing the accessibility of
transcription factors to DNA, altering genetic stability
and modifying genomic structure [7, 8]. Specifically, the
methylation of promoter CpGs is associated with a
stable gene silencing, and its dysregulation plays an im-
portant role in oncogenesis and tumor progression [9].
On the other hand, the methylation of CpGs in gene
body increased gene expression [10]. CpGs are densely
clustered in regions called CpG islands in which impact
on gene expression is still unclear. Overall, it seems to
contribute significantly to global gene expression regula-
tion specifically if CpG islands are located in promoter
regions [6, 11, 12]. Nowadays, regions with relatively
lower CpG density are gaining importance in DNA
methylation studies. In fact, methylation status of the
majority of CpG islands across a variety of tissues and
cell populations is non-dynamic and less variant [13—
15]. It is now proven, on the contrary, that methylation
is dynamic along the CpG shores (<2kb flanking CpG
Islands), CpG shelves (<2kb flanking outwards from a
CpG shore), and open sea (outside of the CpG island/
shores/shelves context). Recent works, in fact, have
shown that DNA methylation of shore and shelf in inter-
genic region was associated with increased gene expres-
sion [14, 16] and a hypo-methylation of open sea with a
transcriptional silencing [17].

In normal hematopoiesis and in hematological malig-
nancies (HMs), epigenetic modifications [18, 19], includ-
ing DNA methylation, play an important role in
self-renewal of stem cells, in differentiation and in the
malignancy pathogenesis [20].

In HMs, bone marrow (BM) transplantation, is an im-
portant treatment choice, which allows the restoration
of blood cellular components [21]. In particular, the allo-
geneic hematopoietic stem cell transplantation (AHSCT)
is a curative therapeutic approach for leukemia, lymph-
oma, multiple myeloma, and myeloproliferative disease
[4, 22]. This therapy consists of the intravenous infusion
of hematopoietic stem and progenitor cells (HSPCs) to
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reestablish marrow function in patients with damaged or
defective BM [23]. The sources of HSPCs include human
leukocyte antigen (HLA)-matched siblings, matched unre-
lated donors, unrelated umbilical cord blood (UCB), and
HLA haplotype-mismatched donors (HLA-haploidentical)
[24, 25]. After conditioning regimen (myeloablative, re-
duced intensity conditioning, or non-myeloablative) [26,
27], HM patients received HSPCs from mobilized periph-
eral blood (PB), BM, or UCB of donors.

The process through which transplanted stem cells
reach the BM and begin to produce healthy blood cells
is called engraftment phase and approximately occurs
from 2 to 4 weeks [28, 29]. The first sign of engraftment
is the gradual rise of both white blood cell and platelet
count that begins about 3 weeks after transplant. Red
blood cells often take a little longer to begin developing
[26]. Another routine diagnostic tool for the assessment
of engraftment and early detection of graft failure is the
analysis of chimerism in PB cells [30]. A full chimerism
is achieved when more than 95% of cells derives from
the donor. Instead, mixed chimerism is defined as having
5-95% recipient-derived hematopoietic cells remaining
[31]. The epigenetic modifications, such as DNA methy-
lation, play a critical role in self-renewal and in differen-
tiation of HSPCs [4], but little is known about their
changes on hematopoietic cells during transplant. In this
context, this study analyzed, for the first time, the DNA
methylation dynamic of HSPCs from donors and from
HM patients during the time of AHSCT, from 30 days to
1 year, using a genome-wide approach.

Methods

Study samples

From March 2013 to March 2015, a total of 10 donors
and their respective 10 patients who received BM
AHSCT were included in our study and followed up to a
maximum of 55 months after transplant. BM samples
were provided by the Department of Hematology and
Stem Cell Transplantation Unit, IRCCS “Casa Sollievo
della Sofferenza” Hospital, San Giovanni Rotondo, Italy.
BM samples were sequentially collected from donors
(t0) and matched recipients at different time points, at
day +30 (t1), + 60 (t2), + 120 (t3), + 180 (t4), and + 365
(t5). All participants gave written informed consent in
accordance with the Declaration of Helsinki. Patient and
donor characteristics are shown in Table 1. Peripheral
blood was evaluated after transplantation to identify the
presence of mixed or full chimerism by the analysis of
genomic polymorphisms.

Human CD34" HSPCs isolation

BM mononuclear cells from donors and patients were
obtained by Ficoll-Paque gradient centrifugation. CD34*
cells were isolated from mononuclear cells by CD34
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Table 1 Characteristics of patients and donors

Characteristics

Total patients, n 10
Sex, male, n (%) 3 (30%)
Age, mean (range) yr. 34 (17-57)
Diagnosis

AML, n (%) 6 (60%)

ALL, n (%) 3 (30%)

HL, n (%) 1 (10%)
Conditioning regimen

Myeloablative, n (%) 9 (90%)

Reduced Intensity Conditioning, n (%) 1 (10%)
Chimerism

Complete, n (%) 9 (90%)

Mixed, n (%) 1 (10%)
4-years survival, n (%) 8 (80%)
Donor sex, male, n (%) 6 (60%)
Donor sex, female, n (%) 4 (40%)
Donor age, mean (range) 33 (14-52)
Stem cell source (%)

BM, n (%) 10 (100%)
Donor type

Matched sibling, n (%) 4 (40%)

Matched unrelated, n (%) 3 (30%)

Mismatched haploidentical, n (%) 3 (30%)

Microbead Kit (Miltenyi Biotec, Auburn, CA). The pur-
ity of isolated CD34" cells, verified by flow cytometry,
routinely ranged between 90 and 95%.

Genomic DNA isolation

DNA was extracted from CD34" cell population by All-
Prep DNA/RNA Micro Kit (Qiagen GmbH, Hilden,
Germany). DNA quality was controlled by agarose gel
electrophoresis and quantified by a NanoDrop ND-1000
Spectrometer (Thermo Scientific, Wilmington, DE, USA).

Bisulfite conversion and array-based DNA methylation

Genomic DNA (250 ng) was treated with sodium bi-
sulfite using the Zymo EZ DNA Methylation Kit
(Zymo Research, Orange, CA, USA) according to the
manufacturer’s procedure, with the alternative incuba-
tion conditions recommended when using the Illu-
mina Infinium Methylation Assay. The methylation
assay was performed on 4 pl bisulfite-converted gen-
omic DNA at 50 ng/pl according to the Infinium HD
Methylation Assay protocol (Illumina, CA, USA). The
bisulfite-converted genomic DNA was amplified at 37
°C for 22h, enzymatically fragmented, purified, and
hybridized on an Infinium HumanMethlyationEPIC
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(850k) BeadChip at 48°C for 17 h. The BeadChip was
then washed to remove any un-hybridized or
non-specific hybridized DNA. Labeled single-base ex-
tension was performed on primers hybridized with
DNA, and the hybridized DNA was removed. The ex-
tended primers were stained with multiple layers of
fluorescence; the BeadChip was then coated using a
proprietary solution and scanned using the Illumina
HiScanSQ system (Illumina).

Microarray data analysis

Methylation signals were analyzed as described in Pis-
tore et al. [32], and all other statistical analyses were per-
formed using R software [33] and CRAN/Bioconductor
packages.

The methylation level for each cytosine was expressed
as beta value (the ratio of the fluorescence intensity of
the methylated to unmethylated versions of the probes)
as well as M values (log2 ratio of the intensities of meth-
ylated probe versus unmethylated probe). Although the
beta value has a more intuitive biological interpretation,
the M value is considered more valid statistically [34], so
we used this for statistical analysis and the beta value for
data description and plotting.

Overlap analysis of methylation EPIC probes with gen-
omic features (such as TSS1500, TSS200, 1st Exon, 5’
UTR, Gene body, 3'UTR, and IGR) and with CpG
localization (islands, Shores, Shelves, or Open Sea) was
determined exploiting the annotation stored in the Illumi-
na’s EPIC methylation arrays Bioconductor package [35].

Multdimensional scaling (or principle coordinate ana-
lysis) and clustering analysis performed on the methyla-
tion level (M value) of the most variable probes. For
each sample, we also evaluated the “promoter” and
“body” regions’ mean methylation level. The methylation
profile of CD34 gene was further evaluated.

Differential methylation analysis was performed using
limma, minfi, and DMRcate packages [36—38]. Differen-
tially methylated probes (DMPs) and differentially meth-
ylated regions (DMRs) specifically annotated for gene
region and CGI position and their relative distribution
(as probes, genes, and regions) were analyzed. Probes
and regions with absolute FC (M value) greater than 1.5
(abs (log2(M value) > 0.58)) with adjusted (fdr) p value <
0.05 were considered significant.

To better understand stable methylation modifications
in the promoter area, we defined genes significantly and
concordant differentially methylated in t1 versus t0 and
t5 versus t0 as “stable,” while the discordant genes are
labeled as “revert.” We also searched for these “stable”
genes in t2 vs t0. Significant gene sets (p value <0.05)
were obtained by gene set enrichment analysis (cluster-
Profiler package [39] and the mSigDB genes sets [40]).
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Results

Analysis of global DNA methylation profile in both donor
and recipient HSPCs

Global methylation profiles were investigated in BM
HPSCs purified as CD34" cells from 10 donors (t0)
and 10 respective HM recipients [3 acute lymphoid
leukemia (ALL), 6 acute myeloid leukemia (AML),
and 1 Hodgkin lymphoma (HL)] in sequential time
points [30 (t1), 60 (t2), 120 (t3), 180 (t4), and 365
(t5) days] after AHSCT. A schematic overview of the
study design was reported in Fig. 1. We used the Illu-
mina Infinium MethylationEPIC (850k) arrays con-
taining over 850,000 probes which cover the broad
content categories including the following: CpG is-
land, North (N) and South (S) shores and shelves,
open sea, non CpG methylated sites, FANTOM en-
hancers, ENCODE open chromatin and enhancers,
DNA hypersensitivity sites, and miRNA promoter re-
gions. EPIC probes are located at transcription start
site (TSS) 1500, TSS 200, 5° untranslated region
(UTR), first exon, gene body, 3'UTR, exon boundar-
ies, and intergenic regions.

In order to identify potential confounding factors in
methylation data, we performed a multidimensional
scaling (MDS) on the probes with the largest standard
deviations between samples [36]. As showed in Fig. 2a,
MDS segregated in distinct clusters along the principal
component 1: (i) male and female, (ii) all time points
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after AHSCT of patient 19 (t1-t5 P19) with its donor
(t0 P19) and the other HM patients with respective do-
nors, and finally (iii) t4 of patient 2 (P2_4) and all time
points of HM patients with respective donors. Eliminat-
ing those confounding factors (sex chromosomes, t0
and tl1-t5 P19, and P2_4), a uniform distribution of
DNA methylation was observed among all samples
(Fig. 2a, iv).

Unsupervised hierarchical clustering of global methyla-
tion profile on the most variably probes showed that t1-t5
of most patients (P1, P4, P6, P9, P11, P16, and P18) profiled
into a specific methylation cluster. Moreover, analyzing the
donor (t0) distribution, we observed that four donors
(P11_t0, P13_t0, P6_t0, and P18_t0) clustered together,
other four (P1_t0, P4 _t0, P9 _t0, and P16_t0) clustered with
t1-t5 of respective recipients, and just one (P2_t0) segre-
gated separately (Fig. 2b). To evaluate the potential global
methylation change in donors and patients after AHSCT,
we examined global level (M value) in both grouped donors
(t0) and HM patients in all time points (t1-t5) discovering a
similar median of methylation in all groups with a global
hyper-methylation dominance (Fig. 2c). Specifically, distin-
guishing the genome in promoter (TSS200, TSS1500, 5
UTR) and body (1st exon, gene bodies, 3'UTR, exon
boundaries) regions, we observed that global methylation
levels of both regions were similar from t0 to t5 with a low
methylation level in promoter region and, conversely, a
hyper-methylation in gene body (Fig. 2d).
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Fig. 1 Diagram of experimental design. Analysis of genome-wide DNA methylation was performed on BM CD34" cells of donors (t0) and
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cluster (t0-t5) from all other samples (elimination of P19 samples), (iii) segregation of P2 t4 from all other samples (elimination of P2 t4), (iv) no
other confounding factors found. b Unsupervised hierarchical clustering of global methylation profile on the most variable probes; for each
sample, the figure indicated patient number (P), donor age (D years) and recipient age (R years), disease (AML or ALL), and respective time points
(t0 or t1-t5). Each patient with its donor was annotated with a specific color. ¢ Global DNA methylation profile (M value) in grouped donors (t0)
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Differential methylation analysis between donor and

recipient HSPCs
To assess potential methylation changes after AHSCT,
we first clustered differentially methylated probes
(DMPs) common to all comparisons between donors

(t0) and recipients (t1-t5) and then we analyzed the
number of significant DMPs in each comparison. The
hierarchical clustering showed a different methylation
profile between donors and recipients, with a prevalent

hyper-methylation of HSPCs

after transplant in
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recipients (Fig. 3a). Moreover, the analysis of DMP num-
ber identified a major difference of DMPs (n = 12,043) in
tl vs t0 with a marked reduction in the other compari-
sons, reaching 2565 DMPs in t5 vs tO (Fig. 3b). In par-
ticular, we found a prevalent hyper-methylation of
DMPs in each time point vs tO (Fig. 3b). Similarly to the
DMPs, we reported that the DMR number (containing
single or cluster of DMPs) was higher (n =292) in t1 vs
t0 with respect to other comparisons reaching only 47
DMRs in t5 vs tO (Fig. 3c). Also for DMRs, a major
hyper-methylation was found for each time point vs tO
(Fig. 3c). These data indicated that HSPCs were
hyper-methylated at 30days (t1) post-transplant and
their methylation is strongly reduced up to 365 days
after AHSCT (t2-t5).

To investigate the methylation changes during
AHSCT, we analyzed the distribution of DMPs across
CpG sites (CpG island, shelves, shores, and open sea) in
promoter and body regions between donors (t0) and re-
cipients (t1-t5). In particular, CpG island, shelves,
shores, and open sea were more hyper- than
hypo-methylated in both regions (Fig. 3d). Of note, in
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the promoter region, open seas and shores resulted con-
sistently more differentially methylated compared to
islands and shelves in all comparisons. In the body, in-
stead, only open seas were found more differentially
methylated with respect to other regions (Fig. 3d).

Identification of gene signature of HSPCs after transplant
To validate the methylation array data, we analyzed the
global methylation level of CD34 gene in both donor (t0)
and recipient HPSCs (t1-t5). In particular, two
hypo-methylated regions located one in canonical CD34
promoter and another one mapping on 5'UTR of a CD34
transcript variant (ENST00000367036.7) were found in all
time points. Moreover, we also observed a higher methyl-
ated region in CD34 gene body (Additional file 1: Figure
S1). Therefore, expression of CD34 antigen was associated
to its promoter hypo-methylation.

To identify genes that are modulated after AHSCT, we
analyzed the DMPs localized in the promoter region,
whose methylation regulated the gene expression. In
particular, we compared the promoter-associated DMPs
of recipients (t1-t5) with those of donors (t0). The major
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differences of DMP number in promoters were observed
in t1 vs tO obtaining a list of 2263 hyper- and 709
hypo-methylated probes corresponding to 1380 and 477
genes, respectively. These last numbers were drastically
reduced, with a slight perturbation during 120-180 days,
reaching 422 hyper- and 163 hypo-methylated probes
(277 and 127 genes, respectively) in t5 vs t0 (Fig. 4a).
The gene ontology analysis of t1 vs tO indicated that
both hyper- and hypo-methylated genes were signifi-
cantly involved in biological processes important for
hematopoiesis such as lymphocyte activation and differ-
entiation, dynamic shaping of cellular membranes (actin
filament process), and cell movement (adhesion)
(Fig. 4b). Moreover, pathway analysis revealed that these
genes were significantly enriched in the following cat-
egories: hematopoietic stem cell, lymphocyte, NK
progenitors and chemokine and cytokine signaling, and
interleukin (IL) 2, 1IL3, IL5 and Granulocyte
Macrophage-Colony Stimulating Factor (GM-CSF) sig-
naling (Fig. 4c). Analyzing immunologic signature data
sets, we also found that some genes were involved in B
lymphocyte commitment (Fig. 4d).

To understand which genes identified at 30 days preserved
methylation changes at long term (1 year) after transplant,
we compared them with DMPs/genes in t5 vs t0. In particu-
lar, we observed that the majority of these DMPs/genes

Page 7 of 13

(2604 DMPs/1699 genes) were differentially methylated at t1
but not in t5 against t0, indicating that methylation profile
after 1 year of transplant comes back similar to donors. We
defined them as “revert genes” (Additional file 2: Table S1).
Interestingly, we also observed that 368 DMPs correspond-
ing to 270 genes (199 hyper- and 71 hypo-methylated genes)
were differentially methylated both in t1 and t5 against t0
showing a stable modification after transplant. We defined
them as “stable genes” (Additional file 3: Table S2). The gene
ontology analysis indicated that hypo-methylated “stable
genes” were involved in dynamic shaping of cellular mem-
branes (such as phospholipid binding and antigen binding)
(Fig. 5a). Moreover, pathway analysis revealed that hypo- and
hyper-methylated “stable genes” were significantly enriched
in hematopoietic stem cell trafficking, such as leukocyte
transendothelial migration, integrin2 pathway, and in func-
tion related to the HSC regulation and homeostasis (Fig. 5b).

Finally, in order to understand if “stable genes” were
the result of methylation changes which occurred at 30
days and if were preserved up to 1 year post AHSCT, we
searched for “stable genes” in t2-t4. Of note, we did not
observe change in methylation status of 270 stable genes
passing from tl to t2, t3, t4, and t5, except for 8 genes
which “temporarily” modified their methylation pattern
only in t2. In fact, their status resulted similar to t1 in all
other time points (t3-t5) (data not shown).
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with negative clinical outcome

In our cohort of patients, one subject (P2) with ALL re-
lapsed and died after 195 and 300 days post AHSCT, re-
spectively. Therefore, we analyzed the promoter-associated
DMPs of this patient vs all other patients in each time

point. In this comparison, a similar promoter methylation
profile was found in tO-t3 (data not shown), whereas a
strong difference was observed in ALL t4 vs t4 of all pa-
tients. In particular, 195 DMPs (corresponding to 143
genes) were found in t4 of ALL patients when compared to
other patients (Additional file 4: Table S4). Of note, t4
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Fig. 6 Functional analysis of genes from ALL t4 vs all other t4 patient comparisons. Immunological signature analysis of hyper- and hypo-




Trino et al. Stem Cell Research & Therapy (2019) 10:138

methylation profile of ALL patients (P2_4) was evaluated as
an outlier by MDS and for this reason it was excluded from
the next analysis (Fig. 1a). The immunological signature of
ALL t4 vs t4 of all patients (98 hyper- and 45
hypo-methylated genes) showed an enrichment in
“hsc_vs_pro_bcell_up,” “multipotent_progenitor_vs_lym-
phoid_primed_mpp_up,” and “multipotent_progenitor_v-
s_pro_bcell_up” categories (Fig. 6).

Discussion

The main goal of this study was to provide a general
overview of DNA methylation changes in BM CD34"
cells derived from HM patients, including ALL, AML,
and HL, after AHSCT and their relative donors. Analyz-
ing the global methylation profile, MDS segregated the
patient P19, its respective donor and t4 of patient P2
from all other samples. Interestingly, the first separation
identified a strong methylation profile variation between
a patient affected by HL (P19) and those with acute
leukemia. This partition is probably due to the nature of
two malignancies and the different conditioning regimen
(Table 1). In fact, lymphoma and acute leukemia are
quite different from each other for pathogenesis and
clinico-pathological properties, the former starting in the
immune system and affecting the lymph nodes and lym-
phocytes [41, 42] and the latter occurring when the BM
produces too many abnormal progenitor white blood
cells [43, 44]. In addition, HL patient received reduced
intensity conditioning, while all the other patients were
subjected to a myeloablative regimen (Table 1). Unex-
pectedly, MDS showed that AML and ALL methylation
profiles overlap even if these are two different leukemia
types, i.e., myeloid [43] and lymphoid [44] respectively.
Moreover, a possible explanation of P2 t4 exclusion after
MDS could be the presence of a different chimerism sta-
tus (10%) with respect to the other patients (90%). It was
reported that patients with mixed chimerism showed a
higher differential methylation than donors, with respect
to patients with complete chimerism [45]. These find-
ings suggested that HSPC DNA methylation pattern
post-transplant could be influenced by recipient BM
microenvironment or by the recurrence of patient
HSPCs.

Analyzing genome-wide BM HSPC methylation with
or without discrimination between gene promoters and
bodies, after elimination of confounding factors, we visu-
alized a similar profile between donors and recipients
during transplant at all investigated time points. These
data are in line with those of Rodriguez et al. [45] show-
ing stable global methylation levels after HSCT over 12
months between donors and recipients. However, that
work had two important differences with respect to this
one, the use of PB mononuclear cells and the analysis of
repetitive sequences (LINE1 and NBL2) [45].
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Interestingly, in unsupervised hierarchical clustering,
we observed that four donors clustered together,
whereas the other five were clearly separated. This distri-
bution could be not due to the different donor types.

It was reported that HSPCs from the same source, CB
or mobilized PB (mPB), of different healthy subjects all
grouped together and that CB and mPB groups clustered
close to each other [20, 46]. A possible explanation to
our donor distribution could be their age. In fact, analyz-
ing their characteristics, we noted that the donor cluster
age ranged from 23 to 30years, while the age of the
other case was instead >35years and, in one case, 14
years. Moreover, four other donors clustered with their
respective recipients. This cluster could be due to the
nature of CD34" recipient cells that maintained the
“methylation memory” of donor infused cells. Indeed,
DNA methylation is considered a stable epigenetic mark
that can be inherited through multiple cell divisions [47,
48], but during the development and cell differentiation,
it is dynamic, although some methylation changes are
preserved as an epigenetic memory [47, 48]. Of note, the
other half of patients did not cluster with their respect-
ive donors probably because the HSPCs were strongly
influenced by BM HM recipient microenvironment [49,
50]. To be solved, this issue will need a future investiga-
tion on an increased number of subjects.

The DNA methylation profile between donors and all
time points of recipients revealed a strong
hyper-methylation of HSPCs after transplant. In particu-
lar, we found in all cases that hyper-methylated probes
are commonly associated with CpG open seas and
shores in promoter regions and with CpG open seas in
body regions. Our data are in agreement with those of
Weidner et al. [51] who demonstrated that cultured
HPCs CD34" acquired significant promoter DNA
hyper-methylation in shore regions, reflected in differen-
tial gene expression and variant DNMT3A transcripts.
Moreover, also the open sea hyper-methylation is in ac-
cordance with the methylation data observed in other
studies carried out in healthy tissues, but in contrast
with its hypo-methylation found in various cancers [52—
54]. DNA methylation of CpG shores, shelves, and open
sea has been shown to be related to gene expression in
normal and tumor cells [52, 55, 56]. In particular,
hyper-methylation of the gene bodies open sea was posi-
tively linked to gene expression in different human tis-
sues, cell lines, and primary cancer cells [52, 53]. On the
other hand, the hypo-methylation in promoter regions,
specifically in open seas, shelves, and shores, was signifi-
cantly associated to upregulation of the corresponding
genes [52, 54].

Interestingly, we observed a relevant change in terms
of DMP/DMR/gene number in patients after 30 days of
AHSCT, with respect to the donors. These numbers
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drastically changed, going from 12,043/292/1857 at 30
days to 3645/83/668 at 60 days, and this reduction was
maintained for up to 1 year after transplant. It was sug-
gested that CD34" donor cells consistently modified
their methylation pattern during the engraftment phase,
which occurs 2 to 4 weeks after transplant. This perturb-
ation could be caused by the recipient microenviron-
ment, which strongly influenced the CD34" engraftment
[57]. Recent studies identified the intimate association
between BM perivascular endothelial cells and HSCs
throughout stem cell life, identifying their important role
in regulating HSC biology [49, 50]. In particular, differ-
ent molecular and physical properties of microenviron-
ment cells critical for HSC engraftment, maintenance,
localization, and regeneration have been described [49,
50]. In addition, this perturbation was associated to a
dominant hyper-methylation that was drastically reduced
in time, suggesting an initial genome silencing which de-
creased within 60 days and then for up to 1 year. Weid-
ner et al. [51] demonstrated that DNA methylation of
healthy CD34" was hardly affected by stromal support.
Moreover, microenvironment has been shown to exert
profound but partially reversible changes on DNA
methylation and on mRNA expression profile in
patient-derived glioma stem cells [58]. Functional ana-
lysis of the possible consequences of this perturbation
showed its involvement in hematopoietic cell activation,
differentiation, shaping, and movement. Concerning
methylation restoring, it has been reported that DNA
methylation is inheritable and adapts to a specific cellu-
lar memory function during development or stress [48,
59], cellular conditions that applies to this case.

It is known that the immunological reconstitution of
different cell subsets after AHSCT occurs at different
time points: 21 days for neutrophils, 30-100 days for NK
cells, 100 days for T cells, and 1-2years for CD19" B
cells [60]. Anyway, little is known about methylation
levels and gene expression in the engraftment phase.
Our data showed an involvement of methylation in
hematopoiesis specifically in this phase; in fact, post 30
days of HSCT, the gene ontology revealed a modulation
of leukocyte activation and differentiation while pathway
analysis showed the regulation of lymphocyte and NK
progenitors and chemokine and cytokine signaling. In
particular, cytokines like IL-3 and IL-5 and growth fac-
tors including GM-CSF are involved in proliferation and
differentiation of myeloid precursors [61-63]. Moreover,
they also regulate HSC quiescence/self-renewal and
lymphoid commitment activating signal transducer and
activator of transcription 5 (STAT5) [64—66]. In conclu-
sion, during the engraftment phase, the modulation of
these pathways is required for HSC quiescence/expan-
sion and for an efficient lympho-myeloid repopulation
[67]. Moreover, an enrichment in immunological
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signature identified genes involved in lymphoid commit-
ment. The lymphocyte reconstitution after HSCT has an
important role, not only on the prevention of serious in-
fections in the early transplantation period, but also on
the killing of residual leukemic cells by
graft-versus-leukemia effect [68, 69]. Other studies re-
ported that a higher absolute lymphocyte count on day
+30 was associated with faster hematopoietic recovery
and, consequently, a more rapid neutrophil and platelet
engraftment [68, 70]. Of note, it is intriguing that at 30
days post-transplant in PB there are circulating leuco-
cytes indicating an occurred engraftment, while in BM
their progenitor cells are still subject to a strong per-
turbation of methylation status.

Our analysis proposes that it could be interesting and
useful to anticipate the methylation analysis of CD34 be-
fore 30 days. In fact, a CD34 methylation pattern at 10—
14 days after AHSCT could point out all the changes ac-
quired from the CD34 in the “full” engraftment phase.
We could define an “engraftment methylation signature”
of CD34 thus using it as first sign of engraftment com-
pared to both white blood cell and platelet count. In-
deed, it could allow an early planning of supportive
therapies in transplantation.

Remarkably, at 60 days post HSCT, CD34" cells mainly
re-established the same gene methylation levels as donor
HSPCs, except for a gene pool that remained differently
methylated up to 365 days. These genes encoding for matri-
cellular proteins, a/f3 integrins, and chemokines are in-
volved in dynamic shaping of cellular membranes and
trafficking. Chemokines are a small group of related
chemoattractant peptides that play an essential role in the
development and homeostatic maintenance of the immune
system [71, 72]. In particular, they regulated HSC homing
to their BM niches and directed immature lymphocytes to
a series of maturation sites within lymphoid organs [71,
72]. Like chemokines, also the a/f integrins, a class of het-
erodimeric trans-membrane receptors, play an important
role in HSC maintenance, regulating their egress from the
BM niche and other functions [73]. Within the BM niche
exists a tightly controlled local microenvironment that reg-
ulates quiescence, proliferation, and differentiation of HSCs,
in order to ensure life-long, balanced, and multilineage
hematopoiesis [49, 74]. Overall, our data suggest that BM
recipient microenvironment regulated/modified several cel-
lular responses of CD34" cells, allowing their adaptation to
novel environmental stimuli.

To verify the presence of any relationship between the
outcome after transplant and the donor type, we com-
pared the methylation profiles of patients related to
those with unrelated donors. In particular, no differences
were found, except in t4 in which two differently meth-
ylated genes (CMYAS and ZNF432) were identified (data
not shown).
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Finally, the promoter methylation profile analysis at 180
days after transplant of ALL patient showed a strong differ-
ence with respect to other patients. We observed a modula-
tion of methylation pattern regarding B and T cell
populations. The immunological signature enrichment re-
vealed the presence of genes, such as BRD3, PBX2, and
WNTS5B, involved in HSPC proliferation, self-renewal, and
differentiation, found deregulated in leukemia [75-78]. In
addition, among deregulated genes, we found GLI3, a nega-
tive regulator of the Hedgehog signaling pathway, which is
aberrantly activated in cancer. In line with our data, GLI3
was demonstrated to be epigenetically silenced in patients
with acute leukemia [79]. Interestingly, at this time point,
ALL patient had 10% of chimerism and after additional 15
days relapsed. This suggests the interesting hypothesis that
promoter methylation profile analysis may be useful to pre-
dict relapse in these cases, although further investigation is
needed to validate this possibility. In line with our hypoth-
esis, a recent study investigated the prognostic relevance of
CpG island methylation phenotype classification in
pediatric B cell precursor (BCP)-ALL patients, showing that
it is a strong candidate for improved risk stratification of re-
lapsed BCP-ALL [80]. We envision that a CD34 promoter
methylation pattern study could integrate the routine diag-
nostic tool of chimerism analysis in assessment of engraft-
ment and early detection of graft failure in AHSCT.

Conclusions

This study analyzed, for the first time, DNA methylation
dynamics of BM-HSPCs after AHSCT which involved
multiple adaptation steps in the new recipients. Methyla-
tion consistently changed at 30 day post AHSCT and
progressively returned to levels similar to those of donor
HSPCs. An acquired modification of DNA methylation
persisted, however, in only a pool of genes for up to 1
year. Finally, preliminary data in one ALL patients sug-
gested that methylation profile analysis could provide a
predictor of relapse.

Despite the relative small sample number, our data
strongly suggest that DNA methylation analysis is a valid
complement to studies on AHSCT based on gene ex-
pression profiles, providing also useful information for
further investigation to characterize the epigenetic
mechanisms occurring in transplants. It can be reason-
ably expected, in fact, that detailed DNA methylation
analysis, as a source of novel biomarkers, will help ad-
vance toward precision medicine in AHSCT and
hematological malignancies.
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