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Multiple sclerosis is a complex autoimmune disease caused by a combination of genetic and environmental factors. Translation of

Genome-Wide Association Study findings into therapeutics and effective preventive strategies has been limited to date. We used

summary-data-based Mendelian randomization to synthesize findings from public expression quantitative trait locus, methylation

quantitative trait locus and Multiple Sclerosis Genome-Wide Association Study datasets. By correlating the effects of methylation

on multiple sclerosis, methylation on expression and expression on multiple sclerosis susceptibility, we prioritize genetic loci with

evidence of influencing multiple sclerosis susceptibility. We overlay these findings onto a list of ‘druggable’ genes, i.e. genes which

are currently, or could theoretically, be targeted by therapeutic compounds. We use GeNets and search tool for the retrieval of

interacting genes/proteins to identify protein–protein interactions and druggable pathways enriched in our results. We extend these

findings to a model of Epstein-Barr virus-infected B cells, lymphoblastoid cell lines. We conducted a systematic review of prioritized

genes using the Open Targets platform to identify completed and planned trials targeting prioritized genes in multiple sclerosis and

related disease areas. Expression of 45 genes in peripheral blood was strongly associated with multiple sclerosis susceptibility (False

discovery rate 0.05). Of these 45 genes, 20 encode a protein which is currently targeted by an existing therapeutic compound.

These genes were enriched for Gene Ontology terms pertaining to immune system function and leucocyte signalling. We refined

this prioritized gene list by restricting to loci where CpG site methylation was associated with multiple sclerosis susceptibility, with

gene expression and where expression was associated with multiple sclerosis susceptibility. This approach yielded a list of 15 pri-

oritized druggable target genes for which there was evidence of a pathway linking methylation, expression and multiple sclerosis.

Five of these 15 genes are targeted by existing drugs and three were replicated in a smaller expression Quantitative Trait Loci data-

set (CD40, MERTK and PARP1). In lymphoblastoid cell lines, this approach prioritized 7 druggable gene targets, of which only

one was prioritized by the multi-omic approach in peripheral blood (FCRL3). Systematic review of Open Targets revealed multiple

early-phase trials targeting 13/20 prioritized genes in disorders related to multiple sclerosis. We use public datasets and summary-

data-based Mendelian randomization to identify a list of prioritized druggable genetic targets in multiple sclerosis. We hope our

findings could be translated into a platform for developing targeted preventive therapies.
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Introduction
Genome-wide association studies (GWAS) in multiple

sclerosis have revealed over 200 risk loci associated

with an increased risk of developing the disease

(International Multiple Sclerosis Genetics Consortium,

2019b). However, translating findings from GWAS into

therapeutic strategies have proved challenging for sev-

eral reasons. GWAS provide insights into potential gen-

omic risk loci that are likely to harbour single or

multiple causal variants. Despite the advent of analytic-

al techniques such as fine-mapping, advanced annota-

tion tools, co-localization and Mendelian randomization

for inferring causal variants from risk loci, difficulties

remain in inferring with certainty which variants are

truly causal. Understanding how these variants mechan-

istically influence disease phenotypes provides additional

challenges (Wu et al., 2018). These challenges arise

from factors such as complex linkage disequilibrium

and potential effects on distant (i.e. trans) genes. In

addition, dynamic, context-specific effects of variants

are likely to vary depending on time, cell type and

context.

Multiple sclerosis is a complex autoimmune disease,

which is a leading cause of disability in young people.

There are currently neither effective cures nor preventive

measures for multiple sclerosis. Licenced therapies for

multiple sclerosis include rationally designed monoclonal

antibodies, such as ocrelizumab (anti-CD20), natalizumab

(anti-alpha4 integrin) and alemtuzumab (anti-CD52) and

fingolimod and other sphingosine-1-phosphate-receptor

modulators, in addition to drugs with multiple mecha-

nisms of action such as cladribine, glatiramer acetate and

beta-interferon (Tintore et al., 2019). Autologous haem-

atopoietic stem cell transplant has an increasing evidence

base for use in multiple sclerosis. Existing highly active

therapies are effective at controlling inflammatory disease

activity, but have several serious side-effects; alongside

this, prognostication at the time of diagnosis remains im-

perfect. There is thus an unmet clinical need for highly

effective therapies with a better safety profile, which is

even more important when considering preventive drugs

for individuals at high-risk of disease.

Many GWAS hits reside in intronic or intergenic

regions, or within genes that do not make attractive

druggable targets, for example due to conformational
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considerations, cellular localization or concerns about off-

target effects. Outside of rare, missense or nonsense

coding variants, moving from GWAS hits into druggable

targets has had limited success. Expression quantitative

trait loci (eQTLs) studies provide a tissue-specific measure

of genetic expression and enable a deeper understanding

of the influence of transcription levels alongside genetic

variation. Summary-data-based Mendelian randomization

(SMR) provides a data-driven approach for integrating

GWAS data with gene expression data from eQTL stud-

ies to prioritize potentially causal genes from GWAS hits

(Zhu et al., 2016). SMR extends the concept of

Mendelian randomization, enabling testing of the hypoth-

esis that genetically determined levels of gene expression

are associated with a disease phenotype.

In this paper, we focus on a previously curated list of

4479 genes that were identified as ‘druggable’ on the

basis of various considerations (Finan et al., 2017). We

apply SMR to recent multiple sclerosis GWAS data, com-

plemented by pathway analysis to provide a data-driven

prioritization of druggable genes in multiple sclerosis.

Materials and methods

Datasets

Multiple sclerosis GWAS data were provided by the

International MS Genetics Consortium (IMSGC) from the

latest IMSGC discovery-stage summary statistics

(International Multiple Sclerosis Genetics Consortium,

2019b). These data originate from 14 802 individuals

with multiple sclerosis and 26 703 controls of European

descent. Allele frequencies for single nucleotide polymor-

phisms (SNPs) in the multiple sclerosis GWAS discovery

data were obtained from the 1000 genomes samples of

European ancestry (n GWA03) (Consortium, T. 1000 G.

P., & The 1000 Genomes Project Consortium, 2015).

For SMR analyses, we used several eQTLs datasets.

The primary analysis used cis-eQTL data from the

eQTLgen consortium. This dataset contains cis-eQTLs for

all 19 250 genes expressed in whole blood obtained from

31 684 individuals. Each SNP–gene pair for which data

was available in �2 cohorts and with a SNP–gene dis-

tance of �1 MB was tested (V~osa et al., 2018). Data

were downloaded from the eQTLgen consortium website

(https://www.eqtlgen.org/cis-eqtls.html) (V~osa et al.,

2018). Whole blood results obtained with the eQTLgen

dataset were replicated using the Consortium for the

Architecture of Gene Expression (CAGE) consortium

eQTL data obtained from peripheral blood of 2765 indi-

viduals (Lloyd-Jones et al., 2017). CAGE data were

downloaded from the SMR website (https://cnsgenomics.

com/software/smr/#DataResource). Data on eQTLs in

lymphoblastoid cell lines (LCLs)—Epstein-Barr virus

(EBV)-immortalized B cells—were obtained from the

Geuvadis consortium results available from the SMR

website (Lappalainen et al., 2013).

For multi-omic SMR, we used peripheral blood methy-

lation quantitative trait locus (mQTL) data from a meta-

analysis of the Lothian Birth Cohort and the Brisbane

Systems Genetics Study (McRae et al., 2018; Wu et al.,

2018). These data are limited to DNA methylation

probes with �1 cis-mQTL associated at P ass � 10�0

and SNPs �2 MB from each DNA methylation probe.

mQTL data were downloaded from the SMR website.

Druggable genome

The druggable genome can be defined as the set of pro-

tein-coding genes for which the gene products could

potentially be modulated by therapeutic compounds. This

includes protein products which are already targeted by

existing drugs and proteins with structural and functional

properties suggestive of druggability but which are not

currently targeted by existing compounds. The list of

druggable genes used in this work was taken from

Supplementary Table 1 of the paper by Finan et al.

(2017). The final list was developed from a list of pro-

tein-coding genes, T-cell receptor genes, immunoglobulins,

polymorphic pseudogenes and selected non-protein-coding

genes believed to have functional consequences. Genes

were classified into three tiers based on their druggability.

Genes were classified as ‘Tier 1’ if they were already

being targeted by compounds in clinical use or clinical

development. ‘Tier 2’ genes were not currently targeted

by existing compounds but have a peptide sequence prod-

uct with high sequence homology to ‘Tier 1’ druggable

genes. ‘Tier 3’ genes incorporated gene products with a

degree of peptide sequence homology to targets of exist-

ing compounds, genes encoding major classes of drug-

gable protein (kinases, ion channels, G-protein-coupled

receptors, nuclear hormone receptors and phosphodiester-

ases), genes encoding extracellular proteins (either

secreted or membrane-bound) and cluster of differenti-

ation (CD) antigen genes. Tier 3 was divided into 3A

and 3B based on proximity to GWAS hits for various

common diseases, with genes �50 KB from a GWAS hit

deemed more likely to be druggable (3A).

Summary-data-based Mendelian
randomization

SMR is a technique used to determine associations be-

tween genetically determined traits, such as gene expres-

sion and methylation, and outcomes of interest, such as

disease phenotypes (Zhu et al., 2016). eQTLs refer to

genetic variants which are associated with levels of ex-

pression of a particular transcript. These are derived

from the measurement of gene expression, most common-

ly using RNA sequencing, which is then correlated with

genotyping data. Importantly, eQTLs are time and tissue-
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specific: the genetic regulation of gene expression varies

widely between tissues and depends on context.

In SMR, SNP association statistics with an outcome

(e.g. a disease phenotype) are regressed on SNP associ-

ation statistics with expression of a particular transcript

to determine an estimate approximating the effect on the

disease phenotype for a genetically determined increase in

the expression of that transcript. If bE is the per-allele

beta for a genetically determined increase in gene expres-

sion, and bD is the per-allele log odds ratio for a binary

disease phenotype, then the SMR estimate for the effect

of genetically determined increased expression of that

transcript bSMR is:

bSMR ¼ bD=bE:

A key assumption of this approach is that the same

underlying causal variant determines both gene expression

and the disease phenotype. Due to LD, it is possible that

bSMR could be non-zero even when this assumption is

violated, i.e. if SNP i is in linkage with SNP j, which

determines the expression of transcript t, and is also in

linkage with SNP k, which directly influences the disease

phenotype, then bSMR may be non-zero despite no direct

causal pathway from SNP to transcript to disease [see

Fig. 1 in Wu et al. (2018)]. This is different to the ‘verti-

cal pleiotropy’ situation upon which instrumental variable

analysis and MR are based, which assumes a direct

causal pathway among genetic variant, gene expression

and disease phenotype. Importantly, SMR cannot distin-

guish between vertical pleiotropy—the situation in which

variant influences phenotype via gene expression, and

horizontal pleiotropy, the situation in which variant influ-

ences phenotype and gene expression, but influences the

phenotype at least partly independently of gene

expression.

To distinguish pleiotropy from linkage, Zhu et al.

(2016) developed the heterogeneity in dependent instru-

ments (HEIDI) test, which exploits the observation that if

gene expression and disease phenotype are in vertical

pleiotropy with the same causal variant, bSMR is identical

for any variant in linkage disequilibrium with the causal

variant. Thus greater heterogeneity among bSMR statistics

calculated for all significant cis-eQTLs implies a greater

likelihood that linkage, rather than causality/vertical plei-

otropy, explains the observed bSMR. The heterogeneity

statistic, the ‘HEIDI’ statistic, tests the hypothesis

HEIDI¼ 0. This provides a formal test of heterogeneity,

with P-values < 0.05 suggestive of linkage, rather than

pleiotropy, as the underlying biological model (Zhu

et al., 2016).

In this work, we performed SMR using the SMR soft-

ware tool (SMR v1.0.2) in the command line using de-

fault options (Zhu et al., 2016). Default options are as

follows: cis-eQTLs selected based on minimum P¼ 5 �
10�8, eQTLs included for the HEIDI test based on min-

imum P¼ 1.57 � 10�3, eQTLs included for the HEIDI

test if R2 with the top cis-eQTL was between 0.05 and

0.9, minimum number of SNPs included in the HEIDI

test ¼ 3, maximum number of SNPs included in the

HEIDI test ¼ 20 and physical window around probe

within which the top cis-eQTL was selected ¼ 2 MB.

P-values were adjusted in R (v3.6.1) to control the false

discovery rate at A ¼ 0.05 using the Benjamini–Hochberg

procedure. Associations with pHEIDI<0.01—the cutoff

used by Wu et al. (2018)—were considered likely due to

linkage and thus discarded from the analysis. Probes

were excluded if any of the transcript or the top eQTL

resided within the super-extended major histocompatibil-

ity complex (hg19 6:25 000 000–35 000 000) given the

complex linkage disequilibrium structures within this re-

gion. Linkage disequilibrium estimation was performed

using reference genomes obtained from the 1000 genomes

samples of European ancestry (n¼ 503) (Consortium, T.

1000 G. P., & The 1000 Genomes Project Consortium,

2015).

Multi-omic SMR

To further refine the list of plausible druggable targets

developed using the techniques above, we performed

multi-omic SMR using the methods described in Wu

et al. (2018). This approach prioritizes genes by layering

SNP associations with CpG methylation sites, gene ex-

pression and the phenotype of interest. As the majority

of GWAS hits are in non-coding regions, they are likely

to influence disease through regulation of gene expression

(Wu et al., 2018). As CpG methylation sites are partly

genetically determined, methylome-wide association study

data can be exploited to determine possible causal rela-

tionships between CpG methylation and other traits,

including molecular traits such as gene expression. We

Figure 1 Flow diagram of numbers of probes included in

the analysis of eQTLgen data. SMR was used to determine the

causal effect of perturbations in genetically determined gene

expression in peripheral blood on multiple sclerosis susceptibility.
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applied the following steps to prioritize druggable genes

in multiple sclerosis:

(1) Use SMR to determine associations between CpG

methylation sites and gene expression

(2) Use SMR to determine associations between CpG

methylation sites and multiple sclerosis

(3) Use SMR to determine associations between gene ex-

pression and multiple sclerosis

If there is strong evidence of causal association (i.e.

pSMR < threshold and pHEIDI > 0.01) at each of the

above three steps (associations between CpG methylation

sites and gene expression, associations between CpG

methylation sites and MS and associations between gene

expression and MS), this provides evidence of a causal

pathway linking genetic variation, methylation, gene ex-

pression and multiple sclerosis at that genetic locus.

Custom gene tracks for locus plots were downloaded

from the University of California at Santa Cruz Genome

Browser (https://genome.ucsc.edu/cgi-bin/hgTables). All

genomic coordinates specified are genome build hg19

(GRCh37).

Pathway analysis, functional
annotation and prediction of
protein interactors

Pathway analysis and annotation was conducted using

the search tool for the retrieval of interacting genes/pro-

teins (STRING) database of protein–protein interactions

(https://string-db.org/). For data visualization, we used de-

fault settings to map protein–protein interactions between

the prioritized druggable targets. STRING database inter-

action scores are curated from multiple sources (experi-

mental data, co-expression, text-mining and predictions

from peptide sequences) and reflect the probability that

two proteins are linked in the same Kyoto encyclopedia

of genes and genomes metabolic pathway. By default,

interactions with medium confidence (>0.4) are shown

(von Mering et al., 2005; Szklarczyk et al., 2019). For

functional enrichment analysis, we examined the list of

SMR-prioritized genes (not restricted to the druggable

genome).

Enrichment for Gene Ontology (GO) terms and bio-

logical pathways was determined by querying GO terms,

Kyoto encyclopedia of genes and genomes pathways and

REACTOME pathways using STRING (Franceschini

et al., 2012). Enrichment P-values are computed using

hypergeometric tests and corrected using the Benjamini–

Hochberg procedure. The hypergeometric test for enrich-

ment is based on the observation that under the null hy-

pothesis (no enrichment), the number of genes from the

gene list which have a particular GO term attached fol-

lows an approximately binomial distribution for large n-

values (Rivals et al., 2007).

To identify additional druggable targets not priori-

tized in the primary analysis but likely to interact with

prioritized genes, we used the GeNets tool (http://apps.

broadinstitute.org/genets). GeNets uses pre-trained ran-

dom forest classifiers to predict the likelihood that any

given protein interacts functionally with another. In

addition to calculating interaction strength between

given gene products, GeNets can also predict likely

interacting partners given a gene set. We ran GeNets

using the online tool, with the SMR-prioritized gene list

from our primary analysis (eQTLgen SMR,

Supplementary Table 3) as input, and with default set-

tings (Li et al., 2018).

Systematic review of clinical trials

Finally, we performed a systematic evaluation of the clin-

ical trial literature for all Tier 1 druggable targets associ-

ated with multiple sclerosis from our primary analysis

(eQTL SMR). We searched the Open Targets Platform

(https://www.targetvalidation.org/) for each prioritized

gene candidate. For each gene, we collated all trials tar-

geting the gene in autoimmune diseases (e.g. multiple

sclerosis, Rheumatoid Arthritis, Inflammatory Bowel

Disease, Psoriasis, Ankylosing Spondylitis, Systemic Lupus

Erythematosus, Primary Biliary Cholangitis, Type 1

Diabetes Mellitus, Sjogren’s Syndrome and Primary

Sclerosing Cholangitis) and haematological malignancies.

These diseases areas were chosen given their potentially

shared aetiology with multiple sclerosis; successful trials

in these diseases may suggest possible therapeutic benefit

in multiple sclerosis.

Statistical analysis, software and

computing

All analyses were conducted using SMR and R v3.6.1.

This research was supported by the High-Performance

Cluster computing network hosted by Queen Mary

University of London (King et al., 2017). SMR locus

plots were made using the online tool hosted at the SMR

website (https://cnsgenomics.com/software/smr/omicsplot/).

Data availability

All data used in this study are publicly available at the

URLs given in the methods. The SMR programme is

available at the URL given in the methods. SMR was run

using default command line options.

All code is available here: https://github.com/benja

cobs123456/MS_SMR_druggable_targets.
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Results

Expression of druggable gene
targets is modulated by multiple
sclerosis risk loci

We used SMR to test the association of genetically deter-

mined expression of druggable genes in peripheral blood

with multiple sclerosis. Expression of 45 tested probes

(mapping to 45 unique genes; 2356 probes tested in

total) was associated with multiple sclerosis (FDRSMR <

0.05, pHEIDI > 0.01, Fig. 1). Twenty of these genes were

Tier 1 druggable targets (Figs 1–4 and Table 1).

Seventeen of these 45 signals were replicated in the

CAGE dataset (Supplementary Tables 1 and 2, Fig. 1).

For these replicated genes, the association statistics

(betaSMR) with multiple sclerosis were highly correlated

between the two datasets (Pearson’s correlation coefficient

0.93, 95% CI 0.83–0.98, P¼ 4.20 � 10�8,

Supplementary Tables 1 and 2, Fig. 2).

We found evidence for multiple protein–protein interac-

tions within this list of prioritized druggable genes

(Fig. 5). Extending the SMR approach beyond the drug-

gable genome, expression of 235 genes was associated

with multiple sclerosis risk (FDRSMR < 0.05, pHEIDI

>0.01, Supplementary Table 3 and Fig. 6). This full set

of SMR-prioritized genes was enriched for multiple GO

terms and biological pathways implicated in immune sys-

tem function and dysfunction (Supplementary Tables 4–

6). No significant enrichment was found for

REACTOME pathways nor for GO cellular components.

Methylation at CpG sites is
modulated by multiple sclerosis risk
loci

Next, to determine CpG methylation sites associated with

multiple sclerosis risk, we applied SMR to CpG mQTL

data from a meta-analysis of the Lothian Birth Cohort

and Brisbane Systems Genetics Study cohorts (see

Materials and methods section). We found evidence for

an association of 574 CpG methylation probes with mul-

tiple sclerosis risk (Supplementary Table 12).

Multi-omic SMR to prioritize
druggable gene candidates in
multiple sclerosis

To determine the associations between CpG methylation

sites and gene expression, we performed SMR using the

Lothian Birth Cohort and Brisbane Systems Genetics

Study mQTL meta-analysis and the eQTLgen consortium

eQTL data. We restricted this analysis to druggable gene

transcripts and excluded the major histocompatibility

complex. We identified 23 731 associated pairs of CpG

probes and transcripts (FDRSMR < 0.05, pHEIDI > 0.01)

mapping to 2548 unique genes (Supplementary Table 7).

We then overlaid SMR evidence for causal relationships

among associations between CpG methylation sites and

gene expression, associations between CpG methylation

sites and multiple sclerosis and associations between gene

expression and multiple sclerosis for the druggable gen-

ome. We found 35 druggable loci mapping to 15 unique

genes (Table 2). Five of these genes were Tier 1 (highly

druggable) genes: CD40, ERBB2, VEGFB, MERTK and

PARP1. Eight of these 15 unique genes were replicated

using the CAGE dataset, including three of the five Tier

1 genes (CD40, MERTK and PARP1). In addition, an-

other Tier 1 gene, IL12RB1, was associated with mul-

tiple sclerosis in the CAGE but not the eQTLgen dataset

(Table 2 and Supplementary Table 8). Locus plots with

chromatin state annotations from the Roadmap

Epigenomics Projects are shown for the three replicated

Tier 1 genes (Supplementary Fig. 6).

Prediction of novel interactions

To extend the list of functionally prioritized druggable

targets, we used GeNets to predict which proteins inter-

act with the targets identified in our analysis. As input,

we used the full list of 235 SMR-prioritized genes

(including non-druggable targets) from the primary ana-

lysis (Supplementary Table 3). This approach yielded an

additional 75 predicted protein interaction partners and

multiple novel and established therapeutic compounds

targeting our list of prioritized protein networks

(Supplementary Fig. 4 and Table 10).

Druggable targets in lymphoblastoid
cell lines

EBV-transformed cell lines, LCLs, provide a model for

studying gene expression on B cells in vitro. These cells

are immortalized using EBV, which appears to play a sig-

nificant role in multiple sclerosis risk. We attempted to

identify druggable gene targets in LCLs using LCL–eQTL

data from the Geuvadis consortium (Lappalainen et al.,

2013). SMR identified seven prioritized druggable gene

targets for multiple sclerosis in LCLs (Supplementary

Table 10 and Fig. 5). Expression of 3/7 of these tran-

scripts (SLC12A7, FCRL3 and SLAMF7) was also associ-

ated with multiple sclerosis susceptibility in blood, with

concordant directions of effects for all three genes. The

FCRL3 gene was the only gene that overlapped with our

list of genes prioritized using multi-omic SMR, although

notably the TNFRSF14 gene prioritized from the LCL

analysis is adjacent to MMEL1, which was nominated by

the multi-omic method as a likely causal gene in periph-

eral blood. Comparison of SMR causal estimates for

gene expression of the 1215 overlapping genes which

passed the HEIDI test (P> 0.01) revealed a weak but

precisely estimated positive correlation between
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association statistics with multiple sclerosis in blood and

LCLs (Pearson’s rho ¼ 0.27, 95% CI 0.21–0.32, P< 2 �
10�16).

Systematic review of clinical trials

We conducted a systematic review of clinical trials target-

ing our 20 Tier 1 prioritized genes from the primary ana-

lysis (eQTL SMR with eQTLgen data). Using the Open

Targets platform, we retrieved trial data for trials in

autoimmune diseases (including multiple sclerosis) and in

haematological malignancies for each druggable target.

Full results are presented in Supplementary Table 9. Of

the 20 genes queried, we found drug trials in related dis-

ease areas for 13/20. Gene targets without any trials in

relevant areas were MPO, ABCC2, CD5, MERTK,

NCSTN, MAP3K11 and VEGFB. Only one gene target,

S1PR1, was being currently targeted in multiple sclerosis.

Phase III trial data have demonstrated efficacy of S1PR1

modulators (fingolimod, siponimod, ozanimod and

Table 1 SMR-prioritized druggable genes associated with multiple sclerosis

Gene CHR Probe BP Top eQTL A1 Freq Beta SMR P SMR P HEIDI Druggability

tier

FDR

Q-value

CD5 11 60882595 rs4939489 T 0.409543 �0.67129 7.37E�14 0.026639 Tier 1 5.78E�11

CD40 20 44752706 rs13037326 T 0.261431 �0.49717 1.89E�12 0.023461 Tier 1 1.11E�09

MERTK 2 1.13Eþ08 rs55812028 T 0.256461 0.192908 4.92E�08 0.047402 Tier 1 8.27E�06

CD37 19 49842510 rs1320302 T 0.259443 �0.34411 1.29E�07 0.056106 Tier 1 1.89E�05

KIF11 10 94384096 rs10882098 T 0.422465 �1.15164 4.37E�06 0.082185 Tier 1 4.89E�04

TYK2 19 10476280 rs8101195 G 0.152087 �0.43108 8.30E�06 0.078946 Tier 1 8.13E�04

MAPK3 16 30130126 rs55732507 C 0.437376 �0.15962 1.01E�05 0.125369 Tier 1 9.15E�04

S1PR1 1 1.02Eþ08 rs1922987 C 0.392644 �0.66394 3.88E�05 0.781547 Tier 1 0.003146

SLAMF7 1 1.61Eþ08 rs489286 A 0.32008 0.396246 6.93E�05 0.241083 Tier 1 0.00509

MAP3K11 11 65374039 rs2004649 A 0.440358 0.147259 7.31E�05 0.07623 Tier 1 0.005213

VEGFB 11 64004134 rs7943988 A 0.298211 �0.64641 1.23E�04 0.746483 Tier 1 0.008243

CHEK2 22 29111070 rs134547 G 0.111332 �1.08044 1.96E�04 0.06031 Tier 1 0.01215

NCSTN 1 1.6Eþ08 rs6668576 C 0.486083 0.115574 1.96E�04 0.013308 Tier 1 0.01215

ERBB2 17 37865423 rs1453559 T 0.481113 �1.06676 2.53E�04 0.012659 Tier 1 0.013813

PARP1 1 2.27Eþ08 rs2793379 A 0.164016 0.260005 2.83E�04 0.159161 Tier 1 0.014781

IFNGR2 21 34813428 rs17879003 T 0.141153 0.127669 4.31E�04 0.776412 Tier 1 0.0207

MPO 17 56352756 rs917016 C 0.225646 �0.24996 5.21E�04 0.023533 Tier 1 0.023098

CXCR4 2 1.37Eþ08 rs11897084 A 0.477137 �1.87471 5.39E�04 0.891624 Tier 1 0.023468

HDAC3 5 1.41Eþ08 rs1421896 T 0.417495 0.473559 0.001156 0.707142 Tier 1 0.041839

ABCC2 10 1.02Eþ08 rs2756109 G 0.429423 0.370597 0.001244 0.666814 Tier 1 0.044326

TYMP 22 50966333 rs140522 T 0.32008 �0.17244 3.49E�10 0.962601 Tier 2 1.17E�07

STAT5A 17 40451763 rs6503694 C 0.449304 �1.34492 1.91E�08 0.019111 Tier 2 3.75E�06

NR1H3 11 47280123 rs326222 T 0.302187 �0.22802 2.91E�06 0.112627 Tier 2 3.42E�04

MANBA 4 1.04Eþ08 rs6533034 C 0.332008 0.328618 1.62E�04 0.011624 Tier 2 0.010557

PHOSPHO1 17 47304426 rs6504606 A 0.232604 0.420936 2.14E�04 0.835836 Tier 2 0.012581

EIF2AK3 2 88891676 rs867529 C 0.298211 0.708537 7.88E�04 0.193829 Tier 2 0.031402

GALK1 17 73754733 rs7209235 G 0.294235 �0.29782 8.17E�04 0.011387 Tier 2 0.032039

CDK11B 1 1580538 rs11486028 C 0.44334 0.361917 9.55E�04 0.090301 Tier 2 0.035664

MMEL1 1 2543279 rs10752747 T 0.310139 0.283971 2.08E�14 0.113363 Tier 3A 3.73E�11

FCRL3 1 1.58Eþ08 rs2210913 T 0.474155 �0.12963 1.15E�08 0.094284 Tier 3A 2.46E�06

IL7 8 79652868 rs894221 C 0.285288 �1.52297 7.12E�06 0.115854 Tier 3A 7.28E�04

ACP2 11 47265655 rs2957873 G 0.191849 �0.14897 1.60E�05 0.513203 Tier 3A 0.001345

CD27 12 6557458 rs1059501 G 0.45328 �0.69764 2.21E�04 0.014897 Tier 3A 0.012686

PIK3IP1 22 31683049 rs4820963 C 0.274354 0.119862 7.09E�04 0.154287 Tier 3A 0.029239

AMICA1 11 1.18Eþ08 rs7939622 A 0.200795 �0.15402 9.11E�04 0.068043 Tier 3A 0.03511

GPR25 1 2.01Eþ08 rs296545 A 0.292247 �0.83806 1.54E�09 0.065113 Tier 3B 4.52E�07

CATSPER1 11 65789105 rs56154109 C 0.446322 0.898415 1.75E�06 0.0853 Tier 3B 2.16E�04

CD3D 11 1.18Eþ08 rs17540708 G 0.306163 �0.66788 2.14E�04 0.080303 Tier 3B 0.012581

SLC12A7 5 1081324 rs35188965 C 0.442346 �0.10226 2.43E�04 0.03212 Tier 3B 0.013622

KLHL8 4 88111507 rs10026594 G 0.260437 0.506605 3.65E�04 0.034025 Tier 3B 0.018648

PPIL2 22 22029562 rs2236643 G 0.416501 �0.41586 3.81E�04 0.32388 Tier 3B 0.019028

SLC6A16 19 49810688 rs181344 T 0.296223 0.363643 3.88E�04 0.019443 Tier 3B 0.019028

PGLYRP1 19 46524367 rs11669048 G 0.380716 �0.18954 5.05E�04 0.391924 Tier 3B 0.022837

PLXNC1 12 94621975 rs2306664 T 0.414513 0.729647 7.37E�04 0.069415 Tier 3B 0.029874

PKD2L2 5 1.37Eþ08 rs6871007 C 0.49503 0.560794 0.001109 0.17167 Tier 3B 0.040769

eQTL data are from the eQTLgen consortium. Values <0.01 indicate that the SMR association is driven by linkage rather than by an underlying shared causal variant.

A1: effect allele; Beta SMR: causal estimate for effect of each unit increase in gene expression on multiple sclerosis susceptibility; CHR: chromosome; Druggability tier: tier derived

from Finan et al.; FDR: false discovery rate; Freq: A1 frequency; P HEIDI: P-value for the HEIDI test; Probe BP: position (hg19); P SMR: P-value for SMR association; Q-value: false-dis-

covery rate corrected P-value; Top eQTL: cis-eQTL for gene with smallest P-value for association.
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ponesimod) in reducing relapse rate for relapsing disease

(Cohen et al., 2010; Kappos et al., 2010; Calabresi et al.,

2014) and slowing disability progression for secondary-

progressive disease (Kappos et al., 2018). Four drug

targets had been targeted in trials for at least one auto-

immune disease (excluding multiple sclerosis): IFNGR2,

HDAC3, TYK2 and CD40. Of these targets, only com-

pounds targeting TYK2 had progressed into phase III/IV

trial development. Completed phase III trials have shown

efficacy of TYK2 inhibitors (e.g. tofacitinib) in

Rheumatoid Arthritis (van Vollenhoven et al., 2012),

psoriasis/psoriatic arthropathy (Gladman et al., 2017)

and Ulcerative Colitis (Sandborn et al., 2017). The other

genes prioritized and replicated by the multi-omic SMR

approach—CD40 and PARP1—were not being targeted

by any compounds beyond phase II development. CD40

inhibitors (lucatumumab and dacetuzumab) and PARP1

inhibitors (veliparib, niraparib, talazoparib) were in mul-

tiple phase I and II trials for haematological malignancies.

An anti-CD40L mAb, INX-021, has entered phase I test-

ing in multiple sclerosis.

Discussion
In this report, we combine the latest IMSGC GWAS data

with large mQTL and eQTL datasets and a list of cura-

ted ‘druggable genes’ to provide a data-driven list of 45

prioritized gene products which are possible druggable

targets to mitigate the risk of multiple sclerosis. Three of

these targets—CD40, MERTK and PARP1—have strong

evidence to support a pleiotropic pathway from genetic

Figure 2 Number of SMR-prioritized druggable targets from the analysis of eQTLgen data. Druggability tiers refer to the extent to

which a gene target can or could be targeted by drugs, as expanded in the Materials and methods section.
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variation to CpG site methylation to gene expression to

disease, and are already being targeted by existing com-

pounds at various stages of clinical development. Several

are being investigated in clinical or preclinical studies for

multiple sclerosis and/or autoimmune disorders. It is im-

portant to note that the phenotype examined in the

GWAS used in this study is multiple sclerosis susceptibil-

ity (i.e. a binary disease trait), rather than multiple scler-

osis severity. Thus, our findings should be interpreted as

pointing to biological targets and pathways which could,

in principle, be modulated to affect the risk of developing

multiple sclerosis. While at least some of the pathways

uncovered by this approach may play a role in determin-

ing multiple sclerosis severity, this assumption remains to

be proven.

CD40 is a member of the Tumour Necrosis Factor

superfamily which is constitutively expressed on the cell

surface of specialized antigen-presenting cells such as B

cells and dendritic cells (Aarts et al., 2017). Binding of

CD40 by its ligand, CD40L, initiates diverse signalling

cascades via Tumour Necrosis Factor Receptor-

Associated-Factors culminating in B-cell differentiation,

activation, proliferation and germinal centre formation

(Aarts et al., 2017). CD40L is primarily expressed on

Figure 3 Top eQTL associations with both expression of the gene and multiple sclerosis susceptibility for prioritized

druggable genes. For prioritized druggable genes, the top eQTL associations with both expression of the gene (x) and multiple sclerosis

susceptibility (y) are shown. Both associations are expressed as betas, i.e. the log(OR) of multiple sclerosis susceptibility.
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activated T cells, and the CD40L–CD40 interaction pro-

vides an antigen-specific co-stimulatory signal for propa-

gating the humoral immune response. Several

observations support a pathogenic role for CD40 signal-

ling in multiple sclerosis: CD40L is upregulated in CD4þ

T cells in multiple sclerosis lesions, soluble CD40L (a

secreted ligand for CD40) is upregulated in serum and

CSF of people with active multiple sclerosis, CD40-

expressing mononuclear cells infiltrate the CNS in rodent

experimental autoimmune encephalomyelitis, the density

of CD40 appears higher on B cells from people with

multiple sclerosis (Aarts et al., 2017), and variation at

the CD40 locus is associated with multiple sclerosis

susceptibility (International Multiple Sclerosis Genetics

Consortium, 2019b). The precise mechanism by which

genetic variation at the CD40 locus influences multiple

sclerosis risk is unclear—perhaps counter-intuitively, mul-

tiple sclerosis-associated SNPs are associated with

decreased expression of CD40 mRNA in peripheral blood

and B lymphocyte subsets (Field et al., 2015; Smets

et al., 2018), an effect which is replicated in our study

(BetaSMR �0.50, pSMR ¼ 1.89 � 10�12). In a study of

peripheral blood mononuclear cells from people with

multiple sclerosis and healthy controls, the susceptibility

SNP rs4810485 was associated with both alternative

splicing of CD40 transcripts—with relative upregulation

Figure 4 Top eQTL associations with both expression of the gene and multiple sclerosis susceptibility for prioritized

druggable genes with rsID. As per Fig. 3, but each top eQTL is labelled with rsID.
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of the splice isoform lacking exon 5 leading to lower

cell-surface expression—and with lower levels of the

anti-inflammatory cytokine IL-10 in peripheral blood

(Smets et al., 2018). These data suggest that genetically

determined modulation of CD40 mRNA expression may

promote multiple sclerosis risk via effects of alternatively

spliced transcripts on IL-10 production, although the

exact mechanism remains to be clarified. Monoclonal

antibodies blocking the interaction between CD40L and

CD40 have shown efficacy in rodent and primate

experimental autoimmune encephalomyelitis (Aarts

et al., 2017).

Drug trials of anti-CD40 therapies in humans have

been limited by safety concerns. Early phase II data

showed promising efficacy of an anti-CD40L mAb in

lupus nephritis (Boumpas et al., 2003). Despite phase I

safety of the anti-CD40L antibody, IDEC-131, in multiple

sclerosis, the phase II trial was halted due to increased

Figure 5 Protein–protein interactions among druggable SMR-prioritized genes derived from the STRING database. The

strength of the line indicates the confidence of the interaction.
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Figure 6 Protein–protein interactions among druggable SMR-prioritized genes derived from the STRING database As per Fig. 5, but including

all SMR-prioritized genes, i.e. not restricted to druggable targets.
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risk of thromboembolic disease caused by inhibition of

the thrombus-stabilizing interaction between CD40L and

platelet alpha2, beta3 integrins (André et al., 2002; Aarts

et al., 2017). Subsequently, various strategies have been

deployed to overcome this safety concern. The thrombo-

genicity of CD40L antagonists is dependent on an

Fc-FccRIIa interaction leading to platelet cross-linking

(Robles-Carrillo et al., 2010); development of a

PEGylated monovalent anti-CD40L Fab fragment lacking

an Fc portion appears to have overcome this problem

(Tocoian et al., 2015). A placebo-controlled phase II trial

of dapirolizumab pegol for individuals with Systemic

Lupus Erythematosus has been completed (results pend-

ing; NCT02804763). An anti-CD40L antibody-like mol-

ecule based on a Tn3 protein scaffold has shown phase I

safety and preliminary efficacy in individuals with

Rheumatoid Arthritis (Karnell et al., 2019).

In addition to directly targeting the CD40L–CD40

interaction, it may be beneficial to target downstream sig-

nalling. Upon activation by CD40L, CD40 signals via

nuclear factor kappa-light-chain-enhancer of activated B

cells, phosphoinositide 3-kinases and the mitogen-acti-

vated protein kinases (MAPKs), c-Jun N-terminal kinase

and p38 MAPKs, depending on cellular context (Michel

et al., 2017). The potential utility of drugging the MAPK

signalling pathway is clear from our study, with MAPK3,

MAPK1 and MAP3K11 all prioritized in the primary

analysis. Phosphoproteomic scans of differences in protein

phosphorylation in people with multiple sclerosis have

revealed constitutive high levels of activation of MAPK

signalling in immune cells from people with multiple

sclerosis (Kotelnikova et al., 2019). Inhibitors of MEK1,

a downstream target of MAPK signalling, have been tri-

alled in Rheumatoid Arthritis, Crohn’s disease, psoriasis

and multiple myeloma (Arthur and Ley, 2013).

MERTK is a member of the TAM (Tyro3, Axl and

Mer) family of receptor tyrosine kinases which have mul-

tiple endogenous ligands, and exist in both membrane-

bound and circulating (decoy receptor) forms (Wium

et al., 2018). Upon ligand binding, MERTK signals via

Table 2 Druggable genetic targets associated with multiple sclerosis prioritized by multi-omic SMR

Chromosome Methylation

probe

Ensembl gene ID Gene Druggability

tier

Replicated in

CAGE

20 cg01943874 ENSG00000101017 CD40 Tier 1 Yes

20 cg17929951 ENSG00000101017 CD40 Tier 1 Yes

20 cg19785066 ENSG00000101017 CD40 Tier 1 Yes

20 cg21601405 ENSG00000101017 CD40 Tier 1 Yes

20 cg25239996 ENSG00000101017 CD40 Tier 1 Yes

2 cg04202892 ENSG00000153208 MERTK Tier 1 Yes

2 cg08443563 ENSG00000153208 MERTK Tier 1 Yes

2 cg18646521 ENSG00000153208 MERTK Tier 1 Yes

1 cg23712594 ENSG00000143799 PARP1 Tier 1 Yes

11 cg23844623 ENSG00000025434 NR1H3 Tier 2 Yes

11 cg25783544 ENSG00000025434 NR1H3 Tier 2 Yes

11 cg26365553 ENSG00000025434 NR1H3 Tier 2 Yes

11 cg23844623 ENSG00000134575 ACP2 Tier 3A Yes

11 cg25783544 ENSG00000134575 ACP2 Tier 3A Yes

11 cg26365553 ENSG00000134575 ACP2 Tier 3A Yes

1 cg08786003 ENSG00000160856 FCRL3 Tier 3A Yes

1 cg19602479 ENSG00000160856 FCRL3 Tier 3A Yes

1 cg25259754 ENSG00000160856 FCRL3 Tier 3A Yes

1 cg09808235 ENSG00000142606 MMEL1 Tier 3A Yes

1 cg12750103 ENSG00000142606 MMEL1 Tier 3A Yes

1 cg26783079 ENSG00000142606 MMEL1 Tier 3A Yes

11 cg01637289 ENSG00000167286 CD3D Tier 3B Yes

17 cg09639931 ENSG00000141736 ERBB2 Tier 1 No

11 cg08904394 ENSG00000173511 VEGFB Tier 1 No

22 cg05329888 ENSG00000025708 TYMP Tier 2 No

22 cg09435190 ENSG00000025708 TYMP Tier 2 No

22 cg11654620 ENSG00000025708 TYMP Tier 2 No

22 cg16367976 ENSG00000025708 TYMP Tier 2 No

22 cg22927510 ENSG00000025708 TYMP Tier 2 No

11 cg01637289 ENSG00000160593 AMICA1 Tier 3A No

8 cg01069256 ENSG00000104432 IL7 Tier 3A No

8 cg05575058 ENSG00000104432 IL7 Tier 3A No

11 cg19088912 ENSG00000175294 CATSPER1 Tier 3B No

22 cg03321319 ENSG00000100023 PPIL2 Tier 3B No

22 cg25898577 ENSG00000100023 PPIL2 Tier 3B No

If the association was replicated at all three stages in the CAGE dataset, this is indicated in the final column.

CAGE: Consortium for the Architecture of Gene Expression.
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phosphoinositide 3-kinases/Akt, MAPK and nuclear factor

kappa-light-chain-enhancer of activated B cells pathways,

in addition to several others (Wium et al., 2018).

Physiological roles of MERTK include regulation of

platelet function, inflammation and phagocytosis (Scott

et al., 2001). Disruption of phagocytic clearance of dead

and dying cells is thought to contribute to aberrant ex-

posure of Damage-Associated Molecular Patterns, such as

dsDNA, which may act as a substrate for loss of immune

tolerance to self-antigens and subsequent autoimmunity

(Wium et al., 2018). In addition, MERTK appears to fa-

cilitate astrocytic clearance of synaptic debris in the CNS

(Chung et al., 2013). MERTK is a risk locus in the

IMSGC GWAS (International Multiple Sclerosis Genetics

Consortium, 2019b), with the multiple sclerosis risk-

increasing alleles associated with increased MERTK

expression (BetaSMR 0.19, pSMR 4.92 � 10�8). In cupri-

zone-treated rodents, knockout of the MERTK ligand,

Growth Arrest Specific 6 (Gas6), delays remyelination

and recovery, suggesting that the Gas6-MERTK inter-

action facilitates remyelination (Binder et al., 2008,

2011). In post-mortem tissue, soluble and membrane-

bound MERTK were upregulated in chronic multiple

sclerosis lesions; soluble MERTK was negatively corre-

lated with lesional Gas6 (Weinger et al., 2009). It is

plausible that upregulation of MERTK leads to increased

decoy receptor shedding (depending on metalloproteinase

action) and subsequent inhibition of Gas6 by soluble

MERTK. One study suggested that CSF Gas6 levels may

be elevated in early relapse, but do not differ between

controls and people with multiple sclerosis outside of an

acute relapse (Sainaghi et al., 2013), which may reflect a

homeostatic response to acute demyelination. Small mol-

ecule inhibitors of MERTK have shown efficacy in mouse

models of ALL (Lee-Sherick et al., 2018).

Poly(ADP-ribose) polymerase 1(PARP1) is an intracellu-

lar enzyme which catalyses the transfer of ADP-ribose

groups from NAD to targets such as histones, DNA re-

pair proteins and transcription factors. PARP1 is involved

in DNA repair and the regulation of gene expression. It

also promotes inflammation and innate immune responses

via nuclear factor kappa-light-chain-enhancer of activated

B cells signalling, and may be involved in B-cell differen-

tiation and activation (Rosado et al., 2013). There is

some evidence linking increased PARP1 activity to auto-

immunity. Specific PARP1 haplotypes are associated with

Rheumatoid Arthritis (Pascual et al., 2003). Some, but

not all, experimental autoimmune encephalomyelitis stud-

ies have demonstrated efficacy of PARP1 inhibitors in

limiting disease severity (Rosado et al., 2013). In our

study, surprisingly, the direction of SMR effect implies

that increased PARP1 expression may be protective

against multiple sclerosis (BetaSMR �0.31, 2.95 �
10�195).

Data-driven efforts to prioritize drug targets in multiple

sclerosis using SMR have been limited to date. One study

used older GWAS data and smaller eQTL datasets

(Westra et al., 2013 and CAGE) to prioritize 10 non-ma-

jor histocompatibility complex genes and 20 non-major

histocompatibility complex methylation loci associated

with multiple sclerosis in peripheral blood (Mo et al.,

2019). Our use of larger, more recent datasets, a more le-

nient HEIDI threshold, and a false discovery rate cutoff

rather than a Bonferroni correction is likely to explain

our discovery of a greater number of genes. To our

knowledge, ours is the first attempt to synthesize SMR

with a curated list of druggable targets to prioritize genes

for preventive therapy in multiple sclerosis. Reassuringly,

our list of prioritized druggable genes shares several can-

didates with studies which examined eQTLs in people

with multiple sclerosis, strengthening the argument that

eQTLs are not disease-specific (James et al., 2018).

Furthermore, all of our prioritized ‘Tier 1’ genes were

identified by the IMSGC as likely implicated in disease

using a variety of annotation methods (International

Multiple Sclerosis Genetics Consortium, 2019b).

An important limitation is that our analyses focus on

whole blood, partly because this is the tissue for which

the largest eQTL and mQTL datasets exist. As the genet-

ic determinants of gene expression vary between tissues,

this paper focuses on identifying differentially expressed

genes in blood potentially suitable for preventive interven-

tions. Not only does this miss possible tissue-specific

effects of other genes in multiple sclerosis, it also does

not distinguish between different types of immune cells.

Although multiple sclerosis GWAS hits are primarily

enriched for eQTLs and epigenomic marks of active chro-

matin in various types of immune cells, which are

included in eQTL datasets from peripheral blood, there is

also enrichment in CNS-resident microglia and, at the tis-

sue level, in the thymus (International Multiple Sclerosis

Genetics Consortium, 2019a, b). Our analysis would not

detect cell type-specific effects acting in other tissues (e.g.

CNS and thymus), and cell type-specific effects within

particular leucocyte subsets which are not reflected in

‘averaged’ datasets across multiple cell types. It is likely

that the pathogenesis of multiple sclerosis involves dysre-

gulated signalling in specific subsets of immune cells, and

our work misses this complexity. A useful extension of

our work would be to apply this approach to eQTL

datasets garnered from specific immune cell types. DNA

methylation, like gene expression, is a dynamically regu-

lated process which varies substantially depending on cel-

lular context, and thus we would urge a cautious

interpretation of our methylation results, which exploit

‘snapshot’ mQTL data from healthy individuals to make

inferences about methylation in multiple sclerosis.

A further cell type we explore using eQTL data

(mQTL data are not available) is LCLs, an in vitro

model of EBV-infected B cells. This analysis allows us to

make inferences about genes which may govern multiple

sclerosis susceptibility within EBV-infected B cells. We

prioritize seven genes from this analysis, several of which

have biologically plausible mechanisms linking their
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expression to multiple sclerosis susceptibility. The clearest

of these is TNFRSF14: a herpes virus entry mediator,

which facilitates infection of B lymphocytes by herpes

viruses (e.g. EBV and HHV6) and lies within an multiple

sclerosis risk locus(Blanco-Kelly et al., 2011; International

Multiple Sclerosis Genetics Consortium, 2019b). The rela-

tively weak correlation between SMR signals in LCLs

and whole blood emphasizes the diversity of relationships

between gene expression and phenotype between different

cell types. The importance of multiple sclerosis risk loci

acting within EBV-infected cells is reinforced by evidence

that multiple sclerosis susceptibility SNPs are enriched for

loci influencing EBV copy number and EBV micro-RNA

expression within LCLs (Afrasiabi et al., 2020).

A further limitation of our work is that SMR identifies

genes in which the level of expression is associated with

disease. This is consistent with both vertical pleiotropy—

i.e. a causal pathway—and with horizontal pleiotropy,

whereby the variant may influence disease susceptibility

via a mechanism independent of affecting transcription of

the prioritized gene: SMR is unable to distinguish these

possibilities, and thus we would caution against overinter-

pretation of our results as causal (Zhu et al., 2016).

Moreover, there are many ways whereby gene and pro-

tein function may influence phenotype independently of

levels of gene expression, such as through changes in sub-

cellular localization and post-translational modifications.

In addition, the effect of expression of a single gene is

likely to depend on the overall transcriptional and trans-

lational state of the cell at that point; this complexity is

not captured by considering the expression of individual

genes separately. Furthermore, the curated list of drug-

gable genes does not imply that a gene is necessarily a

sensible target; some prioritized genes with multiple roles

in cell signalling, such as CD40, may be challenging to

target in practice without unacceptable off-target effects.

Lastly, in our analyses we examine the overall effect on

gene expression, not considering individual transcripts.

This approach does not capture the subtle effects of alter-

native transcripts, which recent evidence suggests may be

an important mechanisms by which multiple sclerosis

GWAS loci influence disease susceptibility (Ban et al.,

2020).

In summary, using data-driven Mendelian randomiza-

tion and publicly available datasets, we highlight several

possible drug targets which could be modulated to affect

susceptibility to multiple sclerosis. In particular, we high-

light a central role for the CD40 signalling pathway,

which could be targeted with small molecule compounds

already being trialled for other indications.
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