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The worldwide incidence of skin cutaneous melanoma (SKCM) is increasing at a more

rapid rate than other tumors. Aberrant alternative splicing (AS) is found to be common in

cancer; however, how this process contributes to cancer prognosis still remains largely

unknown. Mutations in RNA-binding proteins (RBPs) may trigger great changes in the

splicing process. In this study, we comprehensively analyzed DNA and RNA sequencing

data and clinical information of SKCM patients, together with widespread changes in

splicing patterns induced by RBP mutations. We screened mRNA expression-related

and prognosis-related mutations in RBPs and investigated the potential affections

of RBP mutations on splicing patterns. Mutations in 853 RBPs were demonstrated

to be correlated with splicing aberrations (p < 0.01). Functional enrichment analysis

revealed that these alternative splicing events (ASEs) may participate in tumor progress

by regulating the modification process, cell-cycle checkpoint, metabolic pathways,

MAPK signaling, PI3K-Akt signaling, and other important pathways in cancer. We also

constructed a prediction model based on overall survival-related AS events (OS-ASEs)

affected by RBP mutations, which exhibited a good predict efficiency with the area under

the curve of 0.989. Our work highlights the importance of RBP mutations in splicing

alterations and provides effective biomarkers for prediction of prognosis of SKCM.
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INTRODUCTION

Skin cutaneous melanoma (SKCM) is the deadliest type of skin cancer, comprising <5% of skin
cancers but accounting for the majority of skin malignancy-induced deaths (1, 2). SKCM patient
survival depends largely on early detection and diagnosis. Assessment and stratification of patients
ahead of clinical therapy aid in identifying individuals with high risk of recurrence or poor survival
outcome and may help to inform clinical decisions or potential targeted therapy strategies.
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Both genetic and epigenetic alterations that interfere with
normal cell physiological function are the fundamental reason
of tumorigenesis (3–7). Alterations in transcriptome provide one
of the biggest possibilities of proteome and molecular diversity
of human cells. Alternative splicing (AS) is a posttranscriptional
regulatory mechanism that transcribes a single form of pre-
mRNA into multiple mature RNA molecules with different
sequences and structures, which exist in almost 95% genes
in human genome and provide large potential for multiple
pathologies including cancer (8–11). Splicing is highly altered
in tumor (12, 13). AS aberrations may lead to transcriptome
variations in some cancer-related genes and in turn impact tumor
progression as well as therapy resistance (14–17). These findings
result in a growing interest in studying the role of aberrant AS in
tumor progression.

ASEs have exhibited great potential to act as a biomarker
for prognosis prediction in several tumor types. Therefore, it
would be desirable to have a better understanding of the AS
events (ASEs) in SKCM, which would provide potential for
the development of novel clinical biomarkers as well as assist
in more effective therapeutic decisions (13, 18). Importantly,
AS is regulated by a number of RNA-binding proteins (RBPs),
mutations of which may trigger widespread splicing aberrations
in downstream spliced genes (19–21). RBPs are a category of
proteins with unique RNA-binding domains and are usually
dysregulated in tumors, which allow them to regulate a large
array of transcript processes (22–26).

It is now clear that either mutations or expression changes
in RBPs along with corresponding AS aberrations potentially
have great value in exploring tumorigenesis and progression.
Mutations or expression changes in splicing regulatory factors
have been described as oncogenic drivers (27, 28) and would
contribute to affecting oncogenic processes (29–31). However,
recent studies focused on SKCM have several limitations: they
only investigate one or a few genes, they lack effective biomarker
identification, they are only reliable to a specific patient specimen,
and there is no comprehensive investigation on how splicing
regulatory factor aberrations contribute to SKCM development
(32–34). There still exists a demand of systematic investigation
on how mutations or expression patterns of RBPs along with
related AS changes contribute to SKCM survival outcomes. Here,
we systematically investigated the DNA and RNA sequencing
data as well as clinical information of SKCM samples obtained
from the Cancer Genome Atlas (TCGA) dataset, combined
with ASE information from TCGA SpliceSeq data, so as to
comprehensively describe the complex network of alterations in
RBPs and their global effects in ASEs.

MATERIALS AND METHODS

Data Collection
Alternative splicing data of 103 SKCM patients were downloaded
from TCGA SpliceSeq (https://bioinformatics.mdanderson.org/
TCGASpliceSeq), a resource for investigating AS patterns in
33 types of human tumor (35). The Percent Spliced In (PSI)
value, which ranges from zero to one, was commonly used to
quantify ASEs. ASEs with PSI values >75% were selected in this

study. Missing values were supplied using “impute” package in
R (36–38). ASEs with PSI average < 0.05 or standard deviation
< 0.01 were removed. ASE was named as the combination of
gene symbol, splicing type, and splicing ID number. DNA-seq
data, RNA-seq data, and clinical information were obtained from
the TCGA data portal (https://portal.gdc.cancer.gov/repository).
Samples with follow-up time of<90 days were removed from the
following study. Information of 1350 RBPs was obtained from a
previous study (Supplementary Table 1) (39).

Alternative Splicing Events
After processing the alternative splicing data according to the
method described above, a total of 26,919 ASEs in 103 SKCM
samples were included in our study. There are seven types
of alternative splicing events (ASE), including 2,332 alternate
acceptor site events (AA), 2,056 alternate donor site events (AD),
5,126 alternate promoter events (AP), 5,096 alternate terminator
events (AT), 1,0304 exon skip events (ES), 103 mutually exclusive
exons events (ME), and 1,902 retained intron events (RI). The
Percent Spliced In (PSI) value, a common value for quantifying
ASEs, ranged from zero to one.

Mutation Analysis
Samples with both RBP mutation data and AS information were
selected in the study. The frequencies of somatic mutations were
calculated for each RBPs, and the correlation between mutations
and PSI value of ASEs was tested using the Wilcoxon–Mann–
Whitney test (p < 0.01). The waterfall plots were built using the
“GenomeInfoDbData” and “GenVisR” package in R. The balloon
plot was visualized using the “ggpubr” and “ggplot2” package.
The Upset plot was constructed with the “UpSetR” package in R.

RBP Mutations and Differential Expression
Differential expression was analyzed between samples with
or without RBP mutations. The Wilcoxon–Mann–Whitney
test was applied for estimating the correlations between
RBP mutations and mRNA expression alterations, and RBPs
were considered differentially expressed if p-value < 0.05.
The association between RBPs with mRNA expression-
related mutations and PSI value of ASEs was evaluated
using Pearson correlation analysis; outcomes with |Cor|>0.5
and p < 0.05 were regarded as significant correlation.
The bubble plots were visualized using “ggplot2” package
in R.

RBP Mutations and Prognosis Analysis
The association between RBP mutations and prognosis of SKCM
were investigated using Kaplan–Meier survival estimate analysis.
A total of 177 samples with both clinical information and
DNA sequencing data were selected in study. The analyses
were realized using “survival” package in R, and significant
correlations were identified with p < 0.05.

Protein–Protein Interaction Network and
Functional Enrichment Analysis
The spliced genes of most significant ASEs (p < 1.00E-05)
were input to the String database (https://string-db.org/), and
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FIGURE 1 | Flow diagram of the research methodology. RBP, RNA-binding protein; ASE, alternative splicing event; SF, splicing factor; PPI, protein–protein interaction.

the highest confidence (0.9) was chosen for confirming the
interactions. The protein–protein interaction (PPI) network
was visualized using Cytoscape. Gene Ontology (GO) analysis
was investigated using the “clusterProfiler” package in R, and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis was performed in KOBAs (40), with a criterion
of adjusted P-value of < 0.05. The results are shown in
bar plots.

Identification of OS-ASEs
Survival information of SKCM patients was obtained from
TCGA. Univariable Cox regression analysis was performed to
evaluate the prognostic value of every ASE, and events with
p-value < 0.05 were identified as OS-ASEs. The Upset plot
was constructed to visualize the quantitative analysis of the
intersections of seven types of ASEs. A volcano plot showed
the overview of survival-related and unrelated ASEs. The most
significant OS-ASEs of each type of ASEs are displayed in bubble
plots described above. Pearson correlation analysis was used to
test the correlation between RBP expression and PSIs of OS-
ASEs; the correlation network was built based on the outcomes
with |Cor|>0.6 and p < 0.05.

Construction of Prediction Model Based on
OS-ASEs
OS-ASEs were firstly screened by the least absolute shrinkage
and selection operator (LASSO) regression analysis, and then
multivariate Cox regression analysis was performed to screen
the significant prognostic OS-ASEs and build the prediction
model. The area under the curve (AUC) value under the
receiver operator characteristic (ROC) curve was calculated
using the “survivalROC” package in R, which was used to
evaluate the prognosis predictive efficiencies. Samples were
then divided into high-risk and low-risk groups according to
the median risk score calculated by our prediction model.
Kaplan–Meier survival analyses were used for evaluating the
prognostic efficiency of different prognostic indexes (PIs) in
high- and low-risk patients. The analysis was proceeded with
the “survival” package, and survival curves were plotted using
the “survminer” package in R. Heatmap was visualized using
the “pheatmap” package. Univariate Cox regression analysis
and multivariate Cox regression analysis were applied to
evaluate the prognosis value of risk factors including risk
score quartiles, age, gender, tumor stage, and TMN stage
in overall survival of SKCM patients. Factors with HR>1
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FIGURE 2 | RBP mutations triggered splicing event alterations. (A) Among the 853 RBPs whose mutations showed significant correlations with aberrant ASEs

(Wilcoxon test P-values < 0.01). The mutation situations of the top 50 RBPs with the highest mutant frequency were exhibited. The y-axis represents each RBP and

sorted by mutation frequency. The x-axis stands for different SKCM samples. The color indicates different mutation types. The bar plot above represents the mutation

frequency with synonymous (red) and non-synonymous (blue) translational effects for each SKCM patient. (B) Upset plot of each splicing pattern affected by RBP

(Continued)
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FIGURE 2 | mutations. The black bar on the left side indicates the event number of specific splicing type, and the red dots on the right side represent the intersections

of ASEs. (C) Distribution of seven types of ASEs and their corresponding genes. The x-axis represents each kind of ASEs (AA, AD, AP, AT, ES, ME, RI), and the y-axis

represents the number of ASEs (red) or the corresponding spliced genes (blue). (D) Overview of splicing events per RBP with the highest mutation frequency. The color

intensity indicates the occurrence frequency of each splicing pattern, and the above histogram represented the counts of ASEs affected by corresponding RBPs.

FIGURE 3 | RBP mutations induced mRNA expression alterations. (A) A total of 91 RBPs exhibit significant different mRNA expression levels induced by mutations

(Wilcoxon test P-values < 0.05). The left and right panels indicate the up- and downregulation of the mRNA expression level of tested RBPs. The circle size

corresponds to the mutation frequency of SKCM samples. (B) Upset plot showed splicing alterations induced by mRNA expression-associated RBP mutations. The

black bar on the left represents the counts of different splicing patterns, while the red dots and lines on the right indicate the intersections of ASEs. (C) Bar graph

represents the number of each splicing type as well as corresponding spliced genes. (D) Distribution of splicing events per RBP with mRNA expression-affecting

mutations. The color intensity indicates the occurrence counts of each type of ASEs.
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FIGURE 4 | RBP mutations correlated with SKCM prognosis. (A) A total of 43 RBPs were demonstrated to carry prognosis-associated mutations (Kruskal–Wallis H

test P-values < 0.05). The y-axis represents each RBP and sorted by mutation frequency. The x-axis stands for different SKCM samples. The color indicates different

mutation type. The bar plot above represents the mutation frequency with synonymous (red) and non-synonymous (blue) translational effects of each sample.

(B) High-risk factors (right panel) and low-risk factors (left panel) of prognosis-related RBP mutations. The circle size stands for count of samples with mutations.
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FIGURE 5 | Construction of the protein–protein interaction network and functional enrichment analysis. (A) Protein–protein interaction network of spliced genes

affected by RBP mutations. Red dots represent each spliced gene. Line thickness represents the strength of interaction. (B–E) GO and KEGG analysis outcomes of

RBPs and spliced genes. The top 20 most significant enriched pathways were exhibited in a bar plot. (B,C) Enriched pathways in GO analysis, (B) KEGG analysis,

and (C) spliced genes regulated by RBPs. (D,E) GO, (D) KEGG, and (E) enrichment analysis outcomes of RBPs.
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or <1 were identified as high- and low-risk factors (p <

0.05), respectively.

RESULTS

Splicing Alterations Driven by RBP
Mutations in SKCM
The overall analysis process is presented in Figure 1. We
first systematically investigated the splicing process alterations
induced by RBP mutations. DNA sequence data of 467 SKCM
patients were downloaded from TCGA, while ASE information
of 103 SKCM samples was obtained from TCGA SpliceSeq data.
The mutant situations of 1,350 known and predicted RBPs were

studied in 467 SKCM samples, 452 of which were found to carry
mutations in RBPs. Mutant situations of the top 50 RBPs with
the highest mutation frequency were exhibited using a waterfall
plot (Figure 2A). The mutant information was then combined
with the Percent Spliced In (PSI) value of ASEs and applied to
the Wilcoxon–Mann–Whitney test. As a result, mutations in 853
RBPs were found to be obviously correlated with 19748 different
ASEs (Supplementary Table 2), including 1,655 AAs in 1,334
genes, 1,478 ADs in 1,161 genes, 3,681 APs in 2,280 genes, 3,665
ATs in 2,206 genes, 7,802 ESs in 4,178 genes, 85 MEs in 84
genes, and 1,382 RIs in 1,042 genes (Figures 2B,C). The top 50
RBPs with the highest mutation frequency and the corresponding
ASEs of each splicing pattern are shown in Figure 2D. The above

FIGURE 6 | Overview of OS-ASEs affected by mRNA expression-related RBP mutations. (A) The volcano plot of all the ASEs. The red and blue dots represent

OS-related and insignificant ASEs, respectively. (B) Upset plot of each type of OS-ASEs in SKCM. The black bar on the left side indicates the number of specific types

of ASEs, while the red dots on the right side stand for the splicing intersections. (C) Distribution of seven types of ASEs and their corresponding genes. The x-axis

represents each kind of ASEs (AA, AD, AP, AT, ES, RI), and the y-axis represents the number of ASEs (red) as well as the corresponding genes (blue). (D–J) Bubble

plot of the most significant OS-ASEs in SKCM. (D) AA; (E) AD; (F) AP; (G) AT; (H) ES; (I) ME; (J) RI. The x-axis represents the z-score of each type of ASEs, while the

y-axis stands for the OS-ASEs.
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FIGURE 7 | Correlation network of RBPs and OS-ASEs. The yellow dots represent RBPs. The blue and red dots indicate OS-ASEs that have been negatively

regulated or positively regulated by the corresponding RBPs. The blue and red lines represent the existence of negative or positive regulation effects.

results indicated that RBPmutations were significantly correlated
with extensive AS alterations in SKCM.

RBP Mutation-Induced mRNA Expression
Alterations
We also investigated whether the aberrant splicing process
driven by RBP mutations occurred as a consequence of
mRNA expression alterations of RBPs. To screen out
mutations in RBPs that altered the mRNA expression level,
we combined DNA and RNA sequencing data downloaded
from TCGA and analyzed. As a result, a total of 91 RBPs
exhibited a significant differential expression between wild
and mutant genotypes (Supplementary Table 3). In more
details, RBPs with upregulated and downregulated mRNA
expression levels in mutant samples compared to wild type were
exhibited, respectively (Figure 3A). The overview of mutation
situations of 91 RBPs in 292 SKCM samples were visualized
(Supplementary Figure 1).

Then, we excavated the splicing alterations that may occur as
a consequence of expression-associated RBPmutations described
above. The association between 91 RBP and PSI values of
ASEs was tested in 103 SKCM samples (Supplementary Table 4).
Significant associations were found in 1728 ASEs |Cor|>0.5, p <

0.05), including 74 AAs in 71 genes, 66 ADs in 64 genes, 422
APs in 270 genes, 728 ATs in 470 genes, 225 ESs in 204 genes,
4 MEs in 4 genes, and 209 RIs in 185 genes (Figures 3B,C). This
result indicated that a single gene can undergo multiple types of
ASEs. Besides, among seven types of ASEs, the incidence of AT
was most frequently followed by AP, while the rarest type wasME
events. The detailed regulatory network of each RBPs on different
splicing pattern is exhibited in Figure 3D.

Collectively, the above results indicated that RBP genotypes
are frequently altered in SKCM tumors and may contribute

to affecting the mRNA expression, which was consistent with
previous researches focused on other human tumors (39).
The expression-associated RBP mutations discovered in this
study and their affecting ASEs provide new information about
RBP mutations with a potential role in physiological function
regulation of SKCM.

RBP Mutations Associate With Survival
Outcome of SKCM Patients
To further define whether mutations in RBPs could
influence the survival outcomes of SKCM patients, the DNA
sequencing data of 1,350 RBPs and clinical information of
177 SKCM patients with RBP mutations were combined and
analyzed. By taking the Kaplan–Meier test, 43 RBPs were
demonstrated to carry prognosis-associated mutations (p <

0.05) (Supplementary Table 5). The clinical information and
mutant situations of 43 RBPs are exhibited in Figure 4A. Among
the 43 significant RBPs, mutations in 5 RBPs were regarded
as high-risk factors (green dots), and for the rest of the 38
RBPs, the mutant type showed a lower-risk grade (yellow dots)
(Figure 4B). In summary, mutations in the above 43 RBPs were
found to have a significant correlation with the overall survival
of SKCM patients, which indicated a promising efficiency of RBP
mutations in prognosis prediction.

Functional Enrichment Analysis and
Protein–Protein Interaction (PPI) Network
of ASEs
We then tried to investigate the potential mechanism following
the alterations of relevant spliced genes as well as their
encoding proteins. There were 19,748 ASEs in 7,776 parent
genes that showed a close correlation with RBP mutations
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(Supplementary Table 2, p < 0.01). The protein–protein
interaction (PPI) network was investigated among the spliced
genes of most significant ASEs (p < 1.00E-05). The network
was built using the String database and visualized in Cytoscape
(Figure 5A). To further reveal the molecular process and
biological function mediated by the spliced genes, GO and
KEGG enrichment analyses were applied to reveal their
enriching pathways. GO analysis revealed the significant
enrichment in the process of “covalent chromatin modification,”
“histone modification,” “peptidyl-lysine modification,” “cell
cycle checkpoint,” “DNA metabolic,” etc. (Figure 5B). As for the

KEGG terms, several significant enriched pathways were closely
related to tumor progress, like “metabolic pathways,” “pathways
in cancer,” “MAPK signaling pathway,” and “PI3K-Akt signaling
pathway” (Figure 5C). In summary, the above enrichment
results revealed that these ASEs may have an essential role in
the biological process and tumorigenesis of SKCM patients,
by regulating the modification process, cell-cycle checkpoint,
metabolic, and other cancer-related pathways.

In addition, we also made a comparison between the
enrichment outcomes of RBPs and spliced genes regulated by
these RBPs. The top 20 most significant enriched pathways of

FIGURE 8 | Prognostic model based on all types of OS-ASEs. (A) Cross-validation for tuning parameter selection in the proportional hazard model. (B) LASSO

regression analysis for screening coefficients in all types of OS-ASEs. (C) The ROC curves for evaluating the efficiency of the prognostic model. (D) The risk curve of

93 SKCM patients matched with intact follow-up data. (E) The scatter plots of SKCM samples. The red and green plots represent alive and death endpoints,

respectively. (F) Kaplan–Meier overall survival curves based on all types of OS-ASEs. The numbers of patients in the high-risk and low-risk groups at different survival

times are listed at the bottom panel, respectively. (G) The heatmap of 10 OS-ASEs selected by LASSO regression analysis.
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GO and KEGG analysis were listed. RBPs are mostly enriched
in RNA splicing or other RNA-related process (Figures 5D,E),
which is quite different from the spliced genes described above.
The separate GO analysis results (cellular component, CC;
biological process, BP; molecular function, MF) of spliced genes
and RBPs were offered in Supplementary Figures 2, 3. These
results indicated that RBPs and their corresponding spliced
genes exhibited obvious differences in biological function and
regulatory network.

Identification of OS-ASEs and
Construction of the Correlation Network
Univariable COX regression analysis was then performed to
investigate all the overall survival-related ASEs (OS-ASEs)
affected by RBP mutations (Supplementary Table 6). According
to the volcano plot, a total of 919 OS-ASEs in 757 parent
genes were identified as prognosis-associated ASEs (p < 0.05)
(Figure 6A), which included 75 AAs in 74 genes, 86 ADs in 80
genes, 212 APs in 163 genes, 176 ATs in 122 genes, 320 ESs in 301
genes, 2 MEs in 2 genes, and 48 RIs in 47 genes (Figures 6B,C).
ES was the most common splicing type associated with overall
survival of SKCM patients (Figure 6C). The most significant OS-
ASEs in each type of splicing patterns are shown in bubble plots
(Figures 6D–J). We also constructed the splicing-regulatory
network of these OS-ASEs and corresponding RBPs. The
correlation network was visualized in Cytoscape. The positively
regulatory (red lines, red dots) and negatively regulatory (blue
lines, blue dots) relations were exhibited, respectively (Figure 7).

Prediction Model Establishment Based on
All Types of OS-ASEs
LASSO regression analysis and multivariate Cox regression
analysis were then performed to construct a prognostic
model based on all types of OS-ASEs that are influenced by
RBP mutations, among which 10 OS-ASEs were selected as
candidate predict factors (Figures 8A,B). As shown in Table 1,
MTMR14-63114-ES, BATF2-16723-AP, and EXOC6-12541-AP
were identified as a high-risk factor (HR>1), while the rest
7 ASEs indicated good prognosis (HR<1) (Table 1). The
prediction efficiency was evaluated by building the ROC curve,
and the AUC value was 0.989, indicating an obviously credible
prediction efficiency (Figure 8C). Then, the risk score of each
SKCM patient was calculated based on the prediction model and
the medium cutoff value was applied to divide patients into high-
risk and low-risk groups (Figures 8D,E). Kaplan–Meier survival
analyses indicated that SKCM patients in the low-risk groups
exhibited a significant better survival compared with those in
the high-risk group (p = 6.843E-08) (Figure 8F). The heatmap
exhibited the expression’s situation of OS-ASEs in the final
prognostic model (Figure 8G).

We also constructed a prediction model based on
RBP mutations to determine the prognosis value of
RBPs themselves instead of their affections on ASEs
(Supplementary Figure 4). Mutations in 13 RBPs were
selected in this model (Supplementary Figures 4A,B;
Supplementary Table 7), and the AUC value under the

TABLE 1 | Prognostic signature based on OS-ASEs.

ID Coef HR 95% CI_L 95% CI_H P-value

MTMR14|63114|ES 11.154 6.98E+04 1.25E+01 3.91E+08 1.13E-02

BATF2|16723|AP 4.800 1.22E+02 4.20E+00 3.52E+03 5.19E-03

ME1|76870|ES −61.790 1.46E-27 8.46E-42 2.53E-13 2.21E-04

URI1|48867|ES −8.157 2.87E-04 7.73E-07 1.06E-01 6.89E-03

ITGB1BP1|52620|ES −56.070 4.46E-25 1.84E-38 1.08E-11 3.62E-04

DNM2|47584|AA −7.986 3.40E-04 4.24E-07 2.73E-01 1.92E-02

EXOC6|12541|AP 5.652 2.85E+02 3.00E+00 2.71E+04 1.50E-02

OSCP1|1775|AP −33.112 4.17E-15 3.95E-28 4.39E-02 3.04E-02

ING2|71271|AP −3.577 2.80E-02 3.11E-04 2.52E+00 1.19E-01

ZNF83|51481|AT −4.202 1.50E-02 1.12E-04 2.00E+00 9.25E-02

CI, confidence interval; Coef, coefficient; HR, hazard ratio.

ROC curve was 0.527 (Supplementary Figure 4C). This result
indicated that mutations in RBPs affect SKCM progression and
outcome mostly through regulating downstream ASEs instead
of themselves.

Cox Regression Analysis of
Prognosis-Related Clinical Features
As there were several other risk factors that may contribute to
the prognosis of SKCM patients, we next performed univariate
and multivariate Cox regression analyses to further evaluate the
prognosis value of risk scores calculated by our prediction model
and other risk factors including age, gender, tumor stage, and
TMN stage. According to the univariate Cox regression analysis
result, both tumor stage (HR=2.801, P = 0.019, 95% CI: 1.187–
6.612), M stage (HR= 10.173, P= 0.003, 95% CI: 2.178–47.517),
and risk score quartiles based on ASEs (HR=13.637, P= 1.517E-
04, 95% CI: 3.529–52.695) are regarded as high-risk factors in
terms of SKCM prognosis (Figure 9A). As for the multivariate
Cox regression analysis, risk score quartiles based on ASEs is
the only significant high-risk factors to SKCM patients’ outcome
(HR=15.288, P= 1.303E-04, 95% CI: 3.781–61.810) (Figure 9B).
This result further corroborated that the risk score calculated
by our predict model is an independent risk factor of SKCM
patients’ prognosis.

DISCUSSION

SKCM is one of the deadliest types of cancer with an
increasingly annual morbidity and mortality rate (41, 42).
Major etiological factors contributed to SKCM development
including UV radiation, skin pigmentation reduction, nevus
density increase, immunosuppression, family history, and genetic
susceptibility (43, 44). Though previous studies have identified
several biomarkers, efficient diagnostic and prognostic indicators
are still lacking (45, 46).

In recent years, remarkable advances have been made
in prognostic biomarker identification in SKCM. Except the
conventional tissue-based markers such as Breslow thickness
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FIGURE 9 | Cox regression analysis of prognosis-related clinical features and OS-ASEs. (A) Univariate Cox regression analysis and (B) multivariate Cox regression

analysis.

(47, 48), ulceration (47, 49, 50), mitotic rate (47, 51), tumor-
infiltrating lymphocytes (52, 53), lymphatic and vascular invasion
(51, 54), a great amount of research effort has been made
to explore molecular biomarkers with efficient prognostic
implication. Candidates including S100B (55, 56), ki-67 (57),
metallothioneins (MTs) (58–60), and lactate dehydrogenase
(LDH) were repeatedly demonstrated to associate with poor
clinical outcomes of SKCM patients. Genetic biomarkers such
as specific mutations in BRAF and NRAS were also considered
to have prognostic implication in SKCM (61–63). Besides,
considering the limitations in sensitivity and specificity of
individual biomarkers, multi-marker arrays also gained extensive
attention and several biomarker panels have been proposed (64–
66). It is clear that the discovery of predict biomarkers of SKCM
has been evaluated with positive results; however, challenges
still remained. Conflicting results are wildly reported, and few
of these biomarkers have been proven to be clinically useful
or only reliable to a particular group of SKCM patients (67–
70). Therefore, currently there still exists strong demand of
SKCM prognostic biomarkers that provide guidance to SKCM
patient management.

Almost all the multi-exon genes undergo alternative splicing
(71, 72). Alternative splicing refers to a biological process
that transforms a single pre-mRNA to multiple splice isoforms
and finally leads to different or antagonistic functional as well
as structural characteristics of protein products or results in
different phenotypes due to alternating expression levels of
the spliced genes (73, 74). Currently, an increasing number
of evidences have been proposed to regard the alternative
splicing as an effective indicator of carcinogenic processes (9,
29, 39, 75–79). Zhang et al. revealed that U2AF2 can enhance
melanoma migration and cancer aggressiveness by facilitating
CD44v8-10 alternative splicing, an isoform switch required for
tumor prognostic and metastases (80). Besides, Liu et al. found
that JMJD6 can regulate the alternative splicing of a critical
component of the MAPK signal pathway, PAK1, and thereby
promoting melanoma carcinogenesis (33). However, although
some specific correlations between ASEs and melanoma have

been identified, the exploration and prognostic signatures were
developed only based on splicing events (32). The understanding
and exploration of alternative splicing in SKCM are still far
from enough.

ASEs were mostly regulated by a series of RBPs, whose
mutations may contribute to many of AS alterations observed
in cancer (39). In the past few years, increasing researches have
revealed the significant role of RBP mutations in prognosis
prediction inmultiple cancer types (22, 39, 77, 81–83), while their
role in SKCMprognosis has not been discussed yet. To determine
the underlying mechanism, we deeply investigated the potential
regulatory associations between RBP mutations and ASEs, so as
to provide insight into the phenotype changes of ASEs in SKCM
and contribute to precision treatment. We integrated the DNA-
seq and RNA-seq data as well as clinical information obtained
from TCGA, and ASE information from TCGA SpliceSeq. We
then systematically investigated RBP mutations that correlated
with mRNA expression, overall survival, and ASEs, as well as
the overall situation, interaction network, and enriched pathways
of related spliced genes. We also constructed predicted models
based on different types of OS-ASEs, which offered us a potential
intervention target for clinical SKCM treatment.

In our study, 19,748 ASEs were identified to associate with
RBP mutations. Functional analysis of spliced genes revealed
the enrichment in several important biological processes like
modification process, cell-cycle checkpoint, DNA metabolism,
MAPK signaling, and PI3K-Akt signaling. The correlation
network between splicing factors and OS-ASEs was also
constructed to highlight the genetic mechanism. In addition,
in order to construct a prediction model and evaluate the
prediction value of ASEs, LASSO regression analysis was applied
to screen the prediction factors and AUC value under the
ROC curves were calculated to evaluate the predict efficiency.
The final prediction model based on all types of ASEs
consists of 10 spliced events, including MTMR14-63114-ES,
BATF2-16723-AP, ME1-76870-ES, URI1-48867-ES, ITGB1BP1-
52620-ES, DNM2-47584-AA, EXOC6-12541-AP, OSCP1-1775-
AP, ING2-71271-AP, and ZNF83-51481-AT. The risk scores
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were calculated for each SKCM patient by taking LASSO and
multivariate Cox regression analysis of PSI values of OS-
ASEs, and the subsequent risk stratification by risk scores
enabled the satisfactory differentiation of SKCM patients
with different survival outcomes. It is noteworthy that this
prediction model based on all types of OS-ASEs exhibits
an admirable prediction ability, with the AUC value of
0.989, which is much more significant than the previous
study (32).

According to our research, we revealed a novel network
between RBPs and alternative splicing changes in SKCM
that provide sufficient resources of information to understand
the molecular mechanism of, and potentially reverse, the
tumorigenesis and survival outcomes. One core implication
of our research for SKCM prognostic and clinical studies is
to expand the functional effects of genetic and epigenetic
alterations into changes included in the AS process of genes
involved in tumor-related pathways. The prognostic model
constructed in our study possessed a high performance for
risk stratification in SKCM, which was promising in predicting
survival outcome and helping to apply more appropriate
treatment regimens to different SKCM patients. Besides, given
the high prevalence of splicing defects in tumor, several small
molecule modulators targeting RNA processing have been
explored and exhibited promising therapeutic effects in tumor
treatment (84). Our study also provides potential targets for
SKCM treatment. Certainly, more researches concerning the
molecular mechanism of significant RBP mutations on AS
regulation are needed in the future. Functional investigations and
biological experiments focused on the significance of ASEs, and
how these aberrant procedures affect critical cancer pathways
may provide novel therapeutic targets for SKCM treatment and
improve survival outcomes.

In conclusion, our research described a comprehensive
landscape of aberrant alternative splicing and its regulation
in SKCM. We focused on the executors of splicing procedure,
as well as systematic analysis mutation and gene expression
patterns of 1,350 RBP genes. We also constructed a network to
exhibit the potential correlation between RBPs and relevant
ASEs. Furthermore, we identify enrichment of tumor-
critical pathways among the spliced genes. The prediction
model constructed in this study enabled the satisfactory
differentiation of overall survival and provided a better
guidance for clinical decisions and prognosis prediction of
SKCM patients.
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Supplementary Figure 1 | Waterfall plot of 91 RBPs with mRNA

expression-affected mutations.

Supplementary Figure 2 | GO analysis of spliced genes regulated by RBP

mutations. (A) Cellular component; (B) biological process; (C) molecular function.

The x-axis stands for the gene ratio (the proportion of genes participated in each

pathway) and the y-axis represents the name of pathways.

Supplementary Figure 3 | GO analysis of 1350 RBPs. (A) Cellular component;

(B) biological process; (C) molecular function. The x-axis stands for the gene ratio

and the y-axis indicates the pathway names.

Supplementary Figure 4 | Prognostic model based on 1350 RBPs. (A) LASSO

regression path plot for building predict model and calculating coefficients; (B)

LASSO coefficient profiles based on all types of OS-ASEs; (C) construction of

ROC curves to evaluate the predict efficiency.

Supplementary Table 1 | Gene list of 1350 known and predict RNA binding

proteins (RBPs).

Supplementary Table 2 | RBPs mutations induced splicing alterations. The left

table lists all the splicing events affect by RBP mutations (Splicing_event) as well

as their corresponding RBPs (RBP). It also provides the corresponding p-value

(p-value) of each splicing event. The right table lists the occurrence frequency of

different splicing patterns and their parent genes.

Supplementary Table 3 | Information of 91 RBPs selected by Wilcoxon

Mann-Whitney test. The table includes the list of 91 RBPs (RBP), corresponding

p-value (p.value) and the percentage of mutant samples (Mut_ratio). It also

provides the sample size (Mut_count/Wild_count) and the median of mRNA

expression (Wild_med/Mut_med) of wild and mutant samples, respectively.

Supplementary Table 4 | Corresponding splicing events regulated by 91 RBPs.

In the left table, a total of 1,728 splicing events in 1,268 parent genes were

identified using Pearson correlation test. The information of each RBPs and their

related splicing events were listed, and the Pearson correlation coefficient (Cor)

and p.value were also provided in this table. “Positive” and “negative” in column

Reg. indicated “positive regulation and “negative regulation,” respectively. The

occurrence frequency of each types of splicing event and their parent genes were

listed in the right table.

Supplementary Table 5 | Kaplan-Meier test result of 45 significant RBPs. RBP

mutations that potentially affect the survival outcomes of SKCM patients were
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selected by Kaplan-Meier test. The p-value, hazard ratio (HR), 95% confidence

interval (95% CI) of each RBP were listed.

Supplementary Table 6 | Survival-related splicing events selected by Lasso

regression. Among the 19748 splicing events affected by RBP mutations, a total

of 919 splicing events were identified to be correlated with the overall survival of

SKCM patients using Lasso regression. The Z_score (Cor), hazard ratio (HR), 95%

confidence interval (95%CI_L and 95%CI_H, respectively) and p-value were listed

in the left table. The occurrence frequency of each types of splicing event and their

parent genes were listed in the right table.

Supplementary Table 7 | Construction of predict model based on RBP

mutations. RBP mutations were selected by Lasso regression. A total of 13 RBPs

were selected into the predict model using multivariate Cox regression analysis.

The coefficient (Coef), hazard ratio (HR), 95% confidence interval (95%CI_L and

95%CI_H, respectively) and p-value were listed.
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