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Introduction
Alzheimer’s disease (AD) is the most prevalent form of demen-
tia, and is expected to rise precipitously with an increasingly 
aging population.1,2 Unfortunately, treatments that prevent or 
slow the progression of AD are lacking, likely secondary to an 
incomplete understanding of AD pathogenesis. The etiology of 
AD is multifactorial, with contributions including genetic risk 
polymorphisms,3 lifestyle and dietary factors,4 and advancing 
age, among others.5 Although the hallmark neuropathological 
changes in AD include intracellular accumulation of hyperphos-
phorylated tau (p-tau), all forms of AD also exhibit overproduc-
tion and/or reduced clearance of amyloid-beta (Aβ).6 Therefore, 
one of the prominent signs of AD is the excess formation of 
diffuse senile plaques, composed of both aggregating and non-
aggregating Aβ derived from endoproteolytic cleavage of the Aβ 
precursor protein (APP) by beta- and gamma-secretase.

Interestingly, acquired risk factors for AD include numerous 
factors associated with the metabolic syndrome (hypertension, 
dyslipidemia, cerebro- and cardiovascular disease, and insulin 
resistance and Type 2 diabetes [T2D]).7,8 Patients with ⩾ 2 vas-
cular risk factors in midlife have a threefold higher risk of brain 
Aβ deposition later in life9; and T2D, which is closely linked with 
obesity,10 has long been associated with a higher risk of cognitive 
decline and AD.11–21 Obesity-related comorbidities have impor-
tant effects on Aβ production and deposition, underscoring the 
importance of better elucidating their role in AD pathogenesis. 

Yet, despite the large impact that AD has on individuals, families, 
society, and the health care system,1 the underlying mechanisms 
connecting obesity and AD remain largely unknown.

Potential mechanism(s) linking excess adiposity, 
insulin resistance, and AD risk
The role of insulin and insulin signaling in AD

One potential reason for the connection between dysregulated 
metabolism and AD is that insulin has direct effects on neuro-
transmission and neuropathology in the brain,22–25 including 
alterations in the production, degradation and clearance of Aβ 
that subsequently lead to plaque deposition.26 Raising peripheral 
insulin levels acutely elevates brain and cerebrospinal fluid (CSF) 
insulin levels,27 as illustrated by the finding that peripheral intra-
venous infusion of different concentrations of insulin in 8 normal, 
lean subjects over 4.5 hours not only increased mean plasma con-
centrations of insulin (12 ± 1.2 to 268 ± 35 μU/ml), but CSF 
insulin levels as well (0.9 ± 0.1 to 2.8 ± 0.4 μU/ml) (P < .006). 
In contrast, prolonged peripheral hyperinsulinemia (as seen in 
obesity and T2D) down-regulates blood-brain barrier (BBB) 
insulin receptors and reduces insulin transport into the brain.28 In 
obese Zucker rats, Stanley et al observed a 65% reduction in brain 
capillary insulin binding sites compared to controls, with the 
degree of insulin binding negatively correlating with circulating 
plasma insulin levels (P < .05).29 However, data supporting this 
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contention in humans is limited and oftentimes conflicting.29 In 
the sole study reporting brain insulin protein levels in AD 
patients, there was an equivalent decrease in both AD patients 
and age-matched controls, suggesting that the lower insulin pro-
tein levels may be related to aging, and not AD pathology per 
se.30 Yet, 2 other studies reported significant reductions in insulin 
mRNA gene expression in age-matched AD patients.31,32

Patients with mild cognitive impairment (MCI) and AD 
also have documented dysregulation in central nervous system 
(CNS) insulin signaling. This is evident in postmortem brain 
samples, even in the absence of diabetes, including decreased 
phosphorylation of protein kinase B (Akt) and reduced activa-
tion of phosphoinositide 3-kinase (PI3K),32–34 key factors in the 
canonical insulin signaling pathway.35 Inhibiting PI3K activity 
increases Aβ production, and restoring proper signaling, even 
peripherally, leads to reduced amyloid deposition.36 As a result 
of these conflicting findings, a better understanding of insulin’s 
effects in the human brain is needed, particularly accounting for 
the severity of AD and relative to age-matched controls.

There have been numerous studies suggesting that periph-
eral hyperinsulinemia also alters the risk of AD via its effects 
on degradation and/or clearance of Aβ. In the CNS, insulin 
and Aβ are degraded by insulin degrading enzymes (IDEs); 
and with elevated insulin levels, IDEs preferentially degrade 
insulin in favor of Aβ, which could lead to Aβ deposition.37 Aβ 
clearance is also significantly reduced in the setting of elevated 
insulin levels.38,39 In fact, small interventional trials with intra-
venous insulin infusion,26,40,41 inhaled insulin,42,43 the insulin-
sensitizing agent pioglitazone,44,45 metformin,46,47 and 
incretin-based therapies48 have shown beneficial effects on 
memory.

Brain activity may be affected by obesity and peripheral 
insulin resistance. In various murine models of obesity and dia-
betes (including after high-fat diet feeding),49–52 there exists a 
strong relationship between peripheral and “brain” insulin 
resistance; and in humans, altered metabolic brain activity 
occurs in peripherally insulin-resistant subjects.53–55 In a study 
of lean vs. obese humans (scanned by functional magnetic reso-
nance imaging (fMRI) while simultaneously completing mem-
ory testing),56 regions of the brain known to be important for 
recollecting episodic memories (ie, the hippocampus, angular 
gyrus, and dorsolateral prefrontal cortex) had significantly 
impaired functional activity in the obese subjects.

The role of CNS lipid flux in AD

Distinct from insulin resistance and insulin signaling defects, 
lipid flux and cholesterol metabolism in the CNS are also 
involved in the pathogenesis of AD and Aβ pathology. 
Apolipoprotein E (ApoE) is the principal carrier of cholesterol 
in the CNS, the ApoE epsilon 4 (ε4) genetic polymorphism is 
the most prominent genetic determinant of AD risk,57 and 
ApoE from human stem-cell derived neurons is directly related 

to increased Aβ production and secretion.58,59 In both mice and 
human stem-cell derived astrocytes and microglia, ApoE iso-
forms alter Aβ clearance from the brain.59–61 Although early, 
more limited studies suggested that polymorphisms in apoli-
poprotein A1 (ApoA1), a major component of protective high 
density lipoprotein (HDL) cholesterol in the CNS, were 
related to early onset and late onset AD,62–64 this finding has 
not been replicated in larger genome wide association (GWAS) 
studies. Nevertheless, low plasma and CSF levels of ApoA1 
have been observed in AD patients65 and are connected to ear-
lier AD onset in non-demented elderly patients.65,66 To further 
illustrate clinically that Aβ may be affected by the amount and 
type of cholesterol in the CNS, its production in hippocampal 
neurons can be inhibited by the lipid lowering medication 
lovastatin.67

Clinical implications of obesity on AD risk
Despite the above mechanistic findings, the relationship 
between obesity, insulin resistance, T2D and pathological 
markers of AD, such as Aβ and p-tau, remains controversial. 
Studies assessing the relationship between T2D and accumula-
tion of Aβ, either by PET imaging or by histology, have been 
mixed. While one study showed a close association between 
insulin resistance and Aβ by imaging in middle-age subjects,68 
others have found no relationship between glucose tolerance 
and Aβ in diabetic vs. nondiabetic elderly patients with normal 
cognition, MCI, or AD,42,43,69 and no association with systemic 
insulin resistance and CSF levels of Aβ69 or histological Aβ 
burden.70,71 However, these cross-sectional studies included 
only elderly patients as controls, and after the onset of clinical 
dementia symptoms. As Aβ deposition begins up to 20 years 
before clinical symptomatology,72 the negative findings may 
not accurately reflect the typical time course of AD pathophys-
iologic progression. In fact, brain insulin levels and insulin 
receptor density are reduced in older patients with AD com-
pared to middle-aged controls even without clinical symptom-
atology,30 suggesting the need for further human studies that 
compare insulin resistance-associated Aβ pathology in younger 
high risk, potentially “preclinical” patients to older patients 
who have already developed clinically-evident disease.

Clusterin as a potential biomarker for Alzheimer’s 
disease
Clusterin (encoded by the gene CLU) was originally isolated from 
ram testis fluid in 1983,73 and has since been identified as a 
molecular chaperone expressed by a wide-ranging number of 
tissues.74,75 Its traditionally identified function has been to 
assist folding of secreted proteins; as such, clusterin overexpres-
sion protects cells from apoptosis induced by chemotherapy, 
radiotherapy, and androgen/estrogen depletion.65,66 Its rela-
tionship with Aβ has been well studied (summarized in Foster 
et  al76), but the precise contribution(s) of clusterin to AD 
pathology remains confounded by complexities involving its 
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biogenesis, the role of extra- vs. intracellular clusterin, and its 
vast number of attributable functions. In addition to its direct 
role in Aβ pathology, clusterin appears to play a role in neuro-
degeneration. The ApoE-ε4 allele exacerbates synapse degen-
eration and leads to accumulation of toxic oligomeric Aβ. 
Interestingly, synapses containing higher amounts of clusterin 
are seen in APOE-ε4 carriers compared to ApoE-ε3 carriers, 
with correspondingly higher oligomeric Aβ burden.77 This 
finding potentially explains the synergistic effect of 2 promi-
nent genetic risk factors on synapse degeneration in AD.

The role of clusterin genetic variants on AD

Clusterin is highly expressed in the brain by both astrocytes 
and neurons,78 and has been linked with an increased risk of 
AD.79 In large-scale GWAS studies, polymorphisms in the 
CLU gene strongly associate with late-onset AD (LOAD),3,80 
although this finding has since been questioned when analyzed 
specifically in different ethnic/racial groups.81–83 In turn, poly-
morphisms in CLU may have critical implications on brain 
structure. An MRI-based study of nearly 400 young healthy 
carriers of the CLU (rs11136000) allele showed a distinct dete-
rioration in white matter integrity, suggesting increased vulner-
ability to developing AD later in life.84

Few studies have evaluated the relationship between CLU 
genetic changes and coexisting metabolic disease. In 550 
women with a history of gestational diabetes mellitus (GDM), 
T2D, or impaired glucose tolerance (IGT) compared to con-
trols, no significant association with CLU rs11136000 was 
observed in any of the groups.85 Another study in 418 indi-
viduals (236 with MCI and 192 control subjects), however, did 
report a relationship between CLU and metabolic disease, with 
T2D prevalence higher in individuals carrying the CLU vari-
ant, and rs11136000 specifically associated with elevated MCI 
risk (OR 1.79, P = .019).86 In patients with clinical AD, the 
relationship between dysregulated metabolism and CLU 
genetic variations is largely unknown and requires further 
investigation.

Clusterin levels in the pathogenesis of AD

In patients with both MCI and AD, a majority of studies have 
documented elevated brain, CSF and circulating clusterin lev-
els.87–90 In the study by Nilselid et. al., involving CSF analyses 
from Alzheimer patients (n = 99) and controls (n = 39), clus-
terin was significantly higher in AD patients, quantified both 
before and after deglycosylation using sandwich enzyme-
linked immunosorbent assay (ELISA) (Before deglycosylation: 
7.17 ± 2.43 versus 5.73 ± 2.09 AU; p=0.002; After deglyco-
sylation: 12.19 ± 5.00 vs 9.68 ± 4.38 AU; P = .004).87 In a 
separate cohort of 44 subjects representing a continuum of dis-
ease (27 with mild to moderate AD and 17 with MCI) plasma 
clusterin by ELISA ( coefficient of variation 3.5%) was associ-
ated with entorhinal cortex atrophy, baseline disease severity, 

and quicker clinical progression.88 In addition, plasma clusterin 
levels predicted higher Aβ burden in the medial temporal lobe. 
These findings were confirmed in a meta-analysis of 28 studies 
that demonstrated higher clusterin concentration both in 
plasma (SDM = 0.73, P = .002) and brain tissue (SDM = 0.71, 
P = .022) compared to normal controls.89 Yet interestingly, CSF 
clusterin was not different by patient group. In a separate study 
of 231 T2D patients, including 126 with MCI and 105 cogni-
tively healthy controls, plasma clusterin was significantly higher 
in MCI patients vs. controls (P = .007), and negatively corre-
lated with the Montreal cognitive assessment and auditory ver-
bal learning test, and delayed recall scores (P = .027 and P = .020, 
respectively).91 Multivariable regression modeling showed that 
educational attainment, duration of diabetes, high-density 
lipoprotein cholesterol (HDL-c), and plasma clusterin levels 
were all associated with MCI in T2D patients.

As a result of these and other reports, clusterin has been 
proposed as a potential biomarker of AD.79 Yet from a physi-
ologic perspective, the existing evidence supports both neuro-
toxic and neuroprotective effects, and may be dependent on the 
balance of clusterin and Aβ in the CNS,92 and, importantly, its 
cell distribution.76 Clusterin is capable of binding to Aβ, pre-
venting aggregation,93 and enabling LRP2 (megalin)-mediated 
Aβ removal.94 In the physiologic state, it therefore exhibits 
neuroprotective properties.95–97 In contrast, a decreased clus-
terin/Aβ ratio, observed in AD patients, appears to be neuro-
toxic92 by raising soluble oligomeric Aβ peptides.98

Adipocyte clusterin as a potential novel player in 
human AD (Figure 1)
The adipose tissue (AT) microenvironment is increasingly rec-
ognized as a determinant of systemic insulin action and inflam-
mation, and is to some extent determined by the adipocyte.99 
Recent studies indicate that adaptive and innate immune func-
tions of the adipocyte regulate the overall immune cell compo-
sition of AT, which is enhanced during the transition from a 
lean to obese state.100 As the major storage depot for excess 
calories, and comprised of a variety of metabolically-active 
immune cells, AT is uniquely poised to influence systemic 
inflammation as well as key systemic metabolic pathways such 
as insulin action. Several adipokines, comprised of a number of 
cell signaling proteins secreted by AT,101 have been proposed as 
biomarkers of AD.102,103

Clusterin is not only expressed by astrocytes and neurons, 
but by a large number of peripheral tissues, including AT104 
and it readily crosses the BBB.105 Indeed, the cognitive decline 
in MCI and AD has been related to circulating, and not CNS 
clusterin,106 and the meta-analysis of 12 studies comparing 
patients with AD to controls showed that plasma clusterin was 
increased, but not CSF clusterin.89 A recent study expanded on 
these findings by classifying 59 total participants by cognitive 
status (normal cognition, MCI, or AD) and by degree of meta-
bolic impairment (healthy, prediabetes, or T2D) in order to 
determine associations with circulating clusterin levels.107 They 
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found that plasma clusterin levels were not only higher in par-
ticipants with both AD and prediabetes/T2D compared to 
those without metabolic impairment, but that clusterin was 
negatively associated with cognitive scores, and positively with 
worsening metabolic parameters (hemoglobin A1c, insulin 
resistance by HOMA-IR, and fasting C-peptide levels) and 
brain pathology by MRI (medial temporal atrophy and white 
matter lesions). Although the study involved a cross-sectional, 
observational design, in mediation analysis plasma clusterin 
was determined to be a direct mediator of these important 
associations. Mechanistically, substantial weight loss induced 
by gastric bypass surgery reduces clusterin expression in periph-
eral blood mononuclear cells (PBMCs) in association with 
attenuated expression of amyloid precursor protein (APP) and 
presenilin-2.108 These studies suggest that peripherally-derived 
clusterin may have a unique role in CNS AD pathology, par-
ticularly with coexistent metabolic impairment.

In fact, metabolic effects of clusterin have recently emerged. 
In obese patients, plasma clusterin levels are elevated and asso-
ciate with BMI, waist circumference, markers of inflammation 
(hsCRP and retinol-binding protein-4), and insulin resist-
ance.109 In mice, skeletal muscle and hepatic gene expression of 
CLU is increased after high-fat diet feeding, and whole-body 
clusterin knockout (KO) mice are insulin sensitive compared to 
wild-type (WT) mice.110 On array analysis, we have previously 
identified subcutaneous adipocyte CLU as one of the top 15 
extracellular matrix-related genes overexpressed in human obe-
sity.104 In addition, we found in 54 obese patients compared to 
18 lean patients that human adipocyte expression, protein lev-
els and serum concentrations of clusterin were higher in obe-
sity and directly associated with multiple sequelae of 
obesity-related cardiometabolic disease: systemic insulin resist-
ance, dyslipidemia, elevated blood pressure, hepatic steatosis/
steatohepatitis, key biomarkers of cardiovascular disease and 

risk, and atherosclerotic lesions.104 We also demonstrated that 
clusterin in vivo has a progressive abrogating effect on hepatic 
ApoA1 expression (HepG2 cells cultured with increasing levels 
of recombinant clusterin). ApoA1 a major component of HDL 
cholesterol and a biomarker of reduced myocardial infarction 
risk,111 through binding to low density lipoprotein-related pro-
tein 2 (LRP2/Megalin).104 Similar to the liver, LRP2 is the 
main clusterin receptor found in the brain and high concentra-
tions of CNS clusterin are internalized and degraded via 
LRP2.94 Although far from conclusive, these results open the 
possibility that clusterin derived from obese adipocytes may 
play a role in the heightened risk of AD in the setting of 
obesity.

Conclusion
The development of AD is complex and multifactorial. 
However, one of the prominent risk factors includes obesity-
related cardiometabolic disease, particularly when these comor-
bidities develop in midlife. Therefore, factors such as adipokines 
from adipose tissue, linking obesity and AD, may prove useful 
as biomarkers of AD risk and development. One of these 
potential biomarkers is clusterin, which is elevated in the blood 
and CNS of patients with both MCI and AD. However, stud-
ies have attributed both a neuroprotective and neurotoxic role 
to clusterin. This discrepancy may be due to the myriad of 
functions that have been ascribed to clusterin and its cellular 
distribution.

Despite its known association with AD, and findings that 
clusterin is increased in AD, T2D, and obesity, the role of clus-
terin as a biomarker in AD pathophysiology remains an 
enigma, especially its relationship to metabolic disease. In par-
ticular, a better understanding of insulin’s effects in the human 
brain is needed, accounting for both the severity of AD and 
relative to age-matched controls. In addition, well-designed 

Figure 1. Summary of hypothesized mechanisms (labeled 1-3) responsible for clusterin-mediated amyloid beta (Aβ) deposition.
Abbreviations: ApoA1, apolipoprotein A1; ApoE, apolipoprotein E; BBB, blood brain barrier; CSF, cerebrospinal fluid; HDL, high density lipoprotein.
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studies that compare insulin resistance-associated Aβ pathol-
ogy in younger patients at risk (potentially in “preclinical” 
stages) to older patients with clinically-evident disease will 
shed more light on the contribution of clusterin to AD patho-
genesis. Although adipocyte-derived clusterin may play a role 
in Aβ pathology, future studies are needed to determine if is a 
viable biomarker for AD, and if it offers a key link between 
obesity, metabolic disease, and AD.
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