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Abstract

We revisit the CROS (“CRitical OScillations”) model which was recently proposed as an

attempt to reproduce both scale-invariant neuronal avalanches and long-range temporal

correlations. With excitatory and inhibitory stochastic neurons locally connected in a two-

dimensional disordered network, the model exhibits a transition where alpha-band oscilla-

tions emerge. Precisely at the transition, the fluctuations of the network activity have nontriv-

ial detrended fluctuation analysis (DFA) exponents, and avalanches (defined as supra-

threshold activity) have power law distributions of size and duration. We show that, differ-

ently from previous results, the exponents governing the distributions of avalanche size and

duration are not necessarily those of the mean-field directed percolation universality class

(3/2 and 2, respectively). Instead, in a narrow region of parameter space, avalanche expo-

nents obtained via a maximum-likelihood estimator vary continuously and follow a linear

relation, in good agreement with results obtained from M/EEG data. In that region, more-

over, the values of avalanche and DFA exponents display a spread with positive correla-

tions, reproducing human MEG results.

Author summary

Since the first experimental observation of scale-invariant neuronal avalanches, the idea

that the brain could be operating near a phase transition has received much attention. But

if the brain is critical, what is the phase transition? Experimentally, the sizes and durations

of local field potential (LFP) avalanches were power-law distributed with exponents 3/2

and 2. Theoretically, these are the exponents of a critical branching process, a coincidence

which has inspired many models with a common feature: a phase transition from a silent

(absorbing) to an active phase. These models, however, struggle with another experimen-

tal result: brain activity can also exhibit long-range temporal correlations (LRTCs, another

fingerprint of a critical system). An attempt to model both phenomena was put forward
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via the CROS (“CRitical OScillations”) model, in which neuronal avalanches and LRTCs

were observed at a transition where alpha-band oscillations emerge. We show that the

avalanche exponents of the CROS model do not necessarily agree with those of a critical

branching process, but can vary near the transition region, just like the exponents govern-

ing LRTCs. Moreover, the spread of exponents observed in the model is in good agree-

ment with experimental results from human MEG data.

Introduction

The critical brain hypothesis [1] has emerged in the last decades as a potential framework for

theoretically addressing many intriguing questions that have challenged neuroscientists. In

light of the nonlinear nature of individual neuronal dynamics and our rudimentary under-

standing of the collective phenomena that emerge when they interact, these questions include,

for instance, the issue of segregation versus integration, optimization of dynamical repertoire,

and response to external stimuli, among others (see e.g. Refs. [1–3] for reviews). But if the

brain is indeed critical, what is the phase transition? In the following, we briefly review our

assessment of the current status of the field, highlight the limitations of a class of models that

has dominated the literature in the last decade, and offer an alternative analysis of a more

recent model that copes better with experimental results.

A seminal work by Beggs and Plenz in 2003 reported neuronal avalanches experimentally

recorded in vitro [4], lending support to the criticality hypothesis and effectively laying the

groundwork for a vast field of research that has involved neuroscientists and physicists alike

[5]. In their original setup, spontaneous local field potentials (LFPs) were recorded from cul-

tured slices of the rat brain [4]. The term “neuronal avalanche” seemed like a natural choice,

since the observed bursts of suprathreshold activity were interspersed by silence and showed

a clear separation of time scales (their duration being much shorter than the interavalanche

intervals). Moreover, their size s, defined as either the number of electrodes with suprathres-

hold activity or the sum of the potentials, were shown to be statistically distributed according

to a power law, P(s)� s−1.5 [4]. Such scale-invariant statistics are one of the hallmarks of a criti-

cal system [6, 7].

Other signatures of criticality in the brain have been proposed, such as long-range temporal

correlations, which have been observed both at macroscopic and microscopic levels. For

instance, detrended fluctuation analysis (DFA) [8] performed in electroencephalographic and

magnetoencephalographic signals have revealed temporal correlations and power-law scaling

behaviour in spontaneous oscillations of the normal human brain during large time scales [9,

10]. At a much smaller scale, a similar technique showed that spike avalanches recorded in dif-

ferent regions of freely-behaving rats also have long-range temporal correlations [11].

A natural next step from the modeling perspective would be to conjugate both ideas. The

search for a model that can produce both power-law distributed avalanches and long-range

temporal correlations, however, is likely to face some theoretical challenges. Let us briefly dis-

cuss why.

It is important to remember that one of the appeals of the 3/2 exponent experimentally

observed by Beggs and Plenz is that it coincides with the critical exponent for a branching pro-

cess [12], which has therefore become a theoretical workhorse in the field. Or, if one extends

the idea to rather general networks [13], 3/2 coincides with the avalanche size critical exponent

of any model belonging to the universality class of directed percolation (DP) in dimension

larger than or equal to its upper critical dimension (dc = 4). In other words, τ = 3/2 is a mean-
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field exponent for avalanche-size distributions of a class of models in which a continuous

phase transition occurs between an absorbing and an active phase [7, 14].

A minimum model of this universality class consists of a large (ideally infinite) number of

units (“neurons” or “regions of interest”) which can be either “on” (active) or “off” (inactive)

[7]. If a unit is “off”, it may switch to an “on” state with a probability that increases with the

number of “on” neighbors and some coupling, say, λ. If a unit is “on”, it spontaneously

switches to “off” at some constant rate (which accounts for the typical duration of a spike,

for instance; variants may include additional states to model the refractory period [15]). The

absorbing phase bears its name because, for sufficiently small λ, eventually all units go to the

“off” state and the dynamics of the whole network stops. For sufficiently large λ, on the other

hand, propagation of the “on” state among units occurs at such a rate that the system stays in

an active phase, characterized by stable self-sustained activity, i.e. nonzero time- and ensem-

ble-average density of active sites hρi (the typical order parameter for these models). The

boundary in parameter space between those two qualitatively different regimes is the critical

point λ = λc, above which hρi departs continuously from zero as hρi � (λ − λc)β, where β is a

critical exponent [7]. Precisely at λ = λc, the system is on the verge of displaying self-sustained

activity, so perturbations to the absorbing state (which is still stable) do not have a characteris-

tic time to die out or a characteristic size. In fact, their size s (defined as the number of active

sites along the excursion) and duration T (defined as the time between the first and last active

site in between epochs of complete quiescence) are power-law distributed at the critical point:

P(s)� s−τ and PðTÞ � T � tt . These critical exponents depend on network dimensionality D
[14], and for D� 4 the mean-field exponents are precisely τ = 3/2 and τt = 2, as observed by

Beggs and Plenz [4]. The importance of this type of phase transition cannot be overstated. A

conjecture put forward by Janssen [16] and Grassberger [17] states that a model with a contin-

uous transition to a single absorbing state and no further symmetries (parity conservation etc)

should fall into the DP universality class. In other words, “continuous transitions to an absorb-

ing state belong generically to the directed percolation universality class” [7].

In the model, these perturbations are called “avalanches”, among other reasons, because

their dynamics are subject to an infinite separation of time scales by construction: once an ava-

lanche is over (all sites “off”), the next one will not start unless the system is arbitrarily per-

turbed again. This unassuming detail, however, poses a challenge if one wants to explore this

class of models to reproduce the above mentioned long-range temporal correlations which

were observed experimentally [9, 11]. Since consecutive avalanches are, by definition, sepa-

rated by returns to the absorbing state, it is not apparent how inter-avalanche correlations

could emerge (self-organizing mechanisms are a potential candidate, yet to be tested [18]).

Given this state of affairs, an interesting perspective was put forward by the CROS (“CRiti-

cal OScillations”) model proposed by Linkenkaer-Hansen et al [19, 20]. The model has both

excitatory and inhibitory stochastic spiking neurons arranged in an L × L square lattice, each

neuron interacting with a controlled random fraction of its neighbors within a small ℓ × ℓ
region (Fig 1A, see Methods for details). All excitatory neurons receive an independent con-

stant Poisson input which ensures the model formally does not have an absorbing state.

Changing the model parameters controlling excitation and inhibition (rE and rI), Linkenkaer-

Hansen et al reported a transition where alpha-band oscillations appear, as marked by the

emergence of a peak in the Fourier spectrum of the global network activity. At the transition

line in the (rE, rI) plane, long-range temporal correlations were observed with DFA exponents

α’ 1, in contrast with uncorrelated fluctuations far from the transition (α’ 0.5). Remarkably,

at the same transition line Linkenkaer-Hansen et al also managed to obtain avalanches with

power law distributions of size [19] and duration [20], in either case with the respective mean-

field exponent τ = 3/2 and τt = 2. Importantly, in the absence of an absorbing state, their
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definition of an avalanche required the imposition of an ad hoc threshold θ, defined as a frac-

tion Γ of the median network activity ~m. In the CROS model, therefore, it is the crossing of an

arbitrary threshold upwards and downwards that marks respectively the beginning and end of

an avalanche (see Fig 2A and Methods). Differently from a DP-like model with an absorbing

state, the system dynamics itself controls when the threshold will be crossed, raising the ques-

tion whether that is the main ingredient giving rise to long-range temporal correlations.

This thresholding procedure is often deemed artificial in DP-like models with an absorbing

state, among other reasons because it introduces an additional parameter on which results

depend, namely, the threshold itself. However, it is important to keep in mind that, when

dealing with empirical data, the avalanche definition inevitably requires the introduction of a

threshold (albeit usually a local one, differently from the CROS model). When avalanches

are understood as the spatio-temporal patterns of “on” sites between “silences”, as discussed

above, a local threshold is required to operationally define what “on” means in the first place.

This issue has been present since the first results emerged for LFPs [4], and reappear in M/

EEG [21–23] and fMRI studies [24]. Once one has a point process with discrete events, a sec-

ond parameter is needed to determine what “silence” means: the duration of the bin with

which the time series is parsed. The important point here is that exponents governing ava-

lanche distributions in principle depend on these parameters and often show high variability

[21–23]. Frequently, an additional criterion is used to choose between a range of values. For

Fig 1. CROS model. (A) The model consists of excitatory (Ex) and inhibitory (In) neurons arranged in a L × L square lattice with open boundaries.

Each neuron may connect locally to a random fraction of its neighbors within a ℓ × ℓ square (see Methods). In gray we exemplify the neurons connected

to a central neuron (black dot) with connectivity of 25% (top), 45% (middle), and 70% (bottom). (B) The connection weights (Wij) are fixed and depend

only on the nature of the presynaptic (i) and postsynaptic (j) neurons.

https://doi.org/10.1371/journal.pcbi.1006924.g001
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instance, if one works under the hypothesis that the phase transition governing brain criticality

is that of a branching process, then one can require the branching ratio to be near its critical

value of one [4, 21]. On the one hand, when found together, a critical branching ratio and a

critical exponent τ = 3/2 are results that consistently reinforce each other from a theoretical

point of view. On the other hand, this consistency is constrained by the initial assumption of

the underlying universality class. Relaxing this assumption and exploring the full variability of

the exponents observed experimentally provides a challenge to any model.

The results of the model proposed by Linkenkaer-Hansen et al are remarkable in that they

seem to reconcile the emergence of long-range temporal correlations with avalanche distribu-

tions which in principle appear in models of a very different nature, as discussed above. The

reconciliation is even more appealing given that the coexistence of these two phenomena has

been reported experimentally in M/EEG recordings [21, 22]. However, several questions

remain, which we set out to investigate here.

First, we delve deeper into the following question: to which extent is mean-field DP a good

model for the transition observed in the CROS model? To do so, we introduce a tentative

order parameter to better characterize the putative phase transition, while also simulating

larger system sizes (L = 300) than in the original results (L = 50) [19]. We also point out that it

is highly counterintuitive to have a two-dimensional model exhibiting mean-field exponents.

That could be due to an insufficiently small ratio ℓ/L (which is addressed here, again, by

increasing L). We argue that, if the onset of oscillations in a two-dimensional network is to be

reconciled with DP critical exponents, then the DP exponents for D = 2 should also be tested.

Second, we explore parameter space in more detail around the transition line, relaxing the

assumption of a DP universality class, allowing the exponents to be adjusted by a maximum-

likelihood estimator (MLE) and testing whether the model satisfies other scaling relations. In

so doing, we subject the putative phase transition of the CROS model to more stringent tests

[25, 26]. Moreover, by not imposing τ = 3/2 and τt = 2, the model reveals exponents that vary

continuously within a transition region, opening the door for comparison with experimental

results.

Finally, we revisit some experimental results from M/EEG recordings where both avalanche

and DFA exponents have shown high variability [22, 23]. We explore the extent to which the

model is able to reproduce the spread of exponents and the correlations among them.

Fig 2. Neuronal avalanches and order parameter definitions. (A) A neuronal avalanche starts and ends when the fluctuations of the integrated

network activity cross a threshold θ. The size of an avalanche can be defined as sg, the total number of spikes, or sθ, the number of spikes minus the

threshold value. The avalanche duration T is the time that the fluctuations stay above θ. (B) Detail of the power spectrum around the region where a

peak appears. The order parameter φ is given by the ratio between the power peak area ϕp and the total area ϕp + ϕu. Red symbols represent the

frequencies that bound the φ area: fmin(diamond), fpeak(circle) and fmax (triangle).

https://doi.org/10.1371/journal.pcbi.1006924.g002
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Materials and methods

CROS network model

We employed essentially the same CROS (CRitical OScillations) model as proposed by Poil

et al [19]. Excitatory (75%) and inhibitory (25%) neurons were randomly arranged in a bidi-

mensional L × L square lattice, with open boundaries (Fig 1A). Each neuron has a finite local

range of connections limited to a square of size ℓ × ℓ centered around it (Fig 1A). We used

ℓ = 7 like in the original model [19], which means that a typical neuron (far away from the bor-

ders) could connect to a maximum of 48 other neurons in their neighborhood. Excitatory (rE)

and inhibitory (rI) connectivity are the two free parameters of this model, being set between

2–60% and 30–90%, respectively, of the total number of neurons within the local range.

Each neuron sends its outgoing synapses to other neurons at a distance r with probability

PðrÞ ¼ Ce� r=a0 , where a0 = 1 is the nearest-neighbor distance, and C a normalization constant

such that ∑neighbors P(r) equals rE or rI for presynaptic excitatory and inhibitory neurons,

respectively. Notice that the networks have disorder, in the sense that, for a given point (rE, rI)
in parameter space, different synaptic connections are possible (corresponding to how the spe-

cific grey neurons in Fig 1A are randomly selected within the ℓ × ℓ interaction range). We will

return to this point in the discussion of the results. Five networks for each combination of rE
and rI were created and simulated for 220 time steps (dt) of 1 ms. Each connection had a weight

(Wij) depending on the nature (excitatory or inhibitory) of the presynaptic and postsynaptic

neurons (Fig 1B).

The neuron dynamics starts with a neuron i integrating all the received input from the con-

nected neighbors and updating its synaptic current Ii, which is also subject to an exponential

synaptic decay:

Iiðt þ dtÞ ¼ IiðtÞ þ
X

j

WjiSjðtÞ

 !

1 �
dt
tI

� �

: ð1Þ

In Eq (1), S(t) 2 {0, 1}N is a binary vector denoting whether the presynaptic neurons fired in

the previous time step, whereas the connection weights are fixed at WEI = 0.011, WEE = 0.02

and WIE = WII = −2 and the time constant is τI = 9 ms [19]. Given the synaptic current Ii we

compute the spiking rate variable RSi, which is also subject to an exponential decay:

RSiðt þ dtÞ ¼ RSiðtÞ þ IiðtÞ½ � 1 �
dt
tP

� �

þ P0

dt
tP
; ð2Þ

where τP(excitatory) = 9 ms, τP(inhibitory) = 12 ms and P0 is the background spiking probabil-

ity with P0(excitatory) = 10−6 and P0(inhibitory) = 0 [19]. At each time step, each neuron

spikes with probability

PS ¼

(RSi �YðRSiÞ ; if RSi < 1

1 ; if RSi � 1
ð3Þ

where Θ is the Heaviside function. Then S is updated for the next time step. If a neuron spikes

we reset RS to −2 (excitatory neurons) or −20 (inhibitory neurons) [19].

Neuronal avalanches

Given that some balance of rE:rI produce networks that are continuously active, a threshold is

necessary to define the start and end of an avalanche. Poil et. al. [19] proposed a threshold
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defined as 50% of the median spike activity of the network. Here we defined the threshold θ as:

y ¼ G� ~m ; ð4Þ

where Γ> 0 is a number and ~m the median activity (so the original CROS model used Γ =

0.5). A neuronal avalanche starts and ends when the fluctuation of the summed activity of the

network A(t)� ∑i Si(t) crosses θ. If an avalanche starts at time ti and ends at time tf, its duration

is T = tf − ti (Fig 2A). We studied two definitions for the size of an avalanche: i) sg ¼
Ptf

ti
AðtÞ,

i.e. the total area under the A(t) curve, as originally proposed by Poil et al. [19]; and ii)

sy ¼
Ptf

ti
ðAðtÞ � yÞ, i.e. the area above the threshold, as recently proposed by Del Papa et al.

[27].

Importantly, we note that the avalanche definition of the CROS model differs from the one

normally employed in the analysis of experimental data. In LFP [4], MEG [21–23] and fMRI

studies [24], usually the activity at each site is thresholded to define a local “binary” event. The

whole time series of events is then parsed with a time bin and an avalanche is defined as the

spatio-temporal sequence of events between silent bins. When we compare model results with

those obtained experimentally, this difference in the avalanche definitions should be taken

into account.

κ index. We used the κ index proposed by Shew et al [28] to obtain a first approximate

assessment of how close an observed (simulated) distribution Pobs is from a known theoretical

distribution Pth. We focused on power-law distributions of avalanche size and duration (both

referred to simply as x in what follows). If we restrict the analysis of a power law distribution

Pth(x)� Cx−μ to an interval [xmin, xmax], in the continuum limit one can calculate both the nor-

malization constant C ¼ ðm � 1Þ=ðx� mþ1
min � x� mþ1

max Þ and the theoretical cumulative function

FthðhÞ � Pðx < hÞ ¼
R h
xmin

PthðxÞ dx ¼ ½ðx� mþ1
max � x� mþ1

min Þ�
� 1
ðh� mþ1 � x� mþ1

min Þ.

Let FobsðhÞ �
R h
xmin

PobsðxÞ dx be the observed cumulative function. The κ index, which

quantifies the difference between an observed and a theoretical distribution, is defined as

k � 1þ
1

b

Xb

j¼1

ðFthðhjÞ � FobsðhjÞÞ ; ð5Þ

where hj are b = 10 observables logarithmically spaced between xmin and xmax. With this defini-

tion, one obtains κ’ 1 for an observed distribution which is close to the theoretical power

law, κ< 1 for a subcritical (e.g. exponential-like) distribution and κ> 1 for a supercritical dis-

tribution (say, with a characteristic bump at larger values of x).

In our case μ stands for τ and τt, critical exponents from the Direct Percolation (DP) uni-

versality class for size and duration of an avalanche, respectively. These exponents depend on

the dimension of the underlying model. As mentioned previously, τ = 3/2 and τt = 2 stand for

DP models at or above the upper critical dimension (d� dc = 4), i.e. are mean-field exponents.

Since the CROS model studied here is in principle two-dimensional, we also employ τ = 1.268

and τt = 1.450, which are the critical exponents for two-dimensional DP [14]. We denote the

indices to quantify the scale invariance of avalanche size sg or sθ and avalanche duration T as

κg, κθ and κT, respectively. Each of these three indices come in two variants, one employing

mean-field (MF) exponents for the theoretical distributions and another employing their two-

dimensional (2D) counterparts. We present heat maps in parameter space of the different κ
indices, averaged over 5 realizations of the disorder.

Maximum likelihood estimator. Estimating the quality of a power-law fit with the κ
index has the drawback that the exponent μ must be known a priori. In order to loosen

this constraint (while complying with more firmly grounded criteria for fitting power-law
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distributions [29]), we employ the maximum likelihood estimator (MLE) as made available in

the powerlaw python package [30]. The exponents for size and duration of avalanches were

estimated from a power law with an exponential cutoff, P(x)� x−μ exp(−x/x0), with μ and x0 as

free parameters and fixing minimum values smin = 10 and Tmin = 4, respectively.

The package supports different probability distributions, which allowed us to use the logli-

kelihood ratio test [31] to compare the goodness of the fit of the exponentially truncated

power-law with that of other possible distributions. We made comparisons with pure power-

law, lognormal and exponential distributions. For our data, the exponentially truncated

power-law was always a better fit than those three other distributions, for size as well as for

duration of neuronal avalanches.

Scaling relation between avalanche size and duration. At criticality, one expects a

power-law relation between the average size hsi of an avalanche of a given duration T:

hsiðTÞ � T
1

snz ; ð6Þ

where σ, ν and z are standard critical exponents respectively governing the cutoff in the size

distribution, the typical length of the largest avalanche and the duration of an avalanche as a

function of its spatial extent [32].

Furthermore, at criticality one expects avalanche shape collapse, i.e. that the mean temporal

profiles of avalanches can be described by a single function by means of scaling [25]. Let s(t, T)

be the number of firings at time t of an avalanche with duration T. Then at criticality one

should observe

sðt;TÞ � T 1
snz� 1Fðt=TÞ ; ð7Þ

where F is a scaling function and 1/(σνz) is the same combination of critical exponents as in

Eq 6. The MATLAB package NCC [33] was used to check whether shape collapse occurs in the

model, at the same time yielding an independent estimate of 1/(σνz). For the aforementioned

analysis only durations longer than 10 ms with at least 10 samples were used.

Finally, at criticality the exponent in Eq 6 is related to the exponents ruling the distributions

of avalanche size and duration [25, 32, 34]:

1

snz
¼
ðtt � 1Þ

ðt � 1Þ
: ð8Þ

These scaling relations were observed in in vitro and ex vivo experiments [25, 35]. We probe

the model by independently testing whether Eqs 6, 7 and 8 hold near its transition line.

Order parameter, power spectrum and DFA analysis

The frequency spectrum was obtained via the Fast-Fourier Transform (FFT), normalized by

the network size (L × L) and the total time of simulation. The spectra were subsequently

smoothened by averaging over nonoverlapping windows of 500 frequency steps (each step

with width of 9 × 10−4 Hz, resulting in one smoothened point every�0.45 Hz).

The order parameter φ was defined as the ratio between the area of the power peak ϕp
divided by the total area ϕp + ϕu (Fig 2B):

φ ¼
�p

ð�u þ �pÞ
; ð9Þ

where ϕu is the area under the power peak. φ is only different from zero if we can detect a peak

in power-spectrum. Operationally, once we have the peak frequency fp, we detected the local
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minimum f− below it (between 4–18 Hz), which yields Δf� fp − f−. Using a symmetrical inter-

val around fp, we calculated an upper frequency f+� fp + Δf. Given these three points, we fitted

a line between f− and f+: the area above the line is ϕp and the area under it is ϕu.

DFA analysis was performed in two different ways: i) on the raw time series A(t) and ii) the

band-filtered time series A(t). For the former we followed the standard procedures described

in Refs. [8, 36, 37]. For the latter, we followed the procedures described in Refs. [10, 20].

Briefly, the occurrence of a self-similarity exponent α in the time series is a reliable indicator of

long-range time correlation if 0.5< α< 1, whereas α� 0.5 results from uncorrelated fluctua-

tions. If the power spectrum decays as S(f)� 1/fv, then v = 2α − 1 [38]. So, when α = 1 we have

the presence of 1/f noise. We estimated α from a fixed time range between 4 s and 14 s. The

DFA exponents corresponding to the raw and band-filtered data are denoted by αraw and α,

respectively.

Implementation of band-filtering relied on a Butterworth band-pass filter of 5th order over

the frequencies 8–16 Hz. In order to extract the amplitude envelope we took the absolute value

of the Hilbert transform. The preprocessing of the data was made in python through the SciPy

software using the functions scipy.signal.butter and scipy.signal.hilbert
for the Butterworth filter and the Hilbert transform, respectively.

Experimental M/EEG recordings

To compare the model results with those of experimental M/EEG recordings, the values of the

exponents from the plots of Refs. [22, 23] were extracted with the software WebPlotDigitizer

(https://automeris.io/WebPlotDigitizer/).

Results and discussion

System-size and threshold dependence

In the CROS model the definition of an avalanche depends on the threshold parameter θ (Fig

2A), whereas other signatures of criticality (DFA exponents, power spectra and order parame-

ter) do not (Fig 2B). We therefore initially investigate these two types of markers of criticality

separately, starting by those which do not depend on θ.

We start by addressing the dependence of the results on the system size L. The original

results of Poil et al were obtained with L = 50 and ℓ = 7 [19]. As such, it is not clear whether the

ratio ℓ/L is sufficiently small for the two-dimensional nature of model to be reflected in the

results. We refer to the definition of topological dimension D which, as concisely summarized

by Moretti and Muñoz, governs “how the number of neighbours of any given node grows

when moving 1, 2, 3, . . ., r steps away from it: Nr� rD, for large values of r” [39]. In a previous

work on a similar topology, with large two-dimensional structure and disorder at small scale

within an interaction range ℓ, results at the scale ℓ were governed by the random-like (disor-

dered) local structure, with mean-field like behavior, whereas exponents compatible with

D = 2 were observed at larger scales [40]. Bidimensionality makes sense if distances r are

allowed to become much larger than any local interacting range.

To probe the robustness of the results, we therefore kept ℓ = 7 while increasing system size

up to L = 300 (S1 Fig). In all cases, we obtained the following scenario, which coincides with

the original results of Poil et al [19] and which we summarize for the largest system size in Fig

3. Keeping rI fixed and increasing rE, one observes not only an increase in the average activity

hAi, but eventually also the emergence of alpha-band oscillations in A(t) (Fig 3A). These can

be characterized by power spectra, in which a peak emerges (Fig 3C) at a transition region

(line) in the (rE, rI) parameter plane (Fig 3B). Alternatively, the order parameter φ can be used

to estimate the transition line (Fig 3D), where its fluctuations are also maximal (Fig 3E).
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Fig 3. CROS model dynamics with L = 300 and ℓ = 7. (A) Network activity for three different regimes (balance between excitation and inhibition): low

(blue), intermediate (yellow) and high (green). Inset: zoom in the lowest level of activity. (C) Power spectrum of A(t) for the three regimes described in

(A). Inset: zoom in low frequencies. The parameter space suggests a phase transition as shown in heat maps of (B) the power of collective oscillations

and (D) the order parameter. Also (E) a larger standard deviation of the order parameter is observed near the transition region. Arrows in (B) and (D)

represent parameters described in (A).

https://doi.org/10.1371/journal.pcbi.1006924.g003
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For each of these time series, we have assessed LRTCs in two different ways (see Methods).

First, by calculating the DFA exponent αraw of the raw time series A(t) (Fig 4A and 4B), simi-

larly to what has been previously done with spiking data [11, 41]. Second, by calculating the

DFA exponent α of the band-filtered time series (Fig 4C and 4D, see Methods), similarly to the

procedure usually applied to M/EEG data [9, 10, 20, 22, 23].

Interestingly, the transition region is also characterized by nontrivial (larger than 0.5) DFA

exponents (Fig 4E and 4F), as originally reported [19]. However, results for L = 300 suggest an

interplay between system size and band-filtering. For L = 50, the effects of band-filtering are

mild: both αraw and α reach values close to one at the transition region (Fig 4A, 4C and 4E).

For L = 300, on the other hand, the values of band-filtered α are smaller than for L = 50 (Fig

4C and 4D), while αraw is weakly affected (Fig 4B). Importantly, even for L = 300 and band-

filtered data, α remains above 0.5 in the transition region, thus signaling long-range time

correlations.

Therefore, the above threshold-independent markers of criticality (power spectrum, order

parameter and DFA exponents) seem to be robust to an increase in system size, suggesting a

phase transition at which the system has long-range temporal correlations while oscillations

start to emerge. In what follows, all results were obtained for networks with L = 300.

Turning our attention now to avalanches, we investigate the dependence of the results on

the threshold y ¼ G ~m (see Eq 4). The κ index is a useful tool to summarize how close the size

and duration distributions are to power laws in parameter space (as long as one is confident

about which exponent to expect, as we will discuss below). We used κg and κθ for the original

(sg) and above-threshold-only (sθ) definitions of avalanche size, respectively (see Methods),

with κT characterizing the distributions of avalanche durations (T). For each of these three, we

imposed either the usual mean-field (τ = 3/2, τt = 2) or the 2D (τ = 1.268, τt = 1.450) exponents

of the directed percolation universality class, in a total of six variants of κ. Exploring their heat

map in parameter space for Γ = 0.5, 0.75 and 1 (S2 Fig), we obtain critical regions in parameter

space where κ’ 1, pointing to power-law distributions of sizes and durations. Since the results

for sθ were more robust than for sg, the former will be used throughout. Except for the largest

value of Γ, the phase diagrams also proved to be rather insensitive to this parameter (S2 Fig),

so we will use Γ = 0.5 (as originally proposed [19]) unless otherwise stated.

Power-law distributed avalanches: Exponents from 2D or mean-field

directed percolation?

With a larger system size (L = 300) and local interactions (ℓ = 7), we turn to the question

whether the avalanche distributions produced by the model are compatible with the universal-

ity class of two-dimensional directed percolation (2D-DP). Starting with size distributions, if

one imposes the 2D-DP exponent τ = 1.268 and calculates the corresponding κθ, a critical

region with κθ’ 1 is indeed found (Fig 5A). However, if the mean-field directed percolation

(MF-DP) exponent τ = 3/2 is used instead, the heat map of the corresponding κθ index also
displays a critical region (Fig 5B) near the 2D-DP one. In both cases, a close inspection of a

few representative points in parameter space (Fig 5C and 5D) shows clear subcritical distribu-

tions (consistent with κθ< 1) as well as supercritical distributions with a mild bump (κθ> 1;

moving just a bit further into the supercritical region, one obtains essentially a few giant ava-

lanches—often just one). More importantly, fitting the exponent of a power-law with exponen-

tial cutoff (with the MLE method) at the putative critical region, one obtains an exponent

reasonably close to the value for 2D-DP at one point in parameter space (Fig 5C) and another

exponent close to that of MF-DP at a different point (Fig 5D). Both power laws hold for at

least three decades at the points with κθ� 1.
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Fig 4. The CROS model presents long-range temporal correlations at the transition line. (A) and (B) Strong LRTCs (indicated by DFA exponent α
> 0.5) emerge at the onset of oscillations for the raw time series, regardless of the system size (see Methods). For the band-filtered time series, (C)

networks with L = 50 show strong LRTCs while (D) for L = 300 the effect is less pronounced (though still clearly α> 0.5). For L = 50, (E) αraw and α are

close to one near the critical regime (green diamonds and circles, α’ αraw’ 1.09 respectively). For L = 300, (F) αraw is close to one while α is smaller

near the critical regime (green diamonds and circles, αraw = 1.16 and α = 0.66 respectively). Examples from the subcritical region: (E) L = 50, αraw = 0.57

(purple diamond) and α = 0.80 (purple circle), (F) L = 300, αraw = 0.53 (purple diamond) and α = 0.60 (purple circle). For the supercritical region: (E)

L = 50, αraw = 0.60 (orange diamond) and α = 0.62 (orange circle), (F) L = 300, αraw = 0.54 (orange diamond) and α = 0.62 (orange circle). Diamonds
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A very similar scenario is observed when the distributions of avalanche duration P(T) are

studied. Heat maps for the κT indices for 2D-DP and MF-DP exponents (Fig 6A and 6B,

respectively) both show κT’ 1 in putative critical regions, with subcritical and supercritical

behaviors off these regions. The MLE-fitted exponents are again close to the theoretical 2D-DP

and MF-DP values, perhaps with a better fit in the first case in comparison with the second

(approximately three decades in Fig 6C versus two in Fig 6D).

Given the current absence of a proper theoretical connection between a transition to collec-

tive oscillations and the DP universality class, the above presented results suggest that the κ
index is not the most appropriate tool for clarifying this issue, since by construction it relies on

a priori knowledge of the distribution exponent. Henceforth we therefore relax this constraint,

taking a more agnostic approach towards the values of the exponents and letting the MLE

method determine them.

(circles) represent DFA applied over raw (band-filtered) time series (see Methods). Solid symbols indicate the fitting range where α was estimated.

Colored arrows in (A), (B), (C), (D) and colors in (E) and (F) represent parameters: rE = 0.04 (purple), rE = 0.12 (green) and rE = 0.24 (orange) with rI =

0.60.

https://doi.org/10.1371/journal.pcbi.1006924.g004

Fig 5. Avalanche size distributions. (A) and (B) show heat maps of the κθ index in parameter space employing the τ exponent for the 2D-DP and

MF-DP universality classes, respectively. In both cases, avalanches were defined with Γ = 0.5. Arrows indicate the connectivity parameters [rE:rI] of

networks: [0.080:0.60] (yellow), [0.1225:0.60] (red), [0.1050:0.60] (purple) and [0.1325:0.60] (blue). Representative (single run) distributions for the

parameter values indicated by arrows in (A) and (B) are respectively shown in (C) and (D), exemplifying subcritical, critical and supercritical cases.

https://doi.org/10.1371/journal.pcbi.1006924.g005
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Maximum-likelihood estimator and continuously varying exponents

If one fixes rI = 0.6 and measures the order parameter φ as the excitatory connectivity rE

changes, the characteristic plot of a second-order phase transition emerges (Fig 7A). Within a

transition region (shaded area of Fig 7A), φ departs continuously from zero and, consistently,

the DFA exponent peaks (Fig 7A corresponds to a cross section of Figs 3D, 4B and 4D). This

region is defined by the fact that within it the distributions of avalanche sizes are better fitted

by power laws with exponential cutoffs than by exponentials or lognormals, according to the

loglikelihood test (see Methods). Similar results are observed for different system sizes (left col-

umn of S3 Fig). We also note that the constant Poisson input P0 driving the excitatory neurons

(Eq 2) is small (see Methods), so in the subcritical regime the average firing rate F (propor-

tional to the density hρi of active sites), while strictly nonzero, is also very small. In the transi-

tion region, the rise of φ is accompanied by the rise of F, which for all practical and numerical

purposes could also be used as an order parameter in this case (S4 Fig). This seems to be a par-

ticularity of the CROS model for this set of parameters, other models usually show different

critical points for the onsets of self-sustained activity and oscillations [42, 43].

Fig 6. Avalanche duration distributions. (A) and (B) show heat maps of the κT index in parameter space employing the τt exponent for the 2D-DP

and MF-DP universality classes, respectively. In both cases, avalanches were defined with Γ = 0.5. Arrows indicate the connectivity parameters of

networks, the same described in Fig 5. Representative (single run) distributions for the parameter values indicated by arrows in (A) and (B) are

respectively shown in (C) and (D), exemplifying subcritical, critical and supercritical cases.

https://doi.org/10.1371/journal.pcbi.1006924.g006
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Fig 7. Continuously varying exponents. (A) DFA exponent (α) and order parameter (φ) versus rE, with rI = 0.60 fixed. The shaded area represents

parameter space where the data was better fitted by a exponentially truncated power-law than exponential or lognormal distributions, according to the

log-likelihood ratio test (see Methods). Inset: zoom around the shaded area. (B) and (C): average exponents for avalanche size and duration,

respectively. Avalanche size versus avalanche duration for (D) 5 different runs and (E) averages over the runs. The black triangle and diamond represent

the theoretical exponents for 2D-DP and MF-DP universality classes, respectively, whereas the black square is the result obtained by Coleman et al [44]

for a variant of the globally coupled Kuramoto model. The same color code applies to (B)-(E). In all figures, error bars represent the standard deviation

over 5 runs. Avalanches were defined with Γ = 0.5.

https://doi.org/10.1371/journal.pcbi.1006924.g007
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Zooming in this transition region, the MLE method yields exponents for the distributions

of size (Fig 7B) and duration (Fig 7C) which vary continuously as parameter space is traversed.

Note that these are averages over different realizations of the disorder (see Methods). Eventu-

ally, both 2D-DP and MF-DP values are crossed for the truncated power laws which best fit

the size and duration distributions.

At this point, it is unclear whether either of these two theoretical conjectures should be cho-

sen as a better description of criticality in the model. We therefore applied a simple test, asking

whether there is some combination of parameters for which the values of both τ and τt come

close to those of either of the two conjectured universality classes. From the functions hτi(rE)

and hτti(rE) (Fig 7B and 7C), one can parametrically plot hτi vs hτti, either with (Fig 7E) or

without (Fig 7D) averaging over the disorder. In the plane (τ, τt), simulation results eventually

come close to the 2D-DP exponents, but not to the MF-DP exponents. This in principle seems

consistent with the fact that the model is two-dimensional, especially since care has been taken

to increase the system size.

But how robust are these results? We should now revisit their dependence on the threshold

parameter Γ, a crucial ingredient of the model that directly impacts the very definition of an

avalanche (Methods, Eq 4). While the κ index proved to be fairly robust against variations in Γ
(S2 Fig), its usefulness was shown to be rather limited, because its calculation requires a priori
knowledge of the power law exponent. So how does the overall picture of the much more

informative Fig 7 change when the threshold is varied?

First, we observe that the absolute values of both avalanche exponents increase with increasing

Γ (Fig 8A and 8B). This is interesting, because it relates to a similar result originally obtained by

Beggs and Plenz [4]: by decreasing the time bin employed to slice their time series, they observed

an increase in the absolute value of τ. In other words, by imposing stricter conditions (shorter

silences), larger avalanches became less likely, in the sense that the power law describing the size

distribution became steeper. Despite the differences in how avalanches are defined, the CROS

model reproduces the same trend (also seen in other experimental and modelling setups [23, 41,

43, 45]), to the extent that imposing larger thresholds is tantamount to decreasing the bin width.

Second, as the values of τ and τt change with Γ, they keep a reasonably linear relationship

with each other (Fig 8C and 8D), which is consistent with the right-hand side of Eq 8 being

approximately constant. Moreover, and most importantly, this linear relationship depends on

Γ. For increasing Γ, the linear spread of exponents in the (τ, τt) plane is gradually displaced,

eventually departing from the 2D-DP values and approaching the ones for MF-DP. Therefore,

while for Γ’ 0.5 it is possible to simultaneously find both 2D-DP exponents (τ’ 1.268 and

τt’ 1.45), for Γ’ 0.85 it is possible to find both MF-DP exponents (τ = 1.5 and τt = 2) at the

transition region of the model. These results remain qualitatively the same for different system

sizes (middle column of S3 Fig).

More stringent tests of criticality

From a theoretical point of view, the presence of power laws with exponents that vary contin-

uously (Figs 7 and 8) poses a challenge to the CROS model: where in parameter space is the

phase transition (assuming there is one)? It has long been argued that power law distribu-

tions, on their own, are not a sufficient signature of a critical point, and indeed several other

approaches have been proposed to substantiate claims of criticality [24–26]. Here we ask

whether the exponents satisfy three different scaling relations [25].

First, at criticality one expects the average avalanche size hsi of a given duration T to scale as

hsiðTÞ � T 1
snz (Eq 6). We have confirmed that this holds within the whole transition region of

the CROS model for different system sizes and threshold values (right column of Fig 9).
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Second, if s(t, T) is the number of firings at time t of an avalanche of duration T, then at criti-

cality one should be able to observe shape collapse, that is, the rescaling sðt;TÞ � T 1
snz� 1Fðt=TÞ

(Eq 7) of the temporal profiles of avalanches of different durations, where F is a scaling func-

tion. At the transition region, the avalanches of the CROS model do satisfy shape collapse (left

and middle column of Fig 9), with an exponent that is in good agreement with the one indepen-

dently estimated by the scaling relation of Eq 6 (compare the exponent values in the middle and

right columns of Fig 9).

The fact that the two scaling relations above hold within the whole transition region of the

CROS model does not allow one to pinpoint where the critical point is and what its critical

exponents are. In fact, Eq 6 was reported to hold for experimental data even away from critical-

ity [25]. Besides, Touboul and Destexhe have recently argued that models which are not critical

can satisfy both these scaling relations [26]. There is, however, a third scaling relation connect-

ing the exponent in Eq 6 and those governing the distributions of avalanche size and duration:
1

snz ¼
ðtt � 1Þ

ðt� 1Þ
(Eq 8). Satisfying this scaling relation is regarded as a much more stringent criterion

for criticality, and we are unaware of non-critical models where it holds [26].

Fig 8. Threshold dependence of the continuously varying exponents. (A) and (B): exponents of avalanche size and duration, respectively, as a

function of threshold parameter Γ (see Eq 4). The same color code applies to (A) and (B). Exponents for avalanche size and avalanche duration (C) for 5

different runs and (D) averaged over the runs (the black points are the same as described in Fig 7). The color code in (C) and (D) represents different

values of Γ, as described in (C). Orange points are experimental M/EEG results extracted from Palva et al. [22]. In all figures, error bars represent the

standard deviation over 5 runs of the CROS model.

https://doi.org/10.1371/journal.pcbi.1006924.g008
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Fig 9. Avalanche shape collapses. Left column: averaged raw avalanche shapes. Middle column: Estimation of 1/(σνz) over the mean scaled avalanche

profiles. Right column: scaling relation given by Eq 6. (A), (B) and (C) L = 50 with Γ = 0.50, (D), (E) and (F) L = 300 with Γ = 0.50. (G), (H) and (I)

L = 50 with Γ = 0.80, (J), (K) and (L) L = 300 with Γ = 0.80. Gray shadow represents the standard deviation and orange trace the fitted scaling

parameter. Model parameters: rE = 0.14 and rE = 0.12 for L = 50 and L = 300, respectively, with rI = 0.60.

https://doi.org/10.1371/journal.pcbi.1006924.g009
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We proceed to test Eq 8 in the CROS model by noting that its left-hand and right-hand

sides can be independently evaluated, and then compared for consistency. While the exponent

in the left-hand side was estimated from fitting Eq 6, the right-hand side employed the ava-

lanche exponents obtained from the maximum-likelihood estimator. Results are summarized

in Fig 10. For fixed rI, as the parameter rE is varied within the transition region (shaded area of

Fig 7A), the left-hand side stays below the right-hand side, failing to satisfy the scaling relation

(Fig 10). Note that this failure is independent of a requirement to fit either conjectured univer-

sality class (2D-DP or MF-DP): the left- and right-hand sides of Eq 8 do not cross anywhere

for the CROS model. Changing the threshold parameter Γ does not fix this issue. In fact, note

that the difference between the left- and right-hand sides reaches a minimum for lower thresh-

olds (Fig 10). While lower thresholds yield avalanche exponents closer to those of 2D-DP (Fig

8C and 8D), the “near miss” in Fig 10 occurs for values of 1/(σνz) which are far from those of

2D-DP. This scenario is robust with respect to changes in system size (right column of S3 Fig).

Comparison with M/EEG experimental results

Despite the difficulties in reconciling our results with a proper phase transition (DP-like or

otherwise), the scale-invariant behavior of the CROS model in its transition region is very

rich and lends itself to comparison with experimental data. In particular, we wanted to probe

whether the spread of exponents yielded by model is able to reproduce features of phenomena

observed experimentally. Two main sources impact the variability of experimental results:

first, the dependence on fitting parameters. As we discussed previously, the CROS model cap-

tures, for instance, the increase in the slope of the power laws as the threshold (implicit in the

avalanche definition) is increased (Fig 8A and 8B). But even if fitting parameters are fixed, a

second factor comes into play, namely, inter-subject variability. In the following, we revisit

human magneto- and electroencephalographic (M/EEG) results that show a spread of expo-

nents across subjects, and check how the CROS model performs in reproducing them. In this

comparison, it is important to keep in mind some caveats: for instance, the data analysis and

the model employ different avalanche definitions (see Methods); also, the topology of the

Fig 10. Relation between critical exponents across the transition region. Left-hand (triangles) and right-hand (squares) sides of scaling relation given

by Eq 8 as a function of rE in the transition region for different values of Γ. Dashed horizontal lines represent the values for 2D-DP and MF-DP

universality classes, as well as the result obtained by Coleman et al [44] for a variant of the globally coupled Kuramoto model.

https://doi.org/10.1371/journal.pcbi.1006924.g010
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CROS model is quite simplified, neglecting known features of cortical interactions, such as

long-range connections [46].

In M/EEG recordings of humans performing a threshold-stimulus detection task, Palva

et al have found that source-reconstructed data exhibit robust power-law long-range temporal

correlations (i.e. well characterized DFA exponents) as well as scale-invariant avalanches

(obtained by converting the recordings into a binary point process via a threshold at three

standard deviations [22]). Results support the hypothesis of the human brain working near a

critical point. But the avalanche and DFA exponents varied across subjects. When replotted in

the (τ, τt) plane, their data spreads linearly (Fig 8C), a fact originally unreported [22] which,

again, is consistent with a constant right-hand side of Eq 8. Moreover, the slope of the spread

is reproduced by the CROS model, which achieves a reasonable quantitative agreement with

the data for larger values of the threshold parameter (Fig 8C).

Palva et al also showed that avalanche and DFA exponents were not independent, but

rather negatively correlated, with similar results observed for recordings of subjects at rest, as

well as for the dependence of the DFA exponent of behavioral time series (hits and misses)

[22]. To appreciate the implications, it is important to emphasize the difference in time scales:

while avalanches can last at most a couple of hundred milliseconds, long-range time correla-

tions in the M/EEG data were observed for tens of minutes [22].

This very interesting experimental result, which connects signatures of criticality at very

different time scales, is not well reproduced by the CROS model. If one looks at single runs

instead of averages (assuming that the result for a given experimental subject would be mod-

eled by a single realization of the model disorder), simulations within the transition region do

indeed give rise to raw-data DFA and avalanche exponents negatively correlated (lower plots

of S5 Fig). But a fundamental discrepancy between model and experiments remains, because

the DFA procedure was applied to the M/EEG data after band-filtering [22], whereas negative

correlations in the CROS model are dominant for unfiltered data only (S5 Fig).

In a subsequent MEG study by the same group, however, Zhigalov et al dedicated special

attention to the dependence of the exponent τ (governing avalanche size distributions) on two

fitting parameters: the threshold T0 used to define a binary event at each site, and the time bin

Δt used to parse the binary events and define an avalanche [23]. For each point in the (T0, Δt)
plane, a different distribution of avalanche sizes was obtained. In particular, when they ana-

lyzed the region in the (T0, Δt) plane where truncated power laws (with an exponential cutoff)

were the best fit to the size distributions, they obtained a positive correlation (r = 0.80) between

the band-filtered DFA exponents and τ (Fig 11). Moreover, they noticed that in this region of

parameter space the size exponent was close to its MF-DP value, τ = 3/2 [23].

To compare the CROS model results with those of Zhigalov et al, we chose Γ = 0.85, a

threshold value which yields exponents close to the MF-DP universality class (Fig 8C). We

explored the values of band-filtered α and τ (also fit by power laws with exponential cutoff, see

Methods) within the transition region. The CROS model results for single runs in the (α, τ)

plane show not only positive correlations (r = 0.90), but also a good quantitative agreement

with the values of the exponents of the MEG results (Fig 11). The positive correlation is robust

with respect to a different choice of Γ, as long as the system size is large (S5 Fig).

Conclusions

Given that the connection between critical phenomena and scale-invariant statistics has long

been established, power-law distributions of avalanches is a reasonable first signature to look

for if one believes a neuronal system is critical. It is important to keep in mind, however, that

power-law distributions, on their own, are generally not a sufficient signature of criticality.
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Moreover, even if the analysis is restricted to power-law distributions, it is important to

remind that critical exponents depend on many factors, such as dimensionality, disorder and

the nature of the phase transition. In particular, the avalanche size exponent τ’ 1.5 originally

observed by Beggs and Plenz [4] coincides with any model in the MF-DP universality class.

But other experimental setups have revealed different exponents [25, 35, 47]. Likewise, models

with different topologies or ingredients in their dynamics might give rise to exponents which

differ from those of MF-DP.

Models with disorder and without an analytical solution, such as the one we studied here,

can be particularly challenging. The CROS model is two-dimensional, with disorder, and the

onset of its oscillations in principle seems physically different from the absorbing-active phase

transition of the DP universality class. One of the main results of this manuscript is that ava-

lanche and DFA exponents vary continuously within a transition region of parameter space

where oscillations emerge (Figs 7 and 8). Therefore, if one insists on the mean-field DP values

Fig 11. Similarity between spread of DFA and avalanche size exponents in the CROS model and in MEG data. DFA (α) and avalanche size (τ)

exponents show positive correlation in MEG recordings of humans in resting-state (data extracted from Zhigalov et al [23], see Methods) as well as in

the CROS model. Avalanches for the CROS model were defined with Γ = 0.85.

https://doi.org/10.1371/journal.pcbi.1006924.g011
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and looks for the τ’ 1.5 and τt’ 2 exponents, one may find one or the other, as we did by

using the κ indexes as markers of criticality (Figs 5B and 6B). These, however, proved to be

insufficient signatures. For instance, fixing the threshold parameter at Γ = 0.5, the MF-DP

exponents could not be obtained simultaneously (Fig 7D and 7E). What we did obtain simulta-

neously for that threshold value were the size and duration exponents of 2D-DP (Fig 7D and

7E), a result that might seem reassuring given that the model is indeed two-dimensional and

assuming that a connection between directed percolation and the onset of oscillations can be

established at all. But even that shred of consistency disappears if the threshold is increased:

for Γ’ 0.85 we did obtain MF-DP exponents simultaneously. In fact, as shown in Fig 8C, it

is possible to cover a significant fraction of the (τ, τt) plane by varying two parameters, so it

would be no surprise if the model could reproduce exponents of other universality classes as

well. Recently, di Santo et al have investigated a different model with a similar claim, namely,

that power-law distributed avalanches occur at the edge of synchronization [43]. They also

simulated a two-dimensional model, yet exhibited MF-DP avalanche exponents. It would be

interesting to check what the strategies presented here would reveal if applied to their model.

In any case, a theoretical understanding of whether DP can be an “effective theory” for the

phase transition leading to oscillations is still missing. Consider, for instance, a recent study by

Coleman et al that has numerically investigated avalanches in a variant of the globally coupled

version of the paradigmatic Kuramoto model (MF-K) [44], a minimal model to understand

the onset of collective oscillations. Tuning the large-N model to the slightly subcritical regime,

the authors define avalanches as excursions of the Kuramoto order parameter between

consecutive zero crossings. Through scaling analysis, they arrive at avalanche exponents τ =

1.15 ± 0.1 and τt = 1.28 ± 0.05 [44]. Note that, on the one hand, these values are far from those

of the MF-DP universality class, despite the mean-field nature of the model. Interestingly,

on the other hand, their exponents are compatible with those we observed in the transition

region of the two-dimensional CROS model for Γ = 0.5 (Fig 7D and 7E). However, the closest

approach of the left- and right-hand sides of Eq 8 for the CROS model occurs for a value of

(τt − 1)/(τ − 1) far from that of MF-K (Fig 10). In light of these results, therefore, it seems theo-

retically unwarranted to expect the “classical” MF-DP exponents (τ = 3/2 and τt = 2) at the

onset of collective oscillations.

Besides, even though the two-dimensional CROS model can exhibit exponents for ava-

lanche size (τ) and duration (τt) which are compatible with DP, we did not obtain a fully satis-

factory connection between the two scenarios. At a DP-like phase transition, avalanches are

expected to satisfy scaling relations involving their size and duration (Eq 6), shape collapse (Eq

7) and consistency between the exponents involved (Eq 8). The first two scaling relations are

often satisfied experimentally [25, 35] and we found them to be valid within the transition

region of the CROS model as well (Fig 9). However, they are also satisfied by models which are

not critical [26]. The third scaling relation (Eq 8), on the other hand, is considered more strin-

gent and hence a more decisive criterion for criticality [26]. By plotting is left- and right-hand

sides as function of a coupling parameter, we expected the scaling relation to determine which,

among the spread of exponents in the (τ, τp) plane, are the truly critical ones. However, we did

not find a region in parameter space where Eq 8 held (Fig 10).

The fact that our results for the CROS model fail to satisfy Eq 8 should be interpreted with

some caution. It may signal that the model does not have a true critical point, but rather under-

goes some other transition phenomenon. If so, this would go in the direction of a number of

other works which suggest alternatives to strict criticality as theoretical possibilities to explain

the available experimental data. Some of these possibilities are, for instance, self-organized

quasi-criticality (oscillations around a critical point [48]), pseudo self-organized criticality (a

broad region of parameter space “close” to a critical point [49]), Griffiths phases (continuously
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varying exponents around a true critical point [39, 50]), or even the Boltzmann chaos regime

[26]. But there is also the possibility that the model would satisfy Eq 8 if one employed the reg-

ular definition of avalanche, with local thresholds to define binary events and a time bin to

parse the series of events. Though computationally expensive, this would be a natural next

step not only to better understand the model, but also to bring its methodology closer to that

employed in the analysis of experimental data, thus improving the quality of the comparison.

Along the same line, it would be worth investigating how the CROS model behaves if its synap-

tic connectivity incorporates more realistic ingredients, such as sparse long-range connections.

As is well known, the small-world property is often sufficient to throw models into the mean-

field version of their universality class [51]. On the one hand, this might help pinpoint a true

critical point in the model. On the other hand, it is not apparent a priori whether the continu-

ously varying exponents of the CROS model that we have obtained in its original formulation

would remain.

Finally, we have shown that the CROS model is a very promising starting point for model-

ing some scale-invariant properties of M/EEG data. Despite the differences in avalanche defi-

nition between the model and the data analysis, the model quantitatively reproduces the linear

relation between the avalanche exponents obtained by Palva et al [22] (Fig 8C), as well as the

positive correlation between τ and the DFA exponent α obtained by Zhigalov et al [23] (Fig

11). In light of the results presented here, future lines of investigation naturally emerge on

both the modelling and experimental fronts. For instance, since the agreement with the data

occurs near a transition region of the model, it would be worth searching for dynamical mech-

anisms which could lead the system to self-organize around that narrow region of parameter

space. On the experimental side, the more stringent tests of criticality that we have applied to

the CROS model might be extended to the experimental data as well, raising the question

whether it would be able to reveal, among a spread of exponents, the truly critical ones.

Supporting information

S1 Fig. Power spectrum and order parameter for networks smaller than L = 300. The

model presents a similar behavior for all network sizes L tested. These results do not depend

on any threshold value θ.

(EPS)

S2 Fig. κ index for different thresholds. For a network of size L = 300, different values of Γ
were used to test the robustness of the threshold definition in the CROS model. Using 2D-DP

and MF-DP exponents, distributions of avalanche sizes (sg, sθ) and durations (T) were ana-

lysed.

(EPS)

S3 Fig. Threshold and system-size dependence of exponents. The model presents a qualita-

tively similar threshold-dependent behavior for all network sizes L tested. The shaded area,

which depends on the threshold definition, represents parameter space where the data was bet-

ter fitted by an exponentially truncated power-law than exponential or lognormal distribu-

tions, according to the log-likelihood ratio test (see Methods). In the left column, Γ = 0.5.

(EPS)

S4 Fig. Firing rate as an order parameter. The firing rate departs from close to zero to larger

values near the transition region (shaded area). Results are qualitatively the same indepen-

dently of the threshold definition.

(EPS)
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S5 Fig. Spread of DFA and avalanche exponents in the CROS model and M/EEG data. A

non-trivial correlation between avalanche and DFA exponents is observed in the CROS model

and shows a clear dependence on the network size (L) as well as on whether or not the data

was band-filtered prior to calculation of LRTCs. Avalanches were defined with Γ = 0.5. In the

plane (α, τ), for L = 300, r = 0.73. The black triangles and stars represent the results obtained

by Palva et al and Zhigalov et al, respectively.

(EPS)
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